Rough Cuts are manuscripts that are developed but not yet published, available through Safari. Rough Cuts provide you access to the very latest information on a given topic and offer you the opportunity to interact with the author to influence the final publication.
This is the Rough Cut version of the printed book.
The Only DSP Book 100% Focused on Step-by-Step Design and Implementation of Real Devices and Systems in Hardware and Software
Practical Applications in Digital Signal Processing is the first DSP title to address the area that even the excellent engineering textbooks of today tend to omit. This book fills a large portion of that omission by addressing circuits and system applications that most design engineers encounter in the modern signal processing industry.
This book includes original work in the areas of Digital Data Locked Loops (DLLs), Digital Automatic Gain Control (dAGC), and the design of fast elastic store memory used for synchronizing independently clocked asynchronous data bit streams. It also contains detailed design discussions on Cascaded Integrator Comb (CIC) filters, including the seldom-covered topic of bit pruning. Other topics not extensively covered in other modern textbooks, but detailed here, include analog and digital signal tuning, complex-to-real conversion, the design of digital channelizers, and the techniques of digital frequency synthesis. This book also contains an appendix devoted to the techniques of writing mixed-language C\C++ Fortran programs. Finally, this book contains very extensive review material covering important engineering mathematical tools such as the Fourier series, the Fourier transform, the z transform, and complex variables.
Features of this book include
• Thorough coverage of the complex-to-real conversion of digital signals
• A complete tutorial on digital frequency synthesis
• Lengthy discussion of analog and digital tuning and signal translation
• Detailed coverage of the design of elastic store memory
• A comprehensive study of the design of digital data locked loops
• Complete coverage of the design of digital channelizers
• A detailed treatment on the design of digital automatic gain control
• Detailed techniques for the design of digital and multirate filters
• Extensive coverage of the CIC filter, including the topic of bit pruning
• An extensive review of complex variables
• An extensive review of the Fourier series, and continuous and discrete Fourier transforms
• An extensive review of the z transform
Preface xiii
Acknowledgments xxi
About the Author xxiii
Chapter 1: Review of Digital Frequency 1
1.1 Definitions 2
1.2 Defining Digital Frequencies 2
1.3 Mathematical Representation of Digital Frequencies 9
1.4 Normalized Frequency 12
1.5 Representation of Digital Frequencies 13
Chapter 2: Review of Complex Variables 15
2.1 Cartesian Form of Complex Numbers 17
2.2 Polar Form of Complex Numbers 21
2.3 Roots of Complex Numbers 27
2.4 Absolute Value of Complex Numbers 35
2.5 Exponential Form of Complex Numbers 36
2.6 Graphs of the Complex Variable z 38
2.7 Limits 40
2.8 Analytic Functions 41
2.9 Singularity 42
2.10 Entire Functions 42
2.11 The Complex Number 42
2.12 Complex Differentiation 43
2.13 Cauchy-Riemann Equations 47
2.14 Simply Connected Region 51
2.15 Contours 51
2.16 Line Integrals 52
2.17 Real Line Integrals 54
2.18 Complex Line Integrals 84
2.19 Cauchy’s Theorem 96
2.20 Table of Common Integrals 109
2.21 Cauchy’s Integral 109
2.22 Residue Theory 120
2.23 References 127
Chapter 3: Review of the Fourier Transform 129
3.1 A Brief Review of the Fourier Series 129
3.2 A Brief Review of the Fourier Transform 157
3.3 Review of the Discrete Fourier Transform (DFT) 187
3.4 DFT Processing Gain 254
3.5 Example DFT Signal Processing Application 261
3.6 Discrete Time Fourier Transform (DTFT) 263
3.7 Fast Fourier Transform (FFT) 267
3.8 References 268
Chapter 4: Review of the Z-Transform 271
4.1 Complex Number Representation 271
4.2 Mechanics of the Z-Transform 274
4.3 Left-Sided Z-Transform 277
4.4 Right-Sided Z-Transform 278
4.5 Two-Sided Z-Transform 278
4.6 Convergence of the Z-Transform 279
4.7 System Stability 290
4.8 Properties of the Z-Transform 292
4.9 Common Z-Transform Pairs 304
4.10 Inverse Z-Transform 308
4.11 Pole and Zero Standard Form Plug-In Equations 334
4.12 Applications of the Z-Transform 350
4.13 Summary of Useful Equations 380
4.14 References 381
Chapter 5: Finite Impulse Response Digital Filtering 383
5.1 Review of Digital FIR Filters 384