Home > Store

Operating Systems: Internals and Design Principles (POD File), 9th Edition

Operating Systems: Internals and Design Principles (POD File), 9th Edition

eBook (Adobe DRM)

  • Your Price: $49.99
  • About Adobe DRM eBooks
  • This eBook requires the free Adobe® Digital Editions software.

    Before downloading this DRM-encrypted PDF, be sure to:

    • Install the free Adobe Digital Editions software on your machine. Adobe Digital Editions only works on Macintosh and Windows, and requires the Adobe Flash Player. Please see the official system requirements.
    • Authorize your copy of Adobe Digital Editions using your Adobe ID (select AdobeID as the eBook vendor). If you don't already have an Adobe ID, you can create one here.
Not for Sale

Also available in other formats.

Register your product to gain access to bonus material or receive a coupon.


  • Copyright 2018
  • Edition: 9th
  • eBook (Adobe DRM)
  • ISBN-10: 0-13-530744-9
  • ISBN-13: 978-0-13-530744-1

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book.

For one- or two-semester undergraduate courses in operating systems for computer science, computer engineering, and electrical engineering majors

An introduction to operating systems with up-to-date and comprehensive coverage

Now in its 9th Edition, Operating Systems: Internals and Design Principles provides a comprehensive, unified introduction to operating systems topics for readers studying computer science, computer engineering, and electrical engineering. Author William Stallings emphasizes both design issues and fundamental principles in contemporary systems, while providing readers with a solid understanding of the key structures and mechanisms of operating systems. He discusses design trade-offs and the practical decisions affecting design, performance and security. The text illustrates and reinforces design concepts, tying them to real-world design choices with case studies in Linux, UNIX, Android, and Windows 10.

With an unparalleled degree of support for project integration, plus comprehensive coverage of the latest trends and developments in operating systems, including cloud computing and the Internet of Things (IoT), the text provides everything readers need to keep pace with a complex and rapidly changing field. The 9th Edition has been extensively revised and contains new material, new projects, and updated chapters. 

Sample Content

Table of Contents

Online Chapters and Appendices



About the Author

I. Background

1. Computer System Overview

1.1. Basic Elements

1.2. Evolution of the Microprocessor

1.3. Instruction Execution

1.4. Interrupts

1.5. The Memory Hierarchy

1.6. Cache Memory

1.7. Direct Memory Access

1.8. Multiprocessor and Multicore Organization

1.9. Key Terms, Review Questions, and Problems

1A. Performance Characteristics of Two-Level Memories

2. Operating System Overview

2.1. Operating System Objectives and Functions

2.2. The Evolution of Operating Systems

2.3. Major Achievements

2.4. Developments Leading to Modern Operating Systems

2.5. Fault Tolerance

2.6. Os Design Considerations for Multiprocessor and Multicore

2.7. Microsoft Windows Overview

2.8. Traditional Unix Systems

2.9. Modern Unix Systems

2.10. Linux

2.11. Android

2.12. Key Terms, Review Questions, and Problems

II. Processes

3. Process Description and Control

3.1. What is a Process?

3.2. Process States

3.3. Process Description

3.4. Process Control

3.5. Execution of the Operating System

3.6. Unix Svr4 Process Management

3.7. Summary

3.8. Key Terms, Review Questions, and Problems

4. Threads

4.1. Processes and Threads

4.2. Types of Threads

4.3. Multicore and Multithreading

4.4. Windows Process and Thread Management

4.5. Solaris Thread and Smp Management

4.6. Linux Process and Thread Management

4.7. Android Process and Thread Management

4.8. Mac OS X Grand Central Dispatch

4.9. Summary

4.10. Key Terms, Review Questions, and Problems

5. Concurrency: Mutual Exclusion and Synchronization

5.1. Mutual Exclusion: Software Approaches

5.2. Principles of Concurrency

5.3. Mutual Exclusion: Hardware Support

5.4. Semaphores

5.5. Monitors

5.6. Message Passing

5.7. Readers/Writers Problem

5.8. Summary

5.9. Key Terms, Review Questions, and Problems

6. Concurrency: Deadlock and Starvation

6.1. Principles of Deadlock

6.2. Deadlock Prevention

6.3. Deadlock Avoidance

6.4. Deadlock Detection

6.5. An Integrated Deadlock Strategy

6.6. Dining Philosophers Problem

6.7. Unix Concurrency Mechanisms

6.8. Linux Kernel Concurrency Mechanisms

6.9. Solaris Thread Synchronization Primitives

6.10. Windows Concurrency Mechanisms

6.11. Android Interprocess Communication

6.12. Summary

6.13. Key Terms, Review Questions, and Problems

III. Memory

7. Memory Management

7.1. Memory Management Requirements

7.2. Memory Partitioning

7.3. Paging

7.4. Segmentation

7.5. Summary

7.6. Key Terms, Review Questions, and Problems

7A. Loading and Linking

8. Virtual Memory

8.1. Hardware and Control Structures

8.2. Operating System Software

8.3. Unix and Solaris Memory Management

8.4. Linux Memory Management

8.5. Windows Memory Management

8.6. Android Memory Management

8.7. Summary

8.8. Key Terms, Review Questions, and Problems

IV. Scheduling

9. Uniprocessor Scheduling

9.1. Types of Processor Scheduling

9.2. Scheduling Algorithms

9.3. Traditional Unix Scheduling

9.4. Summary

9.5. Key Terms, Review Questions, and Problems

10. Multiprocessor, Multicore, and Real-Time Scheduling

10.1. Multiprocessor and Multicore Scheduling

10.2. Real-Time Scheduling

10.3. Linux Scheduling

10.4. Unix Svr4 Scheduling

10.5. Unix Freebsd Scheduling

10.6. Windows Scheduling

10.7. Summary

10.8. Key Terms, Review Questions, and Problems

V. Input/Output and Files

11. I/O Management and Disk Scheduling

11.1. I/O Devices

11.2. Organization of the I/O Function

11.3. Operating System Design Issues

11.4. I/O Buffering

11.5. Disk Scheduling

11.6. Raid

11.7. Disk Cache

11.8. Unix Svr4 I/O

11.9. Linux I/O

11.10. Windows I/O

11.11. Summary

11.12. Key Terms, Review Questions, and Problems

12. File Management

12.1. Overview

12.2. File Organization and Access

12.3. B-Trees

12.4. File Directories

12.5. File Sharing

12.6. Record Blocking

12.7. Secondary Storage Management

12.8. Unix File Management

12.9. Linux Virtual File System

12.10. Windows File System

12.11. Android File Management

12.12. Summary

12.13. Key Terms, Review Questions, and Problems

VI. Embedded Systems

13 Embedded Operating Systems

13.1. Embedded Systems

13.2. Characteristics of Embedded Operating Systems

13.3. Embedded Linux

13.4. Tinyos

13.5. Key Terms, Review Questions, and Problems

14. Virtual Machines

14.1. Virtual Machine Concepts

14.2. Hypervisors

14.3. Container Virtualization

14.4. Processor Issues

14.5. Memory Management

14.6. I/O Management

14.7. Vmware Esxi

14.8. Microsoft Hyper-V and Xen Variants

14.9. Java Vm

14.10. Linux Vserver Virtual Machine Architecture

14.11. Summary

14.12. Key Terms, Review Questions, and Problems

15. Operating System Security

15.1. Intruders and Malicious Software

15.2. Buffer Overflow

15.3. Access Control

15.4. Unix Access Control

15.5. Operating Systems Hardening

15.6. Security Maintenance

15.7. Windows Security

15.8. Summary

15.9. Key Terms, Review Questions, and Problems

16. Cloud and IoT Operating Systems

16.1. Cloud Computing

16.2. Cloud Operating Systems

16.3. The Internet of Things

16.4. IoT Operating Systems

16.5. Key Terms and Review Questions

Appendix A. Topics in Concurrency

Appendix B. Programming and Operating System Projects





Submit Errata

More Information

Unlimited one-month access with your purchase
Free Safari Membership