This EPUB will be accessible from your Account page after purchase.
This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.
Also available in other formats.
Register your product to gain access to bonus material or receive a coupon.
Threads are a fundamental part of the Java platform. As multicore processors become the norm, using concurrency effectively becomes essential for building high-performance applications. Java SE 5 and 6 are a huge step forward for the development of concurrent applications, with improvements to the Java Virtual Machine to support high-performance, highly scalable concurrent classes and a rich set of new concurrency building blocks. In Java Concurrency in Practice, the creators of these new facilities explain not only how they work and how to use them, but also the motivation and design patterns behind them.
However, developing, testing, and debugging multithreaded programs can still be very difficult; it is all too easy to create concurrent programs that appear to work, but fail when it matters most: in production, under heavy load. Java Concurrency in Practice arms readers with both the theoretical underpinnings and concrete techniques for building reliable, scalable, maintainable concurrent applications. Rather than simply offering an inventory of concurrency APIs and mechanisms, it provides design rules, patterns, and mental models that make it easier to build concurrent programs that are both correct and performant.
This book covers:
Listings xii
Preface xvii
Chapter 1: Introduction 1
1.1 A (very) brief history of concurrency 1
1.2 Benefits of threads 3
1.3 Risks of threads 5
1.4 Threads are everywhere 9
2.1 What is thread safety? 17
2.2 Atomicity 19
2.3 Locking 23
2.4 Guarding state with locks 27
2.5 Liveness and performance 29
3.1 Visibility 33
3.2 Publication and escape 39
3.3 Thread confinement 42
3.4 Immutability 46
3.5 Safepublication 49
4.1 Designing a thread-safe class 55
4.2 Instance confinement 58
4.3 Delegating thread safety 62
4.4 Adding functionality to existing thread-safe classes 71
4.5 Documenting synchronization policies 74
5.1 Synchronized collections 79
5.2 Concurrent collections 84
5.3 Blocking queues and the producer-consumer pattern 87
5.4 Blocking and interruptible methods 92
5.5 Synchronizers 94
5.6 Building an efficient, scalable result cache 101
6.1 Executing tasks in threads 113
6.2 The Executor framework 117
6.3 Finding exploitable parallelism 123
7.1 Task cancellation 135
7.2 Stopping a thread-based service 150
7.3 Handling abnormal thread termination 161
7.4 JVM shutdown 164
8.1 Implicit couplings between tasks and execution policies 167
8.2 Sizing thread pools 170
8.3 Configuring ThreadPoolExecutor 171
8.4 Extending ThreadPoolExecutor 179
8.5 Parallelizing recursive algorithms 181
9.1 Why are GUIs single-threaded? 189
9.2 Short-running GUI tasks 192
9.3 Long-running GUI tasks 195
9.4 Shared data models 198
9.5 Other forms of single-threaded subsystems 202
10.1 Deadlock 205
10.2 Avoiding and diagnosing deadlocks 215
10.3 Other liveness hazards 218
11.1 Thinking about performance 221
11.2 Amdahl's law 225
11.3 Costs introduced by threads 229
11.4 Reducing lock contention 232
11.5 Example: Comparing Map performance 242
11.6 Reducing context switch overhead 243
12.1 Testing for correctness 248
12.2 Testing for performance 260
12.3 Avoiding performance testing pitfalls 266
12.4 Complementary testing approaches 270
13.1 Lock and ReentrantLock 277
13.2 Performance considerations 282
13.3 Fairness 283
13.4 Choosing between synchronized and ReentrantLock 285
13.5 Read-write locks 286
14.1 Managing state dependence 291
14.2 Using condition queues 298
14.3 Explicit condition objects 306
14.4 Anatomy of a synchronizer 308
14.5 AbstractQueuedSynchronizer 311
14.6 AQS in java.util.concurrent synchronizer classes 314
15.1 Disadvantages of locking 319
15.2 Hardware support for concurrency 321
15.3 Atomic variable classes 324
15.4 Nonblocking algorithms 329
16.1 What is a memory model, and why would I want one? 337
16.2 Publication 344
16.3 Initialization safety 349
A.1 Class annotations 353
A.2 Field andmethod annotations 353