Home > Store

DSL Advances

Register your product to gain access to bonus material or receive a coupon.

DSL Advances


  • Sorry, this book is no longer in print.
Not for Sale


  • Copyright 2003
  • Dimensions: 7" x 9-1/4"
  • Pages: 576
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-093810-6
  • ISBN-13: 978-0-13-093810-7

Cutting-edge xDSL: technology, standards, architecture, regulation, and its application.

  • The state of the art in DSL technology, standards, and architecture
  • ADSL, HDSL2, SHDSL, VDSL, line unbundling, spectrum management, and more
  • Voice over DSL and video-on-demand: technical progress and its impact on services
  • DSL in the home: automating deployment, enhancing security, maximizing revenue
  • Improved coding techniques, multi-user detection, and other new advances

Digital Subscriber Lines (DSLs) have transformed millions of ordinary phone lines into broadband arteries that link homes and businesses to the Internet at megabit speeds. DSL Advances brings together the state of the art in DSL technology and architecture for every technical professional and manager. The authors of the classic Understanding Digital Subscriber Line Technology review the key challenges service providers and equipment manufacturers face now, preview tomorrow's most important standards and technical enhancements, and offer new insights into today's regulatory and business environment. Coverage includes:

  • HDSL2 and SHDSL: The next generation of symmetric DSL technology
  • Recent developments in ADSL and standards for line unbundling
  • Spectrum management standards: "traffic cops" for crosstalk management
  • Voice over DSL and video-on-demand: technical progress that enhances the business case
  • DSL networked homes: wired/wireless LANs, shared phone and AC wiring?including both centralized splitters and distributed in-line filter premises wiring
  • Streamlining deployment: CPE auto-configuration and flow-through service provisioning
  • Security risks and essential safeguards for vendors, service providers, and users
  • Future directions, including advanced coding techniques and multi-user detection

Sample Content

Online Sample Chapter

Introduction to DSL

Table of Contents



1. Introduction to DSL.

The Telephone Loop Plant. DSL Reference Model. The Family of DSL Technologies. DSL Protocol Reference Model.

2. Review of Transmission Fundamentals for DSLs.

Introduction. Baseband Transmission. Passband Transmission. Equalization. Discrete Multichannel Transmission (DMT). Impairment Modeling. References.

3. ADSL.

Basic Performance Enhancement. Coding. Swapping and Advanced Swapping/Loading Methods. RF Issues. The Analog Front End (AFE). Other Wiring Issues. All-Digital Loop. ADSL2 Summary. References.

4. Second-Generation HDSL (HDSL2).

Review of First-Generation HDSL. Second-Generation HDSL (HDSL2). Initialization. SHDSL and HDSL4. References.

5. Handshake for the ITU-T Suite of DSL Systems.

Handshake Modulation Method. Messages and Commands. G.hs Frame Structure. Information Field Structure. Parameter Data Structure. Transmission Order of the Parameters. Identification (I) Field. Standard Information (S) Field. Nonstandard Information (NS) Field. Message Composition. Transaction Types. G.hs Start-up/Clear-down Procedures. References.

6. Single-Pair High-Speed Digital Subscriber Line (SHDSL).

Applications of SHDSL. Standards for Multirate SHDSL. System Functional Reference Model. HDSL4. SHDSL Transceiver Operations. SHDSL Performance. Core SHDSL Framer (PMS-TC). Timing Configurations. Application Specific Framing (TPS-TC). Initialization. References.

7. VDSL.

Basic VDSL Concepts. Applications and Their Interfaces. DMT Physical Layer Standard. Multiple-QAM Approaches and Standards. Ethernet in the First Mile (EFM). References.

8. Unbundling and Line Sharing.

Overview. U.S. Regulatory Process. Unbundling. Line Sharing. Unbundling and DLC-Fed Lines. Unbundling and Network Operations.

9. Spectral Compatibility of DSL Systems

The Loop Plant Environment. Crosstalk in the Loop Plant. NEXT vs. FEXT. The "Primary" DSL Signal Spectra. Computation of Spectral Compatibility. Spectral Compatibility of the DSL Systems. Summary. References.

10. Spectrum Management of DSL Systems.

Spectrum Management Background. The Concept of Spectrum Management. The Basis Systems. Spectral Compatibility via Method of Signal Power Limitations (Method A). Foundation for Determining Acceptable Levels for Spectral Compatibility. The Spectrum Management Classes. Technology Specific Guidelines. Analytical Method (Method B). References.

11. Dynamic Spectrum Management (DSM).

DSL Unbundling Evolution. Multiuser Basics. Spectral Balancing (Iterative Water-filling). Vectoring. MIMO Channel Identification. Predictions for the DSL Age. References. Appendix 11A-Multiuser Detection.

12. Customer Premises Networking.

Home Network Media. Inside Telephone Wiring and ADSL. Inside Telephone Wire-Based Home Networks. Coax Cable-Based Home Networks. AC Power Wiring-Based Home Networks. Dedicated Data Home Networks. Radio LAN Home Networks. Infrared Home Networks.

13. DSL CPE Autoconfiguration.

An Overview of the Problem of DSL Customer Premises Equipment (CPE) Management and Configuration. Relationship between the Stack, the Network, and CPE Configuration. Standards for Autoconfiguration of DSL CPE. The DSL Forum Framework for Autoconfiguration. References.

14. Network Aspects.

Evaluation of Protocol Stacks for DSL. ATM-based Environments. Ethernet Directly over DSL. References.

15. DSL and Security.

General Security Issues for Broadband Services. DSL-Specific Security Advantages.

16. Voice-over DSL (VoDSL).

The History of DSL and Telephony. What is Voice-over DSL? Telephony and Its Rapid Evolution. VoDSL Architectures. The Appeal of Voice-over DSL. Service Models by Carriers. Standards Efforts for VoDSL. References.

17. Standards.

ITU. Committee T1. ETSI. DSL Forum. ATM Forum. Broadband Content Delivery Forum. TeleManagemnt Forum. DAVIC. IETF. EIA/TIA. IEEE. The Value of Standards and Participation in their Development. The Standards Process.

Appendix A. Overview of Telco Operations Support Systems.

Appendix B. A Photographic Tour of the Telephone Company Network.





The title DSL Advances refers to the multitude of developments in digital subscriber line technology, network architectures, and applications since DSL entered the mass market in early 1999. The title also speaks of the evolution of DSL from an obscure network technology to a consumer service used by tens of millions of customers throughout the world. Many books, including Understanding Digital Subscriber Line Technology (Starr, Cioffi, and Silverman; Prentice Hall, 1999) described the fundamentals of DSL technology and its usage up to early 1999. DSL has transformed from a technology to a networked lifestyle enjoyed by millions of people.

This book is the second in a series of books on DSL. Chapters 1 and 2 of DSL Advances provide the reader with a brief recap of the fundamentals, and then continue the story with the developments during DSL's golden age. Although this book is useful on its own, it is best to have previously read Understanding Digital Subscriber Line Technology.

After 1998, the DSL flower bloomed and flourished. The recent developments are manifold. DSL services reached the one-million-customer mark by mid-2000, and accelerated to serve over 30 million customers by the end of 2002. Five percent of homes in the United States had broadband connections by the end of 1999.1 The transition from low-volume, pilot service offerings to serious attempts to reach a mass market was stimulated by the rapid onslaught of data service competition from cable modems and the long needed stabilization of the regulatory environment. In the United States, as well as a growing list of other countries, regulatory developments provided the key elements for the advance of competitive local exchange carriers (CLECs): assured local loop unbundling, central office collocation, access to telco operations systems, and asymmetric DSL (ADSL) line sharing. Innovation was not limited to DSL equipment; the phone line infrastructure evolved to improve its ability to support DSLs. SBC Communications led the way by deploying many thousands of fiber-fed next generation digital loop carrier (NGDLC) terminals that shortened the length of twisted-wire copper lines. Increasingly, customers more than three miles from the Central Office can receive DSL services. With approximately one-third of U.S. customers served via DLC and NGDLC in the year 2000, and projections for this number to grow to nearly 50% by 2004, the average loop length is shrinking.

Internationally, Asian markets have outpaced the United States in DSL deployments. Korean and Japanese DSL lines each outnumber total U.S. deployments, and China will soon pass the United States as well. A Japanese deployment of nearly 10 million 7-12 Mbps ADSL systems is expected by the end of 2003. British, French, and German ADSL deployments presently parallel the United States' in size, but are growing faster. Thus, DSL—paricularly ADSL—is fast becoming the world's choice for broadband Internet access.

DSL was a dark horse in 1988 when ISDN was stumbling out of the starting gate and chief technology officers were asking why bother to develop HDSL since fiber would be "everywhere" in a couple of years. Few would have imagined DSL advertisements on city buses, and multi-megabit per second DSL modems selling for about the same price as a 14.4 kb/s voice-band modem in 1988. However, DSL is an interim technology. Eventually, fiber-to-the-home/business and broadband wireless will capture the market. Some fiber-optimistic telephone companies expect that by the year 2010 DSL will have a minority market share in the top market areas. Yet major telecommunications technologies do not die quickly; DSL will see niche usage well past 2010. Will the market success of cable modems persist? Cable modem service is expected to grow, but the growth rate may slow if the upgrading of cable plant for two-way digital service stalls with the completion of upgrades for the most attractive areas. As the cable-modem take rate grows, cable companies will face the dilemma of pumping much more money into service with poor return or providing a service with poor performance. Cable modem service is available in few business areas; unlike DSL, where high-margin business customers help pay the way for the low-margin residential customers. DSL's strengths are its provision by many differentiated service providers and its ultimate availability in nearly all business centers and most residential areas.

Chapters 3 through 7 introduce the newest members of the DSL family and report on the maturation of some of the older family members. These chapters show that the various types of DSL share similarities in the underlying technology and network architecture. The recent DSL advances include symmetric DSLs, as well as the popular ADSL. The symmetric HDSL and SDSL technologies transformed into HDSL2 and SHDSL. HDSL2 conveys 1.5 Mb/s via two wires, whereas HDSL required four wires. SHDSL conveys the same data rates as SDSL, but on loops 2,000 to 3,000 feet longer. The newer symmetric DSL technologies will quickly make HDSL and SDSL obsolete because of the improved performance and two other factors vital for the success of any new DSL technology. HDSL2 and SHDSL are based on industry standards with multivendor interoperability. HDSL2 and SHDSL are designed to minimize crosstalk into other lines. In some ways, VDSL is a delayed opportunity. Very high bit-rate DSL (VDSL) conveys rates as high as 52 Mb/s via very short copper end-section that is usually served via an optical network unit (ONU) that connects to the network by fiber. The cost of the required multitude of ONUs complicates the VDSL business case, while radio frequency ingress and egress force major technical compromises. VDSL is searching for its best opportunity: Will the line code be DMT or single-carrier? Will the prime services be symmetric or asymmetric? VDSL's opportunities are diminished by the industry standards's inability to reach a single VDSL standard.

Chapters 9 and 10 warn that the continued success of DSL is not assured. DSL could become a victim of its own success if the crosstalk between DSLs in the same cable is not managed. This calamity will hopefully be averted by the T1.417 local loop spectrum management standard developed in the T1E1.4 Working Group. This standard is expected to be the technical foundation of telecommunications policy in the United States for the reliable use of unbundled loops. Other countries are developing spectrum management rules to address their unique environment. Traffic laws and police are needed for drivers to safely and efficiently share the road. Limited transmitted signal power and equipment certifications are required for service providers to effectively share the copper pairs in the access cables. Even with such existing static spectrum management, DSL crosstalk diminishes the data rates on other lines, in many cases by a factor of 3 to 10. Chapter 11, which discusses the new area of dynamic spectrum management (DSM), is an exciting first look at the tremendous future possibility as DSL management becomes more automated and sophisticated.

High-speed Internet access and the growing popularity of telecommuting stimulated the mass market for DSL, but in the spirit of "what is old is new," a "new" application for DSL was discovered: voice. DSL was not just for data. Although ADSL was always designed to carry one voice channel, Chapter 16 presents the various ways voice-over-DSL (VoDSL) carries many voice channels in addition to data. The additional service revenue from the same line was icing on an already delicious cake. Furthermore, the many voice calls on one pair of wires reduced the exhaustion of spare pairs in cables. The other new/old emerging application is video. Video-on-demand spurred ADSL in 1994 until the economic reality of competing with videotape rentals stalled ADSL deployment. In a cliff-hanger rescue, ADSL was saved by the Internet. The ADSL lines to millions of homes can connect to video servers as well as data servers. Video-on-demand has resurfaced, and this time it is cost competitive. Video-on-demand via ADSL will become especially attractive with 1.3 Mb/s MPEG4 video coding providing picture quality better than VHS videotapes.

Chapters 12 to 16 show the results from use of DSL in the real world, and reach beyond the physical layer core of DSL by discussing the end-to-end network that surrounds DSL. The customer end of the phone line is not the end of the story. Chapter 12 compares methods for DSL to connect to all networked devices within the customer's premises: dedicated LAN wiring, shared phone wiring, shared AC power wiring, and wireless. Both centralized splitter and distributed in-line filter premises wiring configurations are discussed. Chapter 13 presents the developments in the DSL Forum and elsewhere to remove the labor from DSL: automatic configuration of the customer's equipment and flow-through service provisioning. Chapter 14 explores and compares the diverse breadth of upper-layer communications protocols used by DSLs. Chapter 15 exposes a topic of great importance that is barely mentioned in most DSL books: security. Security risks and essential safeguards for every DSL vendor, service provider, and user are discussed.

The views expressed in this book are solely those of the authors, and do not necessarily reflect the views of the companies and organizations affiliated with the authors.


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020