Home > Store

Data Structures, Algorithms, and Machine Learning Optimization LiveLessons (Video Training)

Data Structures, Algorithms, and Machine Learning Optimization LiveLessons (Video Training)

Your browser doesn't support playback of this video. Please download the file to view it.

Online Video

Register your product to gain access to bonus material or receive a coupon.


  • Copyright 2022
  • Edition: 1st
  • Online Video
  • ISBN-10: 0-13-764494-9
  • ISBN-13: 978-0-13-764494-0

6+ Hours of Video Instruction

Hands-On Approach to Learning the Essential Computer Science for Machine Learning Applications


Data Structures, Algorithms, and Machine Learning Optimization LiveLessons provides you with a functional, hands-on understanding of the essential computer science for machine learning applications.

Customer Review
I enjoy Jon's material because he painstakingly walks you through the mechanics of the operation.

About the Instructor
Jon Krohn is Chief Data Scientist at the machine learning company untapt. He authored the book Deep Learning Illustrated, an instant #1 bestseller that was translated into six languages. Jon is renowned for his compelling lectures, which he offers in-person at Columbia University and New York University, as well as online via O'Reilly, YouTube, and the SuperDataScience podcast. Jon holds a PhD from Oxford and has been publishing on machine learning in leading academic journals since 2010; his papers have been cited over a thousand times.

Skill Level

  • Intermediate

Learn How To
  • Use "big O" notation to characterize the time efficiency and space efficiency of a given algorithm, enabling you to select or devise the most sensible approach for tackling a particular machine learning problem with the hardware resources available to you.
  • Get acquainted with the entire range of the most widely-used Python data structures, including list-, dictionary-, tree-, and graph-based structures.
  • Develop a working understanding of all of the essential algorithms for working with data, including those for searching, sorting, hashing, and traversing.
  • Discover how the statistical and machine learning approaches to optimization differ, and why you would select one or the other for a given problem you're solving.
  • Understand exactly how the extremely versatile (stochastic) gradient descent optimization algorithm works and how to apply it.
  • Familiarize yourself with the "fancy" optimizers that are available for advanced machine learning approaches (e.g., deep learning) and when you should consider using them.
Who Should Take This Course
  • You use high-level software libraries (e.g., scikit-learn, Keras, TensorFlow) to train or deploy machine learning algorithms, and would now like to understand the fundamentals underlying the abstractions, enabling you to expand your capabilities
  • You're a software developer who would like to develop a firm foundation for the deployment of machine learning algorithms into production systems
  • You're a data scientist who would like to reinforce your understanding of the subjects at the core of your professional discipline
  • You're a data analyst or AI enthusiast who would like to become a data scientist or data/ML engineer, and so you're keen to deeply understand the field you're entering from the ground up (very wise of you!)

Course Requirements
  • Mathematics: Familiarity with secondary school-level mathematics will make the class easier to follow along with. If you are comfortable dealing with quantitative information--such as understanding charts and rearranging simple equations--then you should be well-prepared to follow along with all of the mathematics.
  • Programming: All code demos will be in Python so experience with it or another object-oriented programming language would be helpful for following along with the hands-on examples.

Lesson Descriptions

Lesson 1: Orientation to Data Structures and Algorithms

In Lesson 1, Jon provides an orientation to data structures and algorithms. He starts by familiarizing you with his Machine Learning Foundations  curriculum and then provides you with historical context on both data and algorithms. He concludes with a discussion of applications of data structures and algorithms to the field of machine learning.

Lesson 2: "Big O" Notation
Lesson 2 focuses on "big O" notation, a fundamental computer science concept that is a prerequisite for understanding almost everything else in these LiveLessons. Jon explores three of the most common "big O" runtimes: constant, linear, and polynomial. He wraps up the lesson with an overview of the other common runtimes and performance variation based on the particular data you are working with.

Lesson 3: List-Based Data Structures
Lesson 3 is all about list-based data structures. Jon surveys all of the key types, including arrays, linked lists, stacks, queues, and deques.

Lesson 4: Searching and Sorting
In Lesson 4, Jon helps you hone your understanding of "big O" notation by applying searching and sorting algorithms to lists. Specifically, he covers binary search and three exemplary sorting algorithms: bubble, merge, and quick.

Lesson 5: Sets and Hashing
In Lesson 5, Jon details maps and dictionaries, which are types of sets. He digs into hash functions, which enable mind-bogglingly efficient data retrieval, including taking into account collisions, load factor, hash maps, string keys, and machine learning applications.

Lesson 6: Trees
In Lesson 6, Jon provides you with an introduction to the trees, a hugely useful data structure in machine learning. He presents specific hands-on examples involving decision trees, random forests, and gradient boosting.

Lesson 7: Graphs
Lesson 7 provides you with an introduction to graphs, another hugely useful data structure in machine learning. Jon discusses graph direction and cycles before wrapping up the coverage of data structures and algorithms with a note on DataFrames and his recommended resources for further study of the computer science field.

Lesson 8: Machine Learning Optimization
With Lesson 8, Jon shifts gears from data structures and algorithms to machine learning-specific optimization. He starts off by discussing when statistical optimization approaches break down and then digs into objective functions, particularly mean absolute error and mean squared error. Jon carries on by detailing how to optimize objective functions with gradient descent and what critical points are. He concludes the lesson with neat tricks like mini-batch sampling, learning rate scheduling, and gradient ascent.

Lesson 9: Fancy Deep Learning Optimizers
Lesson 9 wraps a bow not only on these particular LiveLessons but also on Jon's entire Machine Learning Foundations series. In this lesson Jon provides an overview of Jacobian and Hessian matrices as well as the fancy deep learning optimizers they facilitate that have momentum and are adaptive. Jon leaves you with his recommended next steps for moving forward with your machine learning journey.

About Pearson Video Training
Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Sams, and Que Topics include: IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.

Video Lessons are available for download for offline viewing within the streaming format. Look for the green arrow in each lesson.

Sample Content

Table of Contents


Lesson 1: Orientation to Data Structures and Algorithms

1.1 Orientation to the Machine Learning Foundations Series
1.2 A Brief History of Data
1.3 A Brief History of Algorithms
1.4 Applications to Machine Learning

Lesson 2: "Big O" Notation
2.1 Introduction
2.2 Constant Time
2.3 Linear Time
2.4 Polynomial Time
2.5 Common Runtimes
2.6 Best versus Worst Case

Lesson 3: List-Based Data Structures
3.1 Lists
3.2 Arrays
3.3 Linked Lists
3.4 Doubly-Linked Lists
3.5 Stacks
3.6 Queues
3.7 Deques

Lesson 4: Searching and Sorting
4.1 Binary Search
4.2 Bubble Sort
4.3 Merge Sort
4.4 Quick Sort

Lesson 5: Sets and Hashing
5.1 Maps and Dictionaries
5.2 Sets
5.3 Hash Functions
5.4 Collisions
5.5 Load Factor
5.6 Hash Maps
5.7 String Keys
5.8 Hashing in ML

Lesson 6: Trees
6.1 Introduction
6.2 Decision Trees
6.3 Random Forests
6.4 XGBoost: Gradient-Boosted Trees
6.5 Additional Concepts

Lesson 7: Graphs
7.1 Introduction
7.2 Directed versus Undirected Graphs
7.3 DAGs: Directed Acyclic Graphs
7.4 Additional Concepts
7.5 Bonus: Pandas DataFrames
7.6 Resources for Further Study of DSA

Lesson 8: Machine Learning Optimization
8.1 Statistics versus Machine Learning
8.2 Objective Functions
8.3 Mean Absolute Error
8.4 Mean Squared Error
8.5 Minimizing Cost with Gradient Descent
8.6 Gradient Descent from Scratch with PyTorch
8.7 Critical Points
8.8 Stochastic Gradient Descent
8.9 Learning Rate Scheduling
8.10 Maximizing Reward with Gradient Ascent

Lesson 9: Fancy Deep Learning Optimizers
9.1 Jacobian Matrices
9.2 Second-Order Optimization and Hessians
9.3 Momentum
9.4 Adaptive Optimizers
9.5 Congratulations and Next Steps



Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020