Home > Store

Compilers: Principles, Techniques, and Tools, CourseSmart eTextbook, 2nd Edition

Register your product to gain access to bonus material or receive a coupon.

Compilers: Principles, Techniques, and Tools, CourseSmart eTextbook, 2nd Edition

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

  • CourseSmart eTextbooks offer study advantages no print textbook can match. Students can search the entire text for key concepts; they can navigate easily to a page number, reading assignment, or chapter; they can bookmark important pages, sections, or chapters for quick review at a later date. With a CourseSmart eTextbook, students enjoy these key features:

      • NEW offline access functionality¿Now, instructors and students using CourseSmart have the freedom and convenience of online, offline and mobile access using a single platform.

      • Digital Textbook Delivery that saves students a significant amount off the print edition suggested list price.

      • Internet-based Service that makes textbook content available anytime, anywhere there is a Web connection.

      • Easy Navigation that makes finding pages easy and efficient. Search, Bookmark, and Note-Taking Tools save study time and reduce frustration by making critical information immediately accessible. Organizing study notes has never been easier!

      • Ability to print pages as needed, lightening up the backpack while making critical content available for offline study and review.

  • Now, students have a new choice in how they purchase and access required or recommended course textbooks. CourseSmart eTextbooks¿Where the Web meets textbooks for student savings!

Description

  • Copyright 2007
  • Edition: 2nd
  • Book
  • ISBN-10: 0-321-48903-9
  • ISBN-13: 978-0-321-48903-6

Compilers: Principles, Techniques and Tools, known to professors, students, and developers worldwide as the "Dragon Book," is available in a new edition.  Every chapter has been completely revised to reflect developments in software engineering, programming languages, and computer architecture that have occurred since 1986, when the last edition published.  The authors, recognizing that few readers will ever go on to construct a compiler, retain their focus on the broader set of problems faced in software design and software development.

New chapters include:  

Chapter 10 Instruction-Level Parallelism

Chapter 11 Optimizing for Parallelism and Locality

Chapter 12 Interprocedural Analysis

Sample Content

Table of Contents

1  Introduction

1.1 Language Processors

1.2 The Structure of a Compiler

1.3 The Evolution of Programming Languages

1.4 The Science of Building a Compiler

1.5 Applications of Compiler Technology

1.6 Programming Language Basics

1.7 Summary of Chapter 1

1.8 References for Chapter 1

2 A Simple Syntax-Directed Translator  

2.1 Introduction

2.2 Syntax Definition  

2.3 Syntax-Directed Translation

2.4 Parsing

2.5 A Translator for Simple Expressions  

2.6 Lexical Analysis  

2.7 Symbol Tables

2.8 Intermediate Code Generation

2.9 Summary of Chapter 2

3 Lexical Analysis

3.1 The Role of the Lexical Analyzer

3.2 Input Buffering  

3.3 Specification of Tokens

3.4 Recognition of Tokens

3.5 The Lexical-Analyzer Generator Lex

3.6 Finite Automata

3.7 From Regular Expressions to Automata

3.8 Design of a Lexical-Analyzer Generator

3.9 Optimization of DFA-Based Pattern Matchers  

3.10 Summary of Chapter 3

3.11 References for Chapter 3

4 Syntax Analysis

4.1 Introduction

4.2 Context-Free Grammars

4.3 Writing a Grammar

4.4 Top-Down Parsing  

4.5 Bottom-Up Parsing

4.6 Introduction to LR Parsing: Simple LR

4.7 More Powerful LR Parsers

4.8 Using Ambiguous Grammars

4.9 Parser Generators

4.10 Summary of Chapter 4  

4.11 References for Chapter 4

5 Syntax-Directed Translation

5.1 Syntax-Directed Definitions

5.2 Evaluation Orders for SDD's  

5.3 Applications of Syntax-Directed Translation

5.4 Syntax-Directed Translation Schemes

5.5 Implementing L-Attributed SDD's  

5.6 Summary of Chapter 5

5.7 References for Chapter 5  

6 Intermediate-Code Generation

6.1 Variants of Syntax Trees  

6.2 Three-Address Code

6.3 Types and Declarations

6.4 Translation of Expressions  

6.5 Type Checking  

6.6 Control Flow

6.7 Backpatching

6.8 Switch-Statements

6.9 Intermediate Code for Procedures  

6.10 Summary of Chapter 6

6.11 References for Chapter 6

7 Run-Time Environments

7.1 Storage Organization  

7.2 Stack Allocation of Space

7.3 Access to Nonlocal Data on the Stack  

7.4 Heap Management  

7.5 Introduction to Garbage Collection  

7.6 Introduction to Trace-Based Collection

7.7 Short-Pause Garbage Collection

7.8 Advanced Topics in Garbage Collection

7.9 Summary of Chapter 7

7.10 References for Chapter 7

8 Code Generation

8.1 Issues in the Design of a Code Generator

8.2 The Target Language

8.3 Addresses in the Target Code  

8.4 Basic Blocks and Flow Graphs

8.5 Optimization of Basic Blocks

8.6 A Simple Code Generator

8.7 Peephole Optimization  

8.8 Register Allocation and Assignment  

8.9 Instruction Selection by Tree Rewriting  

8.10 Optimal Code Generation for Expressions

8.11 Dynamic Programming Code-Generation

8.12 Summary of Chapter 8  

8.13 References for Chapter 8  

9 Machine-Independent Optimizations

9.1 The Principal Sources of Optimization

9.2 Introduction to Data-Flow Analysis

9.3 Foundations of Data-Flow Analysis  

9.4 Constant Propagation  

9.5 Partial-Redundancy Elimination

9.6 Loops in Flow Graphs

9.7 Region-Based Analysis

9.8 Symbolic Analysis

9.9 Summary of Chapter 9

9.10 References for Chapter 9

10 Instruction-Level Parallelism

10.1 Processor Architectures

10.2 Code-Scheduling Constraints

10.3 Basic-Block Scheduling

10.4 Global Code Scheduling

10.5 Software Pipelining

10.6 Summary of Chapter 10  

10.7 References for Chapter 10

11 Optimizing for Parallelism and Locality  

11.1 Basic Concepts

11.2 Matrix Multiply: An In-Depth Example

11.3 Iteration Spaces

11.4 Affine Array Indexes  

11.5 Data Reuse

11.6 Array Data-Dependence Analysis

11.7 Finding Synchronization-Free Parallelism

11.8 Synchronization Between Parallel Loops

11.9 Pipelining

11.10 Locality Optimizations

11.11 Other Uses of Affine Transforms  

11.12 Summary of Chapter 11

11.13 References for Chapter 11

12 Interprocedural Analysis  

12.1 Basic Concepts  

12.2 Why Interprocedural Analysis?

12.3 A Logical Representation of Data Flow  

12.4 A Simple Pointer-Analysis Algorithm

12.5 Context-Insensitive Interprocedural Analysis

12.6 Context-Sensitive Pointer Analysis

12.7 Datalog Implementation by BDD's

12.8 Summary of Chapter 12

12.9 References for Chapter 12

A  A Complete Front End

A.1 The Source Language

A.2 Main

A.3 Lexical Analyzer

A.4 Symbol Tables and Types

A.5 Intermediate Code for Expressions  

A.6 Jumping Code for Boolean Expressions

A.7 Intermediate Code for Statements

A.8 Parser  

A.9 Creating the Front End

B Finding Linearly Independent Solutions

Index  

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.