Home > Store

Building Spark Applications LiveLessons

Online Video

Not for Sale

Register your product to gain access to bonus material or receive a coupon.


  • Copyright 2016
  • Edition: 1st
  • Online Video
  • ISBN-10: 0-13-439348-1
  • ISBN-13: 978-0-13-439348-3

12+ Hours of Video Instruction
Building Spark Applications LiveLessons provides data scientists and developers with a practical introduction to the Apache Spark framework using Python, R, and SQL.  Additionally, it covers best practices for developing scalable Spark applications for predictive analytics in the context of a data scientist's standard workflow.


In this video training, Jonathan starts off with a brief history of Spark itself and shows you how to get started programming in a Spark environment on a laptop.  Taking an application and code first approach, he then covers the various APIs in Python, R, and SQL to show how Spark makes large scale data analysis much more accessible through languages familiar to data scientists and analysts alike.  With the basics covered, the videos move into a real-world case study showing you how to explore data, process text, and build models with Spark. Throughout the process, Jonathan exposes the internals of the Spark framework itself to show you how to write better application code, optimize performance, and set up a cluster to fully leverage the distributed nature of Spark.  After watching these videos, data scientists and developers will feel confident building an end-to-end application with Spark to perform machine learning and do data analysis at scale!

Code: https://github.com/zipfian/building-spark-applications-live-lessons
Resources: http://galvanize.com/resources/spark
Forum: https://gitter.im/zipfian/building-spark-applications-live-lessons
Data: https://s3.amazonaws.com/galvanize-example-data/spark-live-lessons-data.zip

Skill Level

  • Beginning/Intermediate

What You Will Learn

  • How to install and set up a Spark environment locally and on a cluster
  • The differences between and the strengths of the Python, R, and SQL programming interfaces
  • How to build a machine learning model for text
  • Common data science use cases that Spark is especially well-suited to solve
  • How to tune a Spark application for performance
  • The internals of the Spark framework and its execution model
  • How to use Spark in a data science application workflow
  • The basics of the larger Spark ecosystem

Who Should Take This Course

  • Practicing Data scientists who already use Python or R and want to learn how to scale up their analyses with Spark.
  • Data Engineers who already use Java/Scala for Spark but want to learn about the Python, R, and SQL APIs and understand how Spark can be used to solve Data Science problems.

Course Requirements

  • Basic understanding of programming.
  • Familiarity with the data science process and machine learning are a plus.

Lesson 1: Introduction to the Spark Environment

Lesson 1, “Introduction to the Spark Environment,” introduces Spark and provides context for the history and motivation for the framework.  This lesson covers how to install and set up Spark locally, work with the Spark REPL and Jupyter notebook, and the basics of programming with Spark.

Lesson 2: Spark Programming APIs

Lesson 2, “Spark Programming APIs,” covers each of the various Spark programming interfaces. This lesson highlights the differences between and the tradeoffs of the Python (PySpark), R (SparkR), and SQL (Spark SQL and DataFrames) APIs as well as typical workflows for which each is best suited.

Lesson 3: Your First Spark Application

Lesson 3, “Your First Spark Application,” walks you through a case study with DonorsChoose.org data showing how Spark fits into the typical data science workflow.  This lesson covers how to perform exploratory data analysis at scale, apply natural language processing techniques, and write an implementation of the k-means algorithm for unsupervised learning on text data.

Lesson 4: Spark Internals

Lesson 4, “Spark Internals,” peels back the layers of the framework and walks you through how Spark executes code in a distributed fashion.  This lesson starts with a primer on distributed systems theory before diving into the Spark execution context, the details of RDDs, and how to run Spark in cluster mode on Amazon EC2.  The lesson finishes with best practices for monitoring and tuning the performance of a Spark application.

Lesson 5: Advanced Applications

Lesson 5, “Advanced Applications,” takes you through a KDD cup competition, showing you how to leverage Spark’s higher level machine learning libraries (MLlib and spark.ml).  The lesson covers the basics of machine learning theory, shows you how to evaluate the performance of models through cross validation, and demonstrates how to build a machine learning pipeline with Spark.  The lesson finishes by showing you how to serialize and deploy models for use in a production setting.

About LiveLessons Video Training
The LiveLessons Video Training series publishes hundreds of hands-on, expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. This professional and personal technology video series features world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, IBM Press, Pearson IT Certification, Prentice Hall, Sams, and Que. Topics include: IT Certification, Programming, Web Development, Mobile Development, Home and Office Technologies, Business and Management, and more.  View all LiveLessons on InformIT at: http://www.informit.com/livelessons

Sample Content


Video: Building Spark Applications: A Course Introduction

Video: Building Spark Applications: A Day in the Life of a Spark Application

Video: Building Spark Applications: Making Sense of Data Summary Statistics and Distributions

Video: Building Spark Applications: SparkR - Visualizing Data with ggplot2

Table of Contents

Lesson 1: Introduction to the Spark Environment
1.1     Getting the Materials
1.2     A Brief Historical Diversion
1.3     Origins of the Framework
1.4     Why Spark?
1.5     Getting Set Up: Spark and Java
1.6     Getting Set Up: Scientific Python
1.7     Getting Set Up: R Kernel for Jupyter
1.8     Your First PySpark Job
1.9     Introduction to RDDs: Functions, Transformations, and Actions
1.10   MapReduce with Spark: Programming with Key-Value Pairs
Lesson 2: Spark Programming APIs
2.1     Introduction to the Spark Programming APIs
2.2     PySpark: Loading and Importing Data
2.3     PySpark: Parsing and Transforming Data
2.4     PySpark: Analyzing Flight Delays
2.5     SparkR: Introduction to DataFrames
2.6     SparkR: Aggregations and Analysis
2.7     SparkR: Visualizing Data with ggplot2
2.8     Why (Spark) SQL?
2.9     Spark SQL: Adding Structure to Your Data
2.10   Spark SQL: Integration into Existing Workflows
Lesson 3: Your First Spark Application
3.1     How Spark Fits into the Data Science Process
3.2     Introduction to Exploratory Data Analysis
3.3     Case Study: DonorsChoose.org
3.4     Data Quality Checks with Accumulators
3.5     Making Sense of Data: Summary Statistics and Distributions
3.6     Working with Text: Introduction to NLP
3.7     Tokenization and Vectorization with Spark
3.8     Summarization with tf-idf
3.9     Introduction to Machine Learning
3.10   Unsupervised Learning with Spark: Implementing k-means
3.11   Testing k-means with DonorsChoose.org Essays
3.12   Challenges of k-means: Latent Features, Interpretation, and Validation
Lesson 4: Spark Internals
4.1     Introduction to Distributed Systems
4.2     Building Systems that Scale
4.3     The Spark Execution Context
4.4     RDD Deep Dive: Dependencies and Lineage
4.5     A Day in the Life of a Spark Application
4.6     How Code Runs: Stages, Tasks, and the Shuffle
4.7    Spark Deployment: Local and Cluster Modes
4.8     Setting Up Your Own Cluster
4.9     Spark Performance: Monitoring and Optimization
4.10   Tuning Your Spark Application
4.11   Making Spark Fly: Parallelism
4.12   Making Spark Fly: Caching
Lesson 5: Advanced Applications
5.1     Machine Learning on Spark: MLlib and spark.ml
5.2     The KDD Cup Competition: Preparing Data and Imputing Values
5.3     Introduction to Supervised Learning: Logistic Regression
5.4     Building a Model with MLlib
5.5     Model Evaluation and Metrics
5.6     Leveraging scikit-learn to Evaluate MLlib Models
5.7     Training Models with spark.ml
5.8     Machine Learning Pipelines with spark.ml
5.9     Tuning Models: Features, Cross Validation, and Grid Search
5.10   Serializing and Deploying Models


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020