Home > Articles > Security > Software Security

  • Print
  • + Share This
This chapter is from the book

Modern Risk Analysis

Given the limitations of traditional approaches, a more holistic risk management methodology involves thinking about risk throughout the lifecycle (as described in Chapter 2). Starting the risk analysis process early is critical. In fact, risk analysis is even effective at the requirements level. Modern approaches emphasize the importance of an architectural view and of architectural risk analysis.

Security Requirements

In the purest sense, risk analysis starts at the requirements stage because design requirements should take into account the risks that you are trying to counter. The box Back to Requirements briefly covers three approaches to interjecting a risk-based philosophy into the requirements phase. (Do note that the requirements systems based around UML tend to focus more attention on security functionality than they do on abuse cases, which I discuss at length in Chapter 8.)

Whatever risk analysis method is adopted, the requirements process should be driven by risk.

As stated earlier, a key variable in the risk equation is impact. The business impacts of any risks that we are trying to avoid can be many, but for the most part, they boil down into three broad categories:

  1. Legal and/or regulatory risk: These may include federal or state laws and regulations (e.g., the Gramm-Leach-Bliley Act [GLBA], HIPPA, or the now-famous California Senate Bill 1386, also known as SB1386)
  2. Financial or commercial considerations (e.g., protection of revenue, control over high-value intellectual property, preservation of brand and reputation)
  3. Contractual considerations (e.g., service-level agreements, avoidance of liability)

Even at this early point in the lifecycle, the first risk-based decisions should be made. One approach might be to break down requirements into three simple categories: “must-haves,” “important-to-haves,” and “nice-but-unnecessary-to-haves.”

Unless you are running an illegal operation, laws and regulations should always be classed into the first category, making these requirements instantly mandatory and not subject to further risk analysis (although an ROI study should always be conducted to select the most cost-effective mitigations). For example, if the law requires you to protect private information, this is mandatory and should not be the subject of a risk-based decision. Why? Because the government may have the power to put you out of business, which is the mother of all risks (and if you want to test the government and regulators on this one, then go ahead—just don’t say that you weren’t warned!).

You are then left with risk impacts that need to be managed in other ways, the ones that have as variables potential impact and probability. At the initial requirements definition stage, you may be able to make some assumptions regarding the controls that are necessary and the ones that may not be.

Even application of these simple ideas will put you ahead of the majority of software developers. Then as we move toward the design and build stages, risk analysis should begin to test those assumptions made at the requirements stage by analyzing the risks and vulnerabilities inherent in the design. Finally, tests and test planning should be driven by risk analysis results as well.

A Basic Risk Analysis Approach

To encompass the design stage, any risk analysis process should be tailored. The object of this tailoring exercise is to determine specific vulnerabilities and risks that exist for the software. A functional decomposition of the application into major components, processes, data stores, and data communication flows, mapped against the environments across which the software will be deployed, allows for a desktop review of threats and potential vulnerabilities. I cannot overemphasize the importance of using a forest-level view of a system during risk analysis. Some sort of high-level model of the system (from a whiteboard boxes-and-arrows picture to a formally specified mathematical model) makes risk analysis at the architectural level possible.

Although one could contemplate using modeling languages, such as UMLsec, to attempt to model risks, even the most rudimentary analysis approaches can yield meaningful results. Consider Figure 5-3, which shows a simple four-tier deployment design pattern for a standard-issue Web-based application. If we apply risk analysis principles to this level of design, we can immediately draw some useful conclusions about the security design of the application.

05fig03.gifFigure 5-3 A forest-level view of a standard-issue four-tier Web application.

During the risk analysis process we should consider the following:

  • The threats who are likely to want to attack our system
  • The risks present in each tier’s environment
  • The kinds of vulnerabilities that might exist in each component, as well as the data flow
  • The business impact of such technical risks, were they to be realized
  • The probability of such a risk being realized
  • Any feasible countermeasures that could be implemented at each tier, taking into account the full range of protection mechanisms available (e.g., from base operating system–level security through Virtual Machine security mechanisms, such as use of the Java Cryptography Extensions in J2EE)

This very basic process will sound familiar if you read Chapter 2 on the RMF. In that chapter, I describe in great detail a number of critical risk management steps in an iterative model.

In this simple example, each of the tiers exists in a different security realm or trust zone. This fact immediately provides us with the context of risk faced by each tier. If we go on to superimpose data types (e.g., user logon credentials, records, orders) and their flows (logon requests, record queries, order entries) and, more importantly, their security classifications, we can draw conclusions about the protection of these data elements and their transmission given the current design.

For example, suppose that user logon flows are protected by SSL between the client and the Web server. However, our deployment pattern indicates that though the encrypted tunnel terminates at this tier, because of the threat inherent in the zones occupied by the Web and application tiers, we really need to prevent eavesdropping inside and between these two tiers as well. This might indicate the need to establish yet another encrypted tunnel or, possibly, to consider a different approach to securing these data (e.g., message-level encryption as opposed to tunneling).

Use of a deployment pattern in this analysis is valuable because it allows us to consider both infrastructure (i.e., operating systems and network) security mechanisms as well as application-level mechanisms as risk mitigation measures.

Realize that decomposing software on a component-by-component basis to establish trust zones is a comfortable way for most software developers and auditors to begin adopting a risk management approach to software security. Because most systems, especially those exhibiting the n-tier architecture, rely on several third-party components and a variety of programming languages, defining zones of trust and taking an outside→in perspective similar to that normally observed in traditional security has clear benefits. In any case, interaction of different products and languages is an architectural element likely to be a vulnerability hotbed.

At its heart, decomposition is a natural way to partition a system. Given a simple decomposition, security professionals will be able to advise developers and architects about aspects of security that they’re familiar with such as network-based component boundaries and authentication (as I highlight in the example). Do not forget, however, that the composition problem (putting the components all back together) is unsolved and very tricky, and that even the most secure components can be assembled into an insecure mess!

As organizations become adept at identifying vulnerability and its business impact consistently using the approach illustrated earlier, the approach should be evolved to include additional assessment of risks found within tiers and encompassing all tiers. This more sophisticated approach uncovers technology-specific vulnerabilities based on failings other than trust issues across tier boundaries. Exploits related to broken transaction management and phishing attacks [9] are examples of some of the more subtle risks one might encounter with an enhanced approach.

Finally, a design-level risk analysis approach can also be augmented with data from code reviews and risk-based testing.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020