Home > Articles

  • Print
  • + Share This
This chapter is from the book

3.8 EOC

3.8.1 Sophomore Warning: Limitations and Open Issues

There are several caveats to what we’ve done in this chapter:

  • We compared these learners on a single dataset.

  • We used a very simple dataset.

  • We did no preprocessing on the dataset.

  • We used a single train-test split.

  • We used accuracy to evaluate the performance.

  • We didn’t try different numbers of neighbors.

  • We only compared two simple models.

Each one of these caveats is great! It means we have more to talk about in the forthcoming chapters. In fact, discussing why these are concerns and figuring out how to address them is the point of this book. Some of these issues have no fixed answer. For example, no one learner is best on all datasets. So, to find a good learner for a particular problem, we often try several different learners and pick the one that does the best on that particular problem. If that sounds like teaching-to-the-test, you’re right! We have to be very careful in how we select the model we use from many potential models. Some of these issues, like our use of accuracy, will spawn a long discussion of how we quantify and visualize the performance of classifiers.

3.8.2 Summary

Wrapping up our discussion, we’ve seen several things in this chapter:

  1. iris, a simple real-world dataset

  2. Nearest-neighbors and Naive Bayes classifiers

  3. The concept of training and testing data

  4. Measuring learning performance with accuracy

  5. Measuring time and space usage within a Jupyter notebook and via stand-alone scripts

3.8.3 Notes

If you happen to be a botanist or are otherwise curious, you can read Anderson’s original paper on irises: www.jstor.org/stable/2394164. The version of the iris data with sklearn comes from the UCI Data repository: https://archive.ics.uci.edu/ml/datasets/iris.

The Minkowski distance isn’t really as scary as it seems. There’s another distance called the Manhattan distance. It is the distance it would take to walk as directly as possible from one point to the other, if we were on a fixed grid of streets like in Manhattan. It simply adds up the absolute values of the feature differences without squares or square roots. All Minkowski does is extend the formulas so we can pick Manhattan, Euclidean, or other distances by varying a value p. The weirdness comes in when we make p very, very big: p → ∞. Of course, that has its own name: the Chebyshev distance.

If you’ve seen theoretical resource analysis of algorithms before, you might remember the terms complexity analysis or Big-O notation. The Big-O analysis simplifies statements on the upper bounds of resource use, as input size grows, with mathematical statements like O(n2)—hence the name Big-O.

I briefly mentioned graphics processing units (GPUs). When you look at the mathematics of computer graphics, like the visuals in modern video games, it is all about describing points in space. And when we play with data, we often talk about examples as points in space. The “natural” mathematical language to describe this is matrix algebra. GPUs are designed to perform matrix algebra at warp speed. So, it turns out that machine learning algorithms can be run very, very efficiently on GPUs. Modern projects like Theano, TensorFlow, and Keras are designed to take advantage of GPUs for learning tasks, often using a type of learning model called a neural network. We’ll briefly introduce these in Chapter 15.

In this chapter, we used Naive Bayes on discrete data. Therefore, learning involved making a table of how often values occurred for the different target classes. When we have continuous numerical values, the game is a bit different. In that case, learning means figuring out the center and spread of a distribution of values. Often, we assume that a normal distribution works well with the data; the process is then called Gaussian Naive Bayes—Gaussian and normal are essentially synonyms. Note that we are making an assumption—it might work well but we might also be wrong. We’ll talk more about GNB in Section 8.5.

In any chapter that discusses performance, I would be remiss if I didn’t tell you that “premature optimization is the root of all evil . . . in programming.” This quote is from an essay form of Donald Knuth’s 1974 Turing Award—the Nobel Prize of Computer Science—acceptance speech. Knuth is, needless to say, a giant in the discipline. There are two points that underlie his quote. Point one: in a computer system, the majority of the execution time is usually tied up in a small part of the code. This observation is a form of the Pareto principle or the 80–20 rule. Point two: optimizing code is hard, error-prone, and makes the code more difficult to understand, maintain, and adapt. Putting these two points together tells us that we can waste an awful lot of programmer time optimizing code that isn’t contributing to the overall performance of our system. So, what’s the better way? (1) Write a good, solid, working system and then measure its performance. (2) Find the bottlenecks—the slow and/or calculation-intensive portions of the program. (3) Optimize those bottlenecks. We only do the work that we know needs to be done and has a chance at meeting our goals. We also do as little of this intense work as possible. One note: inner loops—the innermost nestings of repetition—are often the most fruitful targets for optimization because they are, by definition, code that is repeated the most times.

Recent versions of Jupyter now report a mean and standard deviation for %timeit results. However, the Python core developers and documenters prefer a different strategy for analyzing timeit results: they prefer either (1) taking the minimum of several repeated runs to give an idea of best-case performance, which will be more consistent for comparison sake, or (2) looking at all of the results as a whole, without summary. I think that (2) is always a good idea in data analysis. The mean and standard deviation are not robust; they respond poorly to outliers. Also, while the mean and standard deviation completely characterize normally distributed data, other distributions will be characterized in very different ways; see Chebyshev’s inequality for details. I would be far happier if Jupyter reported medians and inter-quartile ranges (those are the 50th percentile and the 75th–25th percentiles). These are robust to outliers and are not based on distributional assumptions about the data.

What was up with the 1000 loops in the timeit results? Essentially, we are stacking multiple runs of the same, potentially short-lived, task one after the other so we get a longer-running pseudo-task. This longer-running task plays more nicely with the level of detail that the timing functions of the operating system support. Imagine measuring a 100-yard dash using a sundial. It’s going to be very hard because there’s a mismatch between the time scales. As we repeat the task multiple times—our poor sprinters might get worn out but, fortunately, Python keeps chugging along—we may get more meaningful measurements. Without specifying a number, timeit will attempt to find a good number for you. In turn, this may take a while because it will try increasing values for number. There’s also a repeat value you can use with timeit; repeat is an outer loop around the whole process. That’s what we discussed computing statistics on in the prior paragraph.

3.8.4 Exercises

You might be interested in trying some classification problems on your own. You can follow the model of the sample code in this chapter with some other classification datasets from sklearn: datasets.load_wine and datasets.load_breast_cancer will get you started. You can also download numerous datasets from online resources like:

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020