Home > Articles

This chapter is from the book

This chapter is from the book

Item 30: Favor generic methods

Just as classes can be generic, so can methods. Static utility methods that operate on parameterized types are usually generic. All of the “algorithm” methods in Collections (such as binarySearch and sort) are generic.

Writing generic methods is similar to writing generic types. Consider this deficient method, which returns the union of two sets:

// Uses raw types - unacceptable! (Item 26)
public static Set union(Set s1, Set s2) {
    Set result = new HashSet(s1);
    return result;

This method compiles but with two warnings:

Union.java:5: warning: [unchecked] unchecked call to
HashSet(Collection<? extends E>) as a member of raw type HashSet
        Set result = new HashSet(s1);
Union.java:6: warning: [unchecked] unchecked call to
addAll(Collection<? extends E>) as a member of raw type Set

To fix these warnings and make the method typesafe, modify its declaration to declare a type parameter representing the element type for the three sets (the two arguments and the return value) and use this type parameter throughout the method. The type parameter list, which declares the type parameters, goes between a method’s modifiers and its return type. In this example, the type parameter list is <E>, and the return type is Set<E>. The naming conventions for type parameters are the same for generic methods and generic types (Items 29, 68):

// Generic method
public static <E> Set<E> union(Set<E> s1, Set<E> s2) {
    Set<E> result = new HashSet<>(s1);
    return result;

At least for simple generic methods, that’s all there is to it. This method compiles without generating any warnings and provides type safety as well as ease of use. Here’s a simple program to exercise the method. This program contains no casts and compiles without errors or warnings:

// Simple program to exercise generic method
public static void main(String[] args) {
    Set<String> guys = Set.of("Tom", "Dick", "Harry");
    Set<String> stooges = Set.of("Larry", "Moe", "Curly");
    Set<String> aflCio = union(guys, stooges);

When you run the program, it prints [Moe, Tom, Harry, Larry, Curly, Dick]. (The order of the elements in the output is implementation-dependent.)

A limitation of the union method is that the types of all three sets (both input parameters and the return value) have to be exactly the same. You can make the method more flexible by using bounded wildcard types (Item 31).

On occasion, you will need to create an object that is immutable but applicable to many different types. Because generics are implemented by erasure (Item 28), you can use a single object for all required type parameterizations, but you need to write a static factory method to repeatedly dole out the object for each requested type parameterization. This pattern, called the generic singleton factory, is used for function objects (Item 42) such as Collections.reverseOrder, and occasionally for collections such as Collections.emptySet.

Suppose that you want to write an identity function dispenser. The libraries provide Function.identity, so there’s no reason to write your own (Item 59), but it is instructive. It would be wasteful to create a new identity function object time one is requested, because it’s stateless. If Java’s generics were reified, you would need one identity function per type, but since they’re erased a generic singleton will suffice. Here’s how it looks:

// Generic singleton factory pattern
private static UnaryOperator<Object> IDENTITY_FN = (t) -> t;

public static <T> UnaryOperator<T> identityFunction() {
    return (UnaryOperator<T>) IDENTITY_FN;

The cast of IDENTITY_FN to (UnaryFunction<T>) generates an unchecked cast warning, as UnaryOperator<Object> is not a UnaryOperator<T> for every T. But the identity function is special: it returns its argument unmodified, so we know that it is typesafe to use it as a UnaryFunction<T>, whatever the value of T. Therefore, we can confidently suppress the unchecked cast warning generated by this cast. Once we’ve done this, the code compiles without error or warning.

Here is a sample program that uses our generic singleton as a UnaryOperator<String> and a UnaryOperator<Number>. As usual, it contains no casts and compiles without errors or warnings:

// Sample program to exercise generic singleton
public static void main(String[] args) {
    String[] strings = { "jute", "hemp", "nylon" };
    UnaryOperator<String> sameString = identityFunction();
    for (String s : strings)

    Number[] numbers = { 1, 2.0, 3L };
    UnaryOperator<Number> sameNumber = identityFunction();
    for (Number n : numbers)

It is permissible, though relatively rare, for a type parameter to be bounded by some expression involving that type parameter itself. This is what’s known as a recursive type bound. A common use of recursive type bounds is in connection with the Comparable interface, which defines a type’s natural ordering (Item 14). This interface is shown here:

public interface Comparable<T> {
    int compareTo(T o);

The type parameter T defines the type to which elements of the type implementing Comparable<T> can be compared. In practice, nearly all types can be compared only to elements of their own type. So, for example, String implements Comparable<String>, Integer implements Comparable<Integer>, and so on.

Many methods take a collection of elements implementing Comparable to sort it, search within it, calculate its minimum or maximum, and the like. To do these things, it is required that every element in the collection be comparable to every other element in it, in other words, that the elements of the list be mutually comparable. Here is how to express that constraint:

// Using a recursive type bound to express mutual comparability
public static <E extends Comparable<E>> E max(Collection<E> c);

The type bound <E extends Comparable<E>> may be read as “any type E that can be compared to itself,” which corresponds more or less precisely to the notion of mutual comparability.

Here is a method to go with the previous declaration. It calculates the maximum value in a collection according to its elements’ natural order, and it compiles without errors or warnings:

// Returns max value in a collection - uses recursive type bound
public static <E extends Comparable<E>> E max(Collection<E> c) {
    if (c.isEmpty())
        throw new IllegalArgumentException("Empty collection");

    E result = null;
    for (E e : c)
        if (result == null || e.compareTo(result) > 0)
            result = Objects.requireNonNull(e);

    return result;

Note that this method throws IllegalArgumentException if the list is empty. A better alternative would be to return an Optional<E> (Item 55).

Recursive type bounds can get much more complex, but luckily they rarely do. If you understand this idiom, its wildcard variant (Item 31), and the simulated self-type idiom (Item 2), you’ll be able to deal with most of the recursive type bounds you encounter in practice.

In summary, generic methods, like generic types, are safer and easier to use than methods requiring their clients to put explicit casts on input parameters and return values. Like types, you should make sure that your methods can be used without casts, which often means making them generic. And like types, you should generify existing methods whose use requires casts. This makes life easier for new users without breaking existing clients (Item 26).

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020