Home > Articles

  • Print
  • + Share This
This chapter is from the book

5.5 Introduction to Wireless Propagation

Of all the impairments, the propagation channel has the most impact on the design of a wireless receiver. The wireless channel causes the transmitted signal to lose power as it propagates from the transmitter to the receiver. Reflections, diffraction, and scattering create multiple propagation paths between the transmitter and the receiver, each with a different delay. The net result is that wireless propagation leads to a loss of received signal power as well as the presence of multipath, which creates frequency selectivity in the channel. In this section, we provide an introduction to the key mechanisms of propagation. Then we rationalize the need for developing models and explain the distinction between large-scale models (discussed further in Section 5.6) and small-scale models (discussed further in Section 5.7 and Section 5.8). In this section, we briefly describe important factors affecting propagation in wireless channels to explain the need for several different channel models. The interested reader is referred to [270] or [165] for more extensive treatment of wireless propagation.

5.5.1 Mechanisms of Propagation

In a wireless communication system, a transmitted signal can reach the receiver via a number of propagation mechanisms. In this section, we review at a high level these key mechanisms, each potentially associated with a different propagation path. These mechanisms are illustrated in Figure 5.30.

FIGURE 5.30

Figure 5.30 The mechanisms of propagation in the context of an indoor wireless local area network. The LOS path is unobstructed between the access point and client 1. That client also receives weaker signals as a result of a reflection off of a wall. The LOS path is obstructed for client 2, who instead receives signals through diffraction in the doorway and also scattering off of a rough wall.

When a signal reaches the receiver from the transmitter in a single path, without suffering any reflections, diffractions, or scattering, this is known as propagation along the line-of-sight (LOS) path. An LOS component has the shortest time delay among all the received signals and is usually the strongest signal received. The exact classification of a path being LOS requires that any obstructions be sufficiently far away from the path, which is quantified by the idea of the Fresnel zone [270].

In non-line-of-sight (NLOS) propagation, a signal transmitted into a wireless medium reaches the receiver via one or more indirect paths, each having different attenuations and delays. When a transmitted signal travels through communication paths other than the LOS path to reach the receiver, it is said to have undergone NLOS propagation. NLOS propagation is responsible for coverage behind buildings and other obstructions. The main NLOS propagation mechanisms are reflection, scattering, and diffraction.

Reflection occurs when a wave impinges on an object that is smooth, which means that any protrusions have dimensions much larger than a wavelength. Reflection is accompanied by refraction (transmission of the wave through the object). The strengths of the reflected and refracted waves depend on the type of material. The angles and indices of reflection and refraction are given by Snell’s law.

Scattering is what happens when a wave impinges on an object that is rough or has irregularities with dimensions on the order of the wavelength. It is similar to reflection but results in a smearing of the signal around the angle of reflection. This leads to a larger loss of energy as the signal is spread over a wider area. It also results in multiple paths arriving at the receiver from a similar location with slight differences in delay.

Diffraction is the “bending” of waves around sharp corners. Important examples of diffraction include waves bending over the tops of buildings, around street corners, and through doorways. Diffraction is one of the main ways that it is possible to provide cellular coverage in cities and is one reason why lower frequencies, say less than 3GHz, are considered beachfront property in the world of cellular spectrum.

There are other mechanisms of propagation as well, such as tropospheric or ionospheric scattering, but these are not common in land mobile systems. They do have relevance, though, for battlefield networks and for amateur radio enthusiasts.

5.5.2 Propagation Modeling

Propagation has an impact on several aspects of radio link performance. It determines the received signal strength and thus the signal-to-noise ratio, throughput, and probability of error. Propagation also plays a major role in system design and implementation. For example, it determines the length of the discrete-time channel, which determines how much equalization is required and in turn how much training is required. The speed at which the channel varies determines the frequency of equalization and the frequency of training—in other words, how often the channel must be reestimated.

An important component of the study of wireless communication is propagation modeling. A propagation model is a mathematical model (typically stochastic) to characterize either the propagation channel or some function of the propagation channel. Some models try to model the impulse response of the channel, whereas others try to model specific characteristics of the channel like the received power. Propagation models are usually inspired by measurement campaigns. Some models have many parameters and are designed to model specified real-world propagation scenarios. Other models have few parameters and are more amenable for tractable mathematical analysis.

There are many ways to classify propagation models. A common first-order classification is whether they describe large-scale or small-scale phenomena. The term scale refers to a wavelength. Large-scale phenomena refer to propagation characteristics over hundreds of wavelengths. Small-scale phenomena refer to propagation characteristics in an area on the order of a wavelength.

To illustrate different large-scale and small-scale phenomena, consider the average received signal power as a function of distance in Figure 5.31. Three different received signal power realizations are plotted. The first model is the mean (or median) path loss, which characterizes the average signal behavior, where the average is taken over hundreds of wavelengths. In most models, this is an exponential decay with distance. The second model is path loss with shadow fading. Here large obstructions like buildings or foliage are included to provide variability around the mean on a large scale. Shadow fading is often modeled by adding a Gaussian random component (in decibels) parameterized by the standard deviation to the mean path loss. The third model also includes small-scale fading, where the signal level experiences many small fluctuations as a result of the constructive and destructive addition of the multipath components of a transmitted signal. Because the fluctuations happen over a much smaller spatial scale, it is common to develop separate models for large-scale effects (like mean path loss and shadowing) and small-scale effects (like multipath fading).

FIGURE 5.31

Figure 5.31 Representation of the large-scale (distance-dependent path loss and shadowing) and small-scale (fading) propagation effects

In essence, large-scale fading models describe the average behavior of the channel in a small area and are used to infer channel behavior over longer distances. Small-scale fading models describe the localized fluctuations in a given area and may be location dependent.

Models for both large-scale and small-scale propagation phenomena are important. Large-scale trends influence system planning, the link budget, and network capacity predictions, and they capture the “typical” loss in received signal strength as a function of distance. Small-scale trends influence physical-layer link design, modulation schemes, and equalization strategies by capturing local constructive and destructive multipath effects. The received signal processing algorithms depend more strongly on small-scale models, but the net performance of those algorithms in a system depends on the large-scale models as well.

Propagation models are widely used for wireless system design, evaluation, and algorithm comparison. Standards bodies (IEEE 802.11, 3GPP, etc.) find them useful for enabling different companies to compare and contrast performance of different candidate schemes. Often these models are chosen to suit certain characteristics like propagation environment (urban, rural, suburban) or receiver speed (fixed, pedestrian, or high speed). The models typically have many possible parameter choices and are used primarily as part of system simulation.

In this section, we focus on developing models for the discrete-time equivalent channel. We decompose the channel taps as a product of a large-scale coefficient and a small-scale coefficient as

05equ275.jpg

The large-scale gain is G = Ex/Prx,lin(d) where Prx,lin(d) is the distance-dependent path-loss term in linear (to distinguish it from the more common decibel measure Prx(d)). The small-scale fading coefficient is denoted by hs[ℓ]. The path loss is the ratio of the transmit power to the receive power and is often called the path gain for this reason. With complex pulse-amplitude modulation, for example, the transmit power is Ex/T, so the received power is (Ex/T)/Prx,lin(d). In Section 5.6, we describe models for Prx(d), including free space, log distance, and shadowing. In Section 5.8, we describe models for e285-1.jpg, some that are good for analysis like the IID Rayleigh fading model, and others that are inspired by physical mechanisms of propagation like the clustered model.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020