Home > Articles > Programming > C/C++

This chapter is from the book

0.2 A philosophy of teaching and learning

What are we trying to help you learn? And how are we approaching the process of teaching? We try to present the minimal concepts, techniques, and tools for you to do effective practical programs, including

  • Program organization
  • Debugging and testing
  • Class design
  • Computation
  • Function and algorithm design
  • Graphics (two-dimensional only)
  • Graphical user interfaces (GUIs)
  • Text manipulation
  • Regular expression matching
  • Files and stream input and output (I/O)
  • Memory management
  • Scientific/numerical/engineering calculations
  • Design and programming ideals
  • The C++ standard library
  • Software development strategies
  • C-language programming techniques

Working our way through these topics, we cover the programming techniques called procedural programming (as with the C programming language), data abstraction, object-oriented programming, and generic programming. The main topic of this book is programming, that is, the ideals, techniques, and tools of expressing ideas in code. The C++ programming language is our main tool, so we describe many of C++’s facilities in some detail. But please remember that C++ is just a tool, rather than the main topic of this book. This is “programming using C++,” not “C++ with a bit of programming theory.”

Each topic we address serves at least two purposes: it presents a technique, concept, or principle and also a practical language or library feature. For example, we use the interface to a two-dimensional graphics system to illustrate the use of classes and inheritance. This allows us to be economical with space (and your time) and also to emphasize that programming is more than simply slinging code together to get a result as quickly as possible. The C++ standard library is a major source of such “double duty” examples — many even do triple duty. For example, we introduce the standard library vector, use it to illustrate widely useful design techniques, and show many of the programming techniques used to implement it. One of our aims is to show you how major library facilities are implemented and how they map to hardware. We insist that craftsmen must understand their tools, not just consider them “magical.”

Some topics will be of greater interest to some programmers than to others. However, we encourage you not to prejudge your needs (how would you know what you’ll need in the future?) and at least look at every chapter. If you read this book as part of a course, your teacher will guide your selection.


We characterize our approach as “depth-first.” It is also “concrete-first” and “concept-based.” First, we quickly (well, relatively quickly, Chapters 1–11) assemble a set of skills needed for writing small practical programs. In doing so, we pre­sent a lot of tools and techniques in minimal detail. We focus on simple concrete code examples because people grasp the concrete faster than the abstract. That’s simply the way most humans learn. At this initial stage, you should not expect to understand every little detail. In particular, you’ll find that trying something slightly different from what just worked can have “mysterious” effects. Do try, though! And please do the drills and exercises we provide. Just remember that early on you just don’t have the concepts and skills to accurately estimate what’s simple and what’s complicated; expect surprises and learn from them.


We move fast in this initial phase — we want to get you to the point where you can write interesting programs as fast as possible. Someone will argue, “We must move slowly and carefully; we must walk before we can run!” But have you ever watched a baby learning to walk? Babies really do run by themselves before they learn the finer skills of slow, controlled walking. Similarly, you will dash ahead, occasionally stumbling, to get a feel of programming before slowing down to gain the necessary finer control and understanding. You must run before you can walk!


It is essential that you don’t get stuck in an attempt to learn “everything” about some language detail or technique. For example, you could memorize all of C++’s built-in types and all the rules for their use. Of course you could, and doing so might make you feel knowledgeable. However, it would not make you a programmer. Skipping details will get you “burned” occasionally for lack of knowledge, but it is the fastest way to gain the perspective needed to write good programs. Note that our approach is essentially the one used by children learning their native language and also the most effective approach used to teach foreign languages. We encourage you to seek help from teachers, friends, colleagues, instructors, Mentors, etc. on the inevitable occasions when you are stuck. Be assured that nothing in these early chapters is fundamentally difficult. However, much will be unfamiliar and might therefore feel difficult at first.

Later, we build on the initial skills to broaden your base of knowledge and skills. We use examples and exercises to solidify your understanding, and to provide a conceptual base for programming.


We place a heavy emphasis on ideals and reasons. You need ideals to guide you when you look for practical solutions — to know when a solution is good and principled. You need to understand the reasons behind those ideals to understand why they should be your ideals, why aiming for them will help you and the users of your code. Nobody should be satisfied with “because that’s the way it is” as an explanation. More importantly, an understanding of ideals and reasons allows you to generalize from what you know to new situations and to combine ideas and tools in novel ways to address new problems. Knowing “why” is an essential part of acquiring programming skills. Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a source of errors, and a massive waste of time. We consider your time precious and try not to waste it.

Many C++ language-technical details are banished to appendices and manuals, where you can look them up when needed. We assume that you have the initiative to search out information when needed. Use the index and the table of contents. Don’t forget the online help facilities of your compiler, and the web. Remember, though, to consider every web resource highly suspect until you have reason to believe better of it. Many an authoritative-looking website is put up by a programming novice or someone with something to sell. Others are simply outdated. We provide a collection of links and information on our support website: www.stroustrup.com/Programming.

Please don’t be too impatient for “realistic” examples. Our ideal example is the shortest and simplest code that directly illustrates a language facility, a concept, or a technique. Most real-world examples are far messier than ours, yet do not consist of more than a combination of what we demonstrate. Successful commercial programs with hundreds of thousands of lines of code are based on techniques that we illustrate in a dozen 50-line programs. The fastest way to understand real-world code is through a good understanding of the fundamentals.

On the other hand, we do not use “cute examples involving cuddly animals” to illustrate our points. We assume that you aim to write real programs to be used by real people, so every example that is not presented as language-technical is taken from a real-world use. Our basic tone is that of professionals addressing (future) professionals.

0.2.1 The order of topics


There are many ways to teach people how to program. Clearly, we don’t subscribe to the popular “the way I learned to program is the best way to learn” theories. To ease learning, we early on present topics that would have been considered advanced only a few years ago. Our ideal is for the topics we present to be driven by problems you meet as you learn to program, to flow smoothly from topic to topic as you increase your understanding and practical skills. The major flow of this book is more like a story than a dictionary or a hierarchical order.

It is impossible to learn all the principles, techniques, and language facilities needed to write a program at once. Consequently, we have to choose a subset of principles, techniques, and features to start with. More generally, a textbook or a course must lead students through a series of subsets. We consider it our responsibility to select topics and to provide emphasis. We can’t just present everything, so we must choose; what we leave out is at least as important as what we leave in — at each stage of the journey.

For contrast, it may be useful for you to see a list of (severely abbreviated) characterizations of approaches that we decided not to take:

  • “C first”: This approach to learning C++ is wasteful of students’ time and leads to poor programming practices by forcing students to approach problems with fewer facilities, techniques, and libraries than necessary. C++ provides stronger type checking than C, a standard library with better support for novices, and exceptions for error handling.
  • Bottom-up: This approach distracts from learning good and effective programming practices. By forcing students to solve problems with insufficient support from the language and libraries, it promotes poor and wasteful programming practices.
  • “If you present something, you must present it fully”: This approach implies a bottom-up approach (by drilling deeper and deeper into every topic touched). It bores novices with technical details they have no interest in and quite likely will not need for years to come. Once you can program, you can look up technical details in a manual. Manuals are good at that, whereas they are awful for initial learning of concepts.
  • Top-down: This approach, working from first principles toward details, tends to distract readers from the practical aspects of programming and force them to concentrate on high-level concepts before they have any chance of appreciating their importance. For example, you simply can’t appreciate proper software development principles before you have learned how easy it is to make a mistake in a program and how hard it can be to correct it.
  • “Abstract first”: Focusing on general principles and protecting the student from nasty real-world constraints can lead to a disdain for real-world problems, languages, tools, and hardware constraints. Often, this approach is supported by “teaching languages” that cannot be used later and (deliberately) insulate students from hardware and system concerns.
  • “Software engineering principles first”: This approach and the abstract-first approach tend to share the problems of the top-down approach: without concrete examples and practical experience, you simply cannot appreciate the value of abstraction and proper software development practices.
  • “Object-oriented from day one”: Object-oriented programming is one of the best ways of organizing code and programming efforts, but it is not the only effective way. In particular, we feel that a grounding in the basics of types and algorithmic code is a prerequisite for appreciation of the design of classes and class hierarchies. We do use user-defined types (what some people would call “objects”) from day one, but we don’t show how to design a class until Chapter 6 and don’t show a class hierarchy until Chapter 12.
  • “Just believe in magic”: This approach relies on demonstrations of powerful tools and techniques without introducing the novice to the underlying techniques and facilities. This leaves the student guessing — and usually guessing wrong — about why things are the way they are, what it costs to use them, and where they can be reasonably applied. This can lead to overrigid following of familiar patterns of work and become a barrier to further learning.

Naturally, we do not claim that these other approaches are never useful. In fact, we use several of these for specific subtopics where their strengths can be appreciated. However, as general approaches to learning programming aimed at real-world use, we reject them and apply our alternative: concrete-first and depth-first with an emphasis on concepts and techniques.

0.2.2 Programming and programming language


We teach programming first and treat our chosen programming language as secondary, as a tool. Our general approach can be used with any general-purpose programming language. Our primary aim is to help you learn general concepts, principles, and techniques. However, those cannot be appreciated in isolation. For example, details of syntax, the kinds of ideas that can be directly expressed, and tool support differ from programming language to programming language. However, many of the fundamental techniques for producing bug-free code, such as writing logically simple code (Chapters 5 and 6), establishing invariants (§9.4.3), and separating interfaces from implementation details (§9.7 and §14.1–2), vary little from programming language to programming language.

Programming and design techniques must be learned using a programming language. Design, code organization, and debugging are not skills you can acquire in the abstract. You need to write code in some programming language and gain practical experience with that. This implies that you must learn the basics of a programming language. We say “the basics” because the days when you could learn all of a major industrial language in a few weeks are gone for good. The parts of C++ we present were chosen as the subset that most directly supports the production of good code. Also, we present C++ features that you can’t avoid encountering either because they are necessary for logical completeness or are common in the C++ community.

0.2.3 Portability


It is common to write C++ to run on a variety of machines. Major C++ applications run on machines we haven’t ever heard of! We consider portability and the use of a variety of machine architectures and operating systems most important. Essentially every example in this book is not only ISO Standard C++, but also portable. Unless specifically stated, the code we present should work on every C++ implementation and has been tested on several machines and operating systems.

The details of how to compile, link, and run a C++ program differ from system to system. It would be tedious to mention the details of every system and every compiler each time we need to refer to an implementation issue. In Appendix C, we give the most basic information about getting started using Visual Studio and Microsoft C++ on a Windows machine.

If you have trouble with one of the popular, but rather elaborate, IDEs (integrated development environments), we suggest you try working from the command line; it’s surprisingly simple. For example, here is the full set of commands needed to compile, link, and execute a simple program consisting of two source files, my_file1.cpp and my_file2.cpp, using the GNU C++ compiler on a Unix or Linux system:

c++ –o my_program my_file1.cpp my_file2.cpp

Yes, that really is all it takes.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020