# Introduction to the Analysis of Algorithms

This chapter is from the book

## 1.7. Distributions

In general, probability theory tells us that other facts about the distribution ΠNk of costs are also relevant to our understanding of performance characteristics of an algorithm. Fortunately, for virtually all of the examples that we study in the analysis of algorithms, it turns out that knowing an asymptotic estimate for the average is enough to be able to make reliable predictions. We review a few basic ideas here. Readers not familiar with probability theory are referred to any standard text—for example, [9].

The full distribution for the number of compares used by quicksort for small N is shown in Figure 1.2. For each value of N, the points CNk/N! are plotted: the proportion of the inputs for which quicksort uses k compares. Each curve, being a full probability distribution, has area 1. The curves move to the right, since the average 2NlnN + O(N) increases with N. A slightly different view of the same data is shown in Figure 1.3, where the horizontal axes for each curve are scaled to put the mean approximately at the center and shifted slightly to separate the curves. This illustrates that the distribution converges to a “limiting distribution.”

For many of the problems that we study in this book, not only do limiting distributions like this exist, but also we are able to precisely characterize them. For many other problems, including quicksort, that is a significant challenge. However, it is very clear that the distribution is concentrated near the mean. This is commonly the case, and it turns out that we can make precise statements to this effect, and do not need to learn more details about the distribution.

As discussed earlier, if ΠN is the number of inputs of size N and ΠNk is the number of inputs of size N that cause the algorithm to have cost k, the average cost is given by

The variance is defined to be

The standard deviation σ is the square root of the variance. Knowing the average and standard deviation ordinarily allows us to predict performance reliably. The classical analytic tool that allows this is the Chebyshev inequality: the probability that an observation will be more than c multiples of the standard deviation away from the mean is less than 1/c2. If the standard deviation is significantly smaller than the mean, then, as N gets large, an observed value is very likely to be quite close to the mean. This is often the case in the analysis of algorithms.

Exercise 1.23 What is the standard deviation of the number of compares for the mergesort implementation given earlier in this chapter?

The standard deviation of the number of compares used by quicksort is

(see §3.9) so, for example, referring to Table 1.1 and taking in Chebyshev’s inequality, we conclude that there is more than a 90% chance that the number of compares when N = 100,000 is within 205,004 (9.2%) of 2,218,033. Such accuracy is certainly adequate for predicting performance.

As N increases, the relative accuracy also increases: for example, the distribution becomes more localized near the peak in Figure 1.3 as N increases. Indeed, Chebyshev’s inequality underestimates the accuracy in this situation, as shown in Figure 1.4. This figure plots a histogram showing the number of compares used by quicksort on 10,000 different random files of 1000 elements. The shaded area shows that more than 94% of the trials fell within one standard deviation of the mean for this experiment.

For the total running time, we can sum averages (multiplied by costs) of individual quantities, but computing the variance is an intricate calculation that we do not bother to do because the variance of the total is asymptotically the same as the largest variance. The fact that the standard deviation is small relative to the average for large N explains the observed accuracy of Table 1.1 and Figure 1.1. Cases in the analysis of algorithms where this does not happen are rare, and we normally consider an algorithm “fully analyzed” if we have a precise asymptotic estimate for the average cost and knowledge that the standard deviation is asymptotically smaller.

### InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

## Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

## Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

### Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

### Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

### Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

### Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

### Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

### Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

## Other Collection and Use of Information

### Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

### Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

### Do Not Track

This site currently does not respond to Do Not Track signals.

## Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

## Children

This site is not directed to children under the age of 13.

## Marketing

Pearson may send or direct marketing communications to users, provided that

• Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
• Such marketing is consistent with applicable law and Pearson's legal obligations.
• Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
• Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

## Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

## Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

## Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

## Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

## Sharing and Disclosure

Pearson may disclose personal information, as follows:

• As required by law.
• With the consent of the individual (or their parent, if the individual is a minor)
• In response to a subpoena, court order or legal process, to the extent permitted or required by law
• To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
• In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
• To investigate or address actual or suspected fraud or other illegal activities
• To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
• To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
• To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

## Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020