Home > Store

Natural Language Processing LiveLessons 2e (Video Training), 2nd Edition

Natural Language Processing LiveLessons 2e (Video Training), 2nd Edition

Your browser doesn't support playback of this video. Please download the file to view it.

Online Video

Register your product to gain access to bonus material or receive a coupon.


  • Copyright 2022
  • Edition: 2nd
  • Online Video
  • ISBN-10: 0-13-767018-4
  • ISBN-13: 978-0-13-767018-5

5 Hours of Video Instruction


Natural Language Processing LiveLessons covers the fundamentals of Natural Language Processing in a simple and intuitive way, empowering you to add NLP to your toolkit. Using the powerful NLTK package, it gradually moves from the basics of text representation, cleaning, topic detection, regular expressions, and sentiment analysis before moving on to the Keras deep learning framework to explore more advanced topics such as text classification and sequence-to-sequence models. After successfully completing these lessons you'll be equipped with a fundamental and practical understanding of state-of-the-art Natural Language Processing tools and algorithms.

Skill Level

Learn How To
* Represent text
* Clean text
* Understand named entity recognition
* Model topics
* Conduct sentiment analysis
* Utilize text classification
* Understand word2vec word embeddings
* Define GloVe
* Transfer learning
* Apply language detection

Who Should Take This Course
Data scientists with an interest in natural language processing

Course Requirements
Basic algebra, calculus, and statistics, plus programming experience

Lesson Descriptions

Lesson 1, Text Representations: The first step in any NLP application is the tokenization and representation of text through one-hot encodings and bag of words. Naturally, not all words are meaningful, so the next step is to remove meaningless stopwords and identify the most relevant words for your application using TF-IDF. The next step is to identify n-grams. Finally, you learn how word embeddings can be used as semantically meaningful representations and finalize things with a practical demo.
Lesson 2, Text Cleaning: Lesson 2 builds on the text representations of Lesson 1 by applying stemming and lemmatization to identify the roots of words and reduce the size of the vocabulary. Next comes deploying regular expressions to identify words fitting specific patterns. The lesson finishes up by demoing these techniques.

Lesson 3, Named Entity Recognition: In named entity recognition you develop approaches to tag words by the part of speech to which they correspond. You also identify meaningful groups of words by chunking and chinking before recognizing the named entities that are the subject of your text. The lesson ends with a demonstration of the entire pipeline from raw text to named entities.

Lesson 4, Topic Modeling: Lesson 4 is about developing ways of identifying what the main subject or subjects of a text are. It begins by exploring explicit semantic analysis to find documents mentioning a specific topic and then turns to clustering documents according to topics. Latent semantic analysis provides yet another powerful way to extract meaning from raw text, as does latent-Dirichlet allocation. Non-negative matrix factorization enables you to identify latent dimensions in the text and perform recommendations and measure similarities. Finally, a hands-on demo guides you through the process of using all of these techniques.

Lesson 5, Sentiment Analysis: After identifying the topics covered in a document, the next place to go is how you extract sentiment information. In other words, what kind of sentiments are being expressed? Are the words used positive or negative? The next step is to consider how to handle negations and modifiers and use corpus-based approaches to define the valence of each word as demonstrated in the lesson-ending demo.
Lesson 6, Text Classification: In this lesson you learn how to use feed forward networks and convolutional neural networks to classify the sentiment of movie reviews as a test case for how to deploy machine learning approaches in the context of NLP. It also discusses further applications of this approach before proceeding with a hands-on demo.

Lesson 7, Sequence Modelling: Lesson 7 builds on the foundations laid in the previous lesson to explore the use of recurrent neural network architectures for text classification. It starts with the basic RNN architecture before moving on to gated recurrent units and long short-term memory. It also includes a discussion of auto-encoder models and text generation. The lesson wraps up with the demo.

Lesson 8, Applications: This course has focused on some fundamental and not-so-fundamental tools of natural language processing. This final lesson considers specific applications and advanced topics. Perhaps one of the most important developments in NLP in recent years is the popularization of word embeddings in general and word2vec in particular. This enables you to delve deeper into vector representations of words and concepts and how semantic relations can be expressed through vector algebra. GloVe is the main competitor to word2vec, so this lesson also explores its advantages and disadvantages. Also discussed are the potential applications of transfer learning to NLP and the question of language detection. The lesson finishes with a demo.

About Pearson Video Training
Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Sams, and Que. Topics include IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.

Sample Content

Table of Contents

Lesson 1: Text Representation
1.1 One-hot Encoding
1.2 Bag of Words
1.3 Stop Words
1.4 TF-IDF
1.5 N-grams
1.6 Working with Word Embeddings
1.7 Demo
Lesson 2: Text Cleaning
2.1 Stemming
2.2 Lemmatization
2.3 Regular Expressions
2.4 Text Cleaning Demo
Lesson 3: Named Entity Recognition
3.1 Part of Speech Tagging
3.2 Chunking
3.3 Chinking
3.4 Named Entity Recognition
3.5 Demo
Lesson 4: Topic Modeling
4.1 Explicit Semantic Analysis
4.2 Document Clustering
4.3 Latent Semantic Analysis
4.4 LDA
4.5 Non-negative Matrix Factorization
4.6 Demo
Lesson 5: Sentiment Analysis
5.1 Quantify Words and Feelings
5.2 Negations and Modifiers
5.3 Corpus-based Approaches
5.4 Demo
Lesson 6: Text Classification
6.1 Feed Forward Networks
6.2 Convolutional Neural Networks
6.3 Applications  
6.4 Demo
Lesson 7: Sequence Modeling
7.1 Recurrent Neural Networks
7.2 Gated Recurrent Unit
7.3 Long Short-term Memory
7.4 Auto-encoder Models
7.5 Demo
Lesson 8: Applications
8.1 Word2vec Embeddings
8.2 GloVe
8.3 Transfer Learning
8.4 Language Detection
8.5 Demo


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020