Home > Store

Microsoft Azure Machine Learning Fundamentals (Video)

Microsoft Azure Machine Learning Fundamentals (Video)

Your browser doesn't support playback of this video. Please download the file to view it.

Online Video

Register your product to gain access to bonus material or receive a coupon.


  • Copyright 2023
  • Edition: 1st
  • Online Video
  • ISBN-10: 0-13-794950-2
  • ISBN-13: 978-0-13-794950-2

3+ Hours of Video Training on Machine Learning Fundamentals and Best Practices for Better Models with Azure Machine Learning

In this video training, Justin Frébault walks you through Machine Learning fundamentals and provides best practices for better models with Azure Machine Learning. Through the use of demos and hands-on labs, you will learn how to industrialize your models by deploying and monitoring them. This course will also introduce popular tools in Azure for interpreting your models so that they can better support business decisions.

Machine Learning is rapidly becoming ubiquitous, making it a key technology to learn. It is changing the landscape of business. Learning the key concepts of Machine Learning is essential to understanding its capabilities and knowing how to use it. This course targets those hands-on skills and will provide directed learning in several important areas including the basics of Machine Learning, which covers the different types of algorithms, the Machine Learning workflow and data-centric Machine Learning. It will also cover deploying and monitoring models, as well as the important skill of interpreting models.

Topics include:

Lesson 1: Introduction to Machine Learning

Lesson 1 introduces what Machine Learning is as a discipline. This lesson discusses the Machine Learning workflow and cover how to select the right algorithms and what data centric Machine Learning is. We will then start our first exercises and create an Azure Machine Learning workspace.

Lesson 2: Introduction to Azure Machine Learning

This lesson introduces Azure Machine Learning and discusses the different components of the platform as well as its audience. We will go deeper into what constitutes a Workspace, and then explore the Studio and the SDK. The goal will be to run our first experiments in the lab.

Lesson 3: Improve Your Azure Machine Learning Model

This lesson will cover how to improve your Models. We will see two technics: hyperparameter tunning and automated Machine Learning. A key aspect will be to learn how to balance bias and variance, and the underlying principle of the bias/variance tradeoff. The lesson will finish with a lab where we will tune hyperparameters.

Lesson 4: Deploy and Monitor Your Model

Here we will talk about the important aspects of deploying and monitoring your models. This is an important lesson if you want to productionize your work. We will see how to increase the quality of your solution with CI/CD, and what your options are to monitor data drift and models.

Lesson 5: Interpret Your Model

In this final lesson we will cover interpretability in Machine Learning. We will see why it is important and what explainers are. We will address global and local feature importance. We will also touch on fairness: how to evaluate it and ensure it.

Skill Level:

  • Beginner

Learn How To:

  • Select the right algorithm for your business case
  • Improve your models with hyperparameter tunning and automated ML
  • Industrialize your models with deployment and monitoring
  • Interpret your models to support business decisions

Who Should Take This Course:

  • IT Professionals who want to understand the essence and potential of Machine Learning
  • Data analysts or A.I. enthusiasts who would like to become a Data Scientist
  • Beginner Data Scientists looking to reinforce Machine Learning concepts
  • Anyone interested in learning how to industrialize your models with Azure Machine Learning

Course Requirements:

  • Basic knowledge or Python preferred

About Pearson Video Training:

Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Prentice Hall, Sams, and Que Topics include: IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.

Video Lessons are available for download for offline viewing within the streaming format. Look for the green arrow in each lesson.

Sample Content

Table of Contents



Lesson 1: Introduction to Machine Learning

Learning Objectives 

     1.1 Understand Machine Learning         

     1.2 Explore the Machine Learning Workflow   

     1.3 Learn How to Select the Right Algorithms

     1.4 Discover Data Centric Machine Learning    

     1.5 Demo: Create an Azure Machine Learning Workspace      

     1.6 Lab: Create an Azure Machine Learning Workspace


Lesson 2: Introduction to Azure Machine Learning

Learning Objectives 

     2.1 What Is Azure Machine Learning?   

     2.2 Azure Machine Learning in Context

     2.3 Azure Machine Learning Workspaces         

     2.4 Azure Machine Learning Studio       

     2.5 Leverage the Azure Machine Learning SDK

     2.6 Demo: Exploring the Azure Machine Learning Designer   

     2.7 Lab: Running Experiments with SDK


Lesson 3: Improve Your Azure Machine Learning Model

Learning Objectives 

     3.1 Hyperparameter Tuning       

     3.2 Automated Machine Learning

     3.3 Introduction to Bias/Variance Tradeoff      

     3.4 Demo: Automated Machine Learning

     3.5 Lab: Tuning Hyperparameters


Lesson 4: Deploy and Monitor Your Model

Learning Objectives

     4.1 Deploy and Consume Your Model

     4.2 CI/CD with Machine Learning

     4.3 Monitor Using Data Drift and Application Insights

     4.4 Demo: Deploy Your Model and Monitor with Application Insights          

     4.5 Lab: Monitor Data Drift


Lesson 5: Interpret Your Model

Learning Objectives 

     5.1 Introduction to Explainers   

     5.2 Global and Local Feature Importance         

     5.3 Detect and Mitigate Fairness

     5.4 Demo: Interpret Your Model

     5.5 Lab: Detect and Mitigate Unfairness



Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020