Home > Store

Elements of Chemical Reaction Engineering, 5th Edition

Register your product to gain access to bonus material or receive a coupon.

Elements of Chemical Reaction Engineering, 5th Edition


  • Sorry, this book is no longer in print.
Not for Sale



  • Successfully integrates text, visuals, and computer simulations to help both undergraduate and graduate students master the fundamentals of chemical reaction engineering
  • Contains new examples, problems, and video instruction helping students to explore key issues, seek optimum solutions, and practice critical thinking and creative problem-solving
  • Presents expanded coverage of crucial safety topics to address the latest ABET requirements
  • Includes expanded coverage of bioreactions and industrial chemistry, introduced with real reactors and reactions


  • Copyright 2016
  • Dimensions: 8" x 10"
  • Pages: 992
  • Edition: 5th
  • Book
  • ISBN-10: 0-13-388751-0
  • ISBN-13: 978-0-13-388751-8

The Definitive, Fully Updated Guide to Solving Real-World Chemical Reaction Engineering Problems

For decades, H. Scott Fogler’s Elements of Chemical Reaction Engineering has been the world’s dominant text for courses in chemical reaction engineering. Now, Fogler has created a new, completely updated fifth edition of his internationally respected book. The result is a refined book that contains new examples and problems, as well as an updated companion Web site. More than ever, Fogler has successfully integrated text, visuals, and computer simulations to help both undergraduate and graduate students master all of the field’s fundamentals. As always, he links theory to practice through many relevant examples, ranging from standard isothermal and non-isothermal reactor design to applications, such as solar energy, blood clotting, and drug delivery, and computer chip manufacturing.

To promote the transfer of key skills to real-life settings, Fogler presents the following three styles of problems:

  1. Straightforward problems that reinforce the principles of chemical reaction engineering
  2. Living Example Problems (LEPs) that allow students to rapidly explore the issues and look for optimal solutions
  3. Open-ended problems that encourage students to practice creative problem-solving skills 

About the Web Site

The companion Web site offers extensive enrichment opportunities and additional content, including

  • Complete PowerPoint slides for lecture notes for chemical reaction engineering classes.
  • Links to additional software, including POLYMATH™, Matlab™, Wolfram Mathematica™, AspenTech™, and COMSOL™.
  • Interactive learning resources linked to each chapter, including Learning Objectives, Summary Notes, Web Modules, Interactive Computer Games, Solved Problems, FAQs, additional homework problems, and links to Learncheme.
  • Living Example Problems that provide more than eighty interactive simulations, allowing students to explore the examples and ask “what-if” questions. The LEPs are unique to this book.
  • Professional Reference Shelf, which includes advanced content on reactors, weighted least squares, experimental planning, laboratory reactors, pharmacokinetics, wire gauze reactors, trickle bed reactors, fluidized bed reactors, CVD boat reactors, detailed explanations of key derivations, and more.
  • Problem-solving strategies and insights on creative and critical thinking.


Companion Site

Please visit the website associated with Elements of Chemical Reaction Engineering at http://www.umich.edu/~elements/5e/.

Sample Content

Online Sample Chapter

Elements of Chemical Reaction Engineering: Mole Balances

Sample Pages

Download the sample pages (includes Chapter 1 and Index)

Table of Contents

Preface xvii

About the Author xxxiii

Chapter 1: Mole Balances 1

1.1 The Rate of Reaction, –rA 4

1.2 The General Mole Balance Equation 8

1.3 Batch Reactors (BRs) 10

1.4 Continuous-Flow Reactors 12

1.5 Industrial Reactors 22

Chapter 2: Conversion and Reactor Sizing 31

2.1 Definition of Conversion 32

2.2 Batch Reactor Design Equations 32

2.3 Design Equations for Flow Reactors 35

2.4 Sizing Continuous-Flow Reactors 38

2.5 Reactors in Series 47

2.6 Some Further Definitions 58

Chapter 3: Rate Laws 69

3.1 Basic Definitions 70

3.2 The Reaction Order and the Rate Law 72

3.3 Rates and the Reaction Rate Constant 83

3.4 Present Status of Our Approach to Reactor Sizing and Design 93

Chapter 4: Stoichiometry 105

4.1 Batch Systems 107

4.2 Flow Systems 113

4.3 Reversible Reactions and Equilibrium Conversion 126

Chapter 5: Isothermal Reactor Design: Conversion 139

5.1 Design Structure for Isothermal Reactors 140

5.2 Batch Reactors (BRs) 144

5.3 Continuous-Stirred Tank Reactors (CSTRs) 152

5.4 Tubular Reactors 162

5.5 Pressure Drop in Reactors 169

5.6 Synthesizing the Design of a Chemical Plant 190

Chapter 6: Isothermal Reactor Design: Moles and Molar Flow Rates 207

6.1 The Molar Flow Rate Balance Algorithm 208

6.2 Mole Balances on CSTRs, PFRs, PBRs, and Batch Reactors 208

6.3 Application of the PFR Molar Flow Rate Algorithm to a Microreactor 212

6.4 Membrane Reactors 217

6.5 Unsteady-State Operation of Stirred Reactors 225

6.6 Semibatch Reactors 227

Chapter 7: Collection and Analysis of Rate Data 243

7.1 The Algorithm for Data Analysis 244

7.2 Determining the Reaction Order for Each of Two Reactants Using the Method of Excess 246

7.3 Integral Method 247

7.4 Differential Method of Analysis 251

7.5 Nonlinear Regression 258

7.6 Reaction-Rate Data from Differential Reactors 264

7.7 Experimental Planning 271

Chapter 8: Multiple Reactions 279

8.1 Definitions 280

8.2 Algorithm for Multiple Reactions 282

8.3 Parallel Reactions 285

8.4 Reactions in Series 294

8.5 Complex Reactions 304

8.6 Membrane Reactors to Improve Selectivity in Multiple Reactions 312

8.7 Sorting It All Out 317

8.8 The Fun Part 317

Chapter 9: Reaction Mechanisms, Pathways, Bioreactions, and Bioreactors 333

9.1 Active Intermediates and Nonelementary Rate Laws 334

9.2 Enzymatic Reaction Fundamentals 343

9.3 Inhibition of Enzyme Reactions 356

9.4 Bioreactors and Biosynthesis 364

Chapter 10: Catalysis and Catalytic Reactors 399

10.1 Catalysts 399

10.2 Steps in a Catalytic Reaction 405

10.3 Synthesizing a Rate Law, Mechanism, and Rate-Limiting Step 421

10.4 Heterogeneous Data Analysis for Reactor Design 436

10.5 Reaction Engineering in Microelectronic Fabrication 446

10.6 Model Discrimination 451

10.7 Catalyst Deactivation 454

Chapter 11: Nonisothermal Reactor Design—The Steady-State Energy Balance and Adiabatic PFR Applications 493

11.1 Rationale 494

11.2 The Energy Balance 495

11.3 The User-Friendly Energy Balance Equations 502

11.4 Adiabatic Operation 508

11.5 Adiabatic Equilibrium Conversion 518

11.6 Reactor Staging 522

11.7 Optimum Feed Temperature 526

Chapter 12: Steady-State Nonisothermal Reactor Design—Flow Reactors with Heat Exchange 539

12.1 Steady-State Tubular Reactor with Heat Exchange 540

12.2 Balance on the Heat-Transfer Fluid 543

12.3 Algorithm for PFR/PBR Design with Heat Effects 545

12.4 CSTR with Heat Effects 564

12.5 Multiple Steady States (MSS) 574

12.6 Nonisothermal Multiple Chemical Reactions 581

12.7 Radial and Axial Variations in a Tubular Reactor 595

12.8 Safety 603

Chapter 13: Unsteady-State Nonisothermal Reactor Design 629

13.1 Unsteady-State Energy Balance 630

13.2 Energy Balance on Batch Reactors 632

13.3 Semibatch Reactors with a Heat Exchanger 646

13.4 Unsteady Operation of a CSTR 651

13.5 Nonisothermal Multiple Reactions 656

Chapter 14: Mass Transfer Limitations in Reacting Systems 679

14.1 Diffusion Fundamentals 680

14.2 Binary Diffusion 684

14.3 Diffusion Through a Stagnant Film 688

14.4 The Mass Transfer Coefficient 690

14.5 What If . . . ? (Parameter Sensitivity) 705

Chapter 15: Diffusion and Reaction 719

15.1 Diffusion and Reactions in Homogeneous Systems 720

15.2 Diffusion and Reactions in Spherical Catalyst Pellets 720

15.3 The Internal Effectiveness Factor 730

15.4 Falsified Kinetics 737

15.5 Overall Effectiveness Factor 739

15.6 Estimation of Diffusion- and Reaction-Limited Regimes 743

15.7 Mass Transfer and Reaction in a Packed Bed 744

15.8 Determination of Limiting Situations from Reaction-Rate Data 750

15.9 Multiphase Reactors in the Professional Reference Shelf 751

15.10 Fluidized Bed Reactors 753

15.11 Chemical Vapor Deposition (CVD) 753

Chapter 16: Residence Time Distributions of Chemical Reactors 767

16.1 General Considerations 767

16.2 Measurement of the RTD 770

16.3 Characteristics of the RTD 777

16.4 RTD in Ideal Reactors 784

16.5 PFR/CSTR Series RTD 789

16.6 Diagnostics and Troubleshooting 793

Chapter 17: Predicting Conversion Directly from the Residence Time Distribution 807

17.1 Modeling Nonideal Reactors Using the RTD 808

17.2 Zero-Adjustable-Parameter Models 810

17.3 Using Software Packages 827

17.4 RTD and Multiple Reactions 830

Chapter 18: Models for Nonideal Reactors 845

18.1 Some Guidelines for Developing Models 846

18.2 The Tanks-in-Series (T-I-S) One-Parameter Model 848

18.3 Dispersion One-Parameter Model 852

18.4 Flow, Reaction, and Dispersion 854

18.5 Tanks-in-Series Model versus Dispersion Model 869

18.6 Numerical Solutions to Flows with Dispersion and Reaction 870

18.7 Two-Parameter Models—Modeling Real Reactors with Combinations of Ideal Reactors 871

18.8 Use of Software Packages to Determine the Model Parameters 880

18.9 Other Models of Nonideal Reactors Using CSTRs and PFRs 882

18.10 Applications to Pharmacokinetic Modeling 883

Appendix A: Numerical Techniques 897

A.1 Useful Integrals in Reactor Design 897

A.2 Equal-Area Graphical Differentiation 898

A.3 Solutions to Differential Equations 900

A.4 Numerical Evaluation of Integrals 901

A.5 Semilog Graphs 903

A.6 Software Packages 903

Appendix B: Ideal Gas Constant and Conversion Factors 905

Appendix C: Thermodynamic Relationships Involving the Equilibrium Constant 909

Appendix D: Software Packages 915

D.1 Polymath 915

D.2 MATLAB 916

D.3 Aspen 916

D.4 COMSOL Multiphysics 917

Appendix E: Rate Law Data 919

Appendix F: Nomenclature 921

Appendix G: Open-Ended Problems 925

G.1 Design of Reaction Engineering Experiment 925

G.2 Effective Lubricant Design 925

G.3 Peach Bottom Nuclear Reactor 925

G.4 Underground Wet Oxidation 926

G.5 Hydrodesulfurization Reactor Design 926

G.6 Continuous Bioprocessing 926

G.7 Methanol Synthesis 926

G.8 Cajun Seafood Gumbo 926

G.9 Alcohol Metabolism 927

G.10 Methanol Poisoning 928

Appendix H: Use of Computational Chemistry Software Packages 929

Appendix I: How to Use the CRE Web Resources 931

I.1 CRE Web Resources Components 931

I.2 How the Web Can Help Your Learning Style 933

I.3 Navigation 934

Index 937


Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020