The Easy Introduction to Machine Learning (Ml) for Nontechnical People--In Business and Beyond
Artificial Intelligence for Business is your plain-English guide to Artificial Intelligence (AI) and Machine Learning (ML): how they work, what they can and cannot do, and how to start profiting from them. Writing for nontechnical executives and professionals, Doug Rose demystifies AI/ML technology with intuitive analogies and explanations honed through years of teaching and consulting. Rose explains everything from early expert systems to advanced deep learning networks.
First, Rose explains how AI and ML emerged, exploring pivotal early ideas that continue to influence the field. Next, he deepens your understanding of key ML concepts, showing how machines can create strategies and learn from mistakes. Then, Rose introduces current powerful neural networks: systems inspired by the structure and function of the human brain. He concludes by introducing leading AI applications, from automated customer interactions to event prediction. Throughout, Rose stays focused on business: applying these technologies to leverage new opportunities and solve real problems.
What Is Artificial Intelligence?
Download the sample pages (includes Chapter 1)
Foreword     xv
Preface     xix
PART I:  Thinking Machines: An Overview of Artificial Intelligence     1
Chapter 1:  What Is Artificial Intelligence?     3
What Is Intelligence?     4
Testing Machine Intelligence     6
The General Problem Solver     8
Strong and Weak Artificial Intelligence     11
Artificial Intelligence Planning     14
Learning over Memorizing     15
Chapter Takeaways     18
Chapter 2:  The Rise of Machine Learning     19
Practical Applications of Machine Learning     22
Artificial Neural Networks     24
The Fall and Rise of the Perceptron     27
Big Data Arrives     30
Chapter Takeaways     33
Chapter 3:  Zeroing in on the Best Approach     35
Expert System Versus Machine Learning     35
Supervised Versus Unsupervised Learning     37
Backpropagation of Errors     38
Regression Analysis     41
Chapter Takeaways     43
Chapter 4:  Common AI Applications     45
Intelligent Robots     45
Natural Language Processing     48
The Internet of Things     50
Chapter Takeaways     51
Chapter 5:  Putting AI to Work on Big Data     53
Understanding the Concept of Big Data     54
Teaming Up with a Data Scientist     54
Machine Learning and Data Mining: What's the Difference?     55
Making the Leap from Data Mining to Machine Learning     56
Taking the Right Approach     57
Chapter Takeaways     59
Chapter 6:  Weighing Your Options     61
Chapter Takeaways     64
PART II:  Machine Learning     65
Chapter 7:  What Is Machine Learning?     67
How a Machine Learns     71
Working with Data     74
Applying Machine Learning     77
Different Types of Learning     79
Chapter Takeaways     81
Chapter 8:  Different Ways a Machine Learns     83
Supervised Machine Learning     83
Unsupervised Machine Learning     86
Semi-Supervised Machine Learning     89
Reinforcement Learning     91
Chapter Takeaways     93
Chapter 9:  Popular Machine Learning Algorithms     95
Decision Trees     99
k-Nearest Neighbor     101
k-Means Clustering     104
Regression Analysis     108
Naive Bayes     110
Chapter Takeaways     113
Chapter 10:  Applying Machine Learning Algorithms     115
Fitting the Model to Your Data     119
Choosing Algorithms     120
Ensemble Modeling     121
Deciding on a Machine Learning Approach     123
Chapter Takeaways     124
Chapter 11:  Words of Advice     125
Start Asking Questions     125
Don't Mix Training Data with Test Data     127
Don't Overstate a Model's Accuracy     127
Know Your Algorithms     128
Chapter Takeaways     128
PART III:  Artificial Neural Networks     129
Chapter 12:  What Are Artificial Neural Networks?     131
Why the Brain Analogy?     133
Just Another Amazing Algorithm     133
Getting to Know the Perceptron     135
Squeezing Down a Sigmoid Neuron     138
Adding Bias     141
Chapter Takeaways     142
Chapter 13:  Artificial Neural Networks in Action     143
Feeding Data into the Network     143
What Goes on in the Hidden Layers     145
Understanding Activation Functions     149
Adding Weights     151
Adding Bias     152
Chapter Takeaways     153
Chapter 14:  Letting Your Network Learn     155
Starting with Random Weights and Biases     156
Making Your Network Pay for Its Mistakes: The Cost Function     157
Combining the Cost Function with Gradient Descent     158
Using Backpropagation to Correct for Errors     160
Tuning Your Network     163
Employing the Chain Rule     164
Batching the Data Set with Stochastic Gradient Descent     166
Chapter Takeaways     167
Chapter 15:  Using Neural Networks to Classify or Cluster     169
Solving Classification Problems     170
Solving Clustering Problems     172
Chapter Takeaways     174
Chapter 16:  Key Challenges     175
Obtaining Enough Quality Data     175
Keeping Training and Test Data Separate     176
Carefully Choosing Your Training Data     177
Taking an Exploratory Approach     177
Choosing the Right Tool for the Job     178
Chapter Takeaways     178
PART IV:  Putting Artificial Intelligence to Work     179
Chapter 17:  Harnessing the Power of Natural Language Processing     181
Extracting Meaning from Text and Speech with NLU     183
Delivering Sensible Responses with NLG     184
Automating Customer Service     186
Reviewing the Top NLP Tools and Resources     187
NLU Tools     189
NLG Tools     190
Chapter Takeaways     191
Chapter 18:  Automating Customer Interactions     193
Choosing Natural Language Technologies     195
Review the Top Tools for Creating Chatbots and Virtual Agents     196
Chapter Takeaways     198
Chapter 19:  Improving Data-Based Decision-Making     199
Choosing Between Automated and Intuitive Decision-Making     201
Gathering Data in Real Time from IoT Devices     202
Reviewing Automated Decision-Making Tools     204
Chapter Takeaways     205
Chapter 20:  Using Machine Learning to Predict Events and Outcomes     207
Machine Learning Is Really about Labeling Data     208
Looking at What Machine Learning Can Do     210
Predict What Customers Will Buy     210
Answer Questions Before They're Asked     210
Make Better Decisions Faster     212
Replicate Expertise in Your Business     213
Use Your Power for Good, Not Evil: Machine Learning Ethics     214
Review the Top Machine Learning Tools     216
Chapter Takeaways     218
Chapter 21:  Building Artificial Minds     219
Separating Intelligence from Automation     221
Adding Layers for Deep Learning     222
Considering Applications for Artificial Neural Networks     223
Classifying Your Best Customers     224
Recommending Store Layouts     225
Analyzing and Tracking Biometrics     226
Reviewing the Top Deep Learning Tools     228
Chapter Takeaways     229
Index     231
