Home > Articles > Programming

This chapter is from the book

1.5 Bringing Order to Chaos

Certainly, there will always be geniuses among us, people of extraordinary skill who can do the work of a handful of mere mortal developers, the software engineering equivalents of Frank Lloyd Wright or Leonardo da Vinci. These are the people whom we seek to deploy as our system architects: the ones who devise innovative idioms, mechanisms, and frameworks that others can use as the architectural foundations of other applications or systems. However, "The world is only sparsely populated with geniuses. There is no reason to believe that the software engineering community has an inordinately large proportion of them" [2]. Although there is a touch of genius in all of us, in the realm of industrial-strength software we cannot always rely on divine inspiration to carry us through. Therefore, we must consider more disciplined ways to master complexity.

The Role of Decomposition

"The technique of mastering complexity has been known since ancient times: divide et impera (divide and rule)" [16]. When designing a complex software system, it is essential to decompose it into smaller and smaller parts, each of which we may then refine independently. In this manner, we satisfy the very real constraint that exists on the channel capacity of human cognition: To understand any given level of a system, we need only comprehend a few parts (rather than all parts) at once. Indeed, as Parnas observes, intelligent decomposition directly addresses the inherent complexity of software by forcing a division of a system's state space [17].

Algorithmic Decomposition

Most of us have been formally trained in the dogma of top-down structured design, and so we approach decomposition as a simple matter of algorithmic decomposition, wherein each module in the system denotes a major step in some overall process. Figure 1-3 is an example of one of the products of structured design, a structure chart that shows the relationships among various functional elements of the solution. This particular structure chart illustrates part of the design of a program that updates the content of a master file. It was automatically generated from a data flow diagram by an expert system tool that embodies the rules of structured design [18].

Figure 1-3

Figure 1-3 Algorithmic Decomposition

Object-Oriented Decomposition

We suggest that there is an alternate decomposition possible for the same problem. In Figure 1-4, we have decomposed the system according to the key abstractions in the problem domain. Rather than decomposing the problem into steps such as Get formatted update and Add checksum, we have identified objects such as Master File and Checksum, which derive directly from the vocabulary of the problem domain.

Figure 1-4

Figure 1-4 Object-Oriented Decomposition

Although both designs solve the same problem, they do so in quite different ways. In this second decomposition, we view the world as a set of autonomous agents that collaborate to perform some higher-level behavior. Get Formatted Update thus does not exist as an independent algorithm; rather, it is an operation associated with the object File of Updates. Calling this operation creates another object, Update to Card. In this manner, each object in our solution embodies its own unique behavior, and each one models some object in the real world. From this perspective, an object is simply a tangible entity that exhibits some well-defined behavior. Objects do things, and we ask them to perform what they do by sending them messages. Because our decomposition is based on objects and not algorithms, we call this an object-oriented decomposition.

Algorithmic versus Object-Oriented Decomposition

Which is the right way to decompose a complex system—by algorithms or by objects? Actually, this is a trick question because the right answer is that both views are important: The algorithmic view highlights the ordering of events, and the object-oriented view emphasizes the agents that either cause action or are the subjects on which these operations act.

However, the fact remains that we cannot construct a complex system in both ways simultaneously, for they are completely orthogonal views.3 We must start decomposing a system either by algorithms or by objects and then use the resulting structure as the framework for expressing the other perspective.

Our experience leads us to apply the object-oriented view first because this approach is better at helping us organize the inherent complexity of software systems, just as it helped us to describe the organized complexity of complex systems as diverse as computers, plants, galaxies, and large social institutions. As we will discuss further in Chapter 2, object-oriented decomposition has a number of highly significant advantages over algorithmic decomposition. Object-oriented decomposition yields smaller systems through the reuse of common mechanisms, thus providing an important economy of expression. Object-oriented systems are also more resilient to change and thus better able to evolve over time because their design is based on stable intermediate forms. Indeed, object-oriented decomposition greatly reduces the risk of building complex software systems because they are designed to evolve incrementally from smaller systems in which we already have confidence. Furthermore, object-oriented decomposition directly addresses the inherent complexity of software by helping us make intelligent decisions regarding the separation of concerns in a large state space.

The Applications section of this book demonstrates these benefits through several applications, drawn from a diverse set of problem domains. The sidebar in this chapter, Categories of Analysis and Design Methods, further compares and contrasts the object-oriented view with more traditional approaches to design.

The Role of Abstraction

Earlier, we referred to Miller's experiments, from which he concluded that an individual can comprehend only about seven, plus or minus two, chunks of information at one time. This number appears to be independent of information content. As Miller himself observes, "The span of absolute judgment and the span of immediate memory impose severe limitations on the amount of information that we are able to receive, process and remember. By organizing the stimulus input simultaneously into several dimensions and successively into a sequence of chunks, we manage to break ... this informational bottleneck" [35]. In contemporary terms, we call this process chunking or abstraction.

As Wulf describes it, "We (humans) have developed an exceptionally powerful technique for dealing with complexity. We abstract from it. Unable to master the entirety of a complex object, we choose to ignore its inessential details, dealing instead with the generalized, idealized model of the object" [36]. For example, when studying how photosynthesis works in a plant, we can focus on the chemical reactions in certain cells in a leaf and ignore all other parts, such as the roots and stems. We are still constrained by the number of things that we can comprehend at one time, but through abstraction, we use chunks of information with increasingly greater semantic content. This is especially true if we take an object-oriented view of the world because objects, as abstractions of entities in the real world, represent a particularly dense and cohesive clustering of information. Chapter 2 examines the meaning of abstraction in much greater detail.

The Role of Hierarchy

Another way to increase the semantic content of individual chunks of information is by explicitly recognizing the class and object hierarchies within a complex software system. The object structure is important because it illustrates how different objects collaborate with one another through patterns of interaction that we call mechanisms. The class structure is equally important because it highlights common structure and behavior within a system. Thus, rather than study each individual photosynthesizing cell within a specific plant leaf, it is enough to study one such cell because we expect that all others will exhibit similar behavior. Although we treat each instance of a particular kind of object as distinct, we may assume that it shares the same behavior as all other instances of that same kind of object. By classifying objects into groups of related abstractions (e.g., kinds of plant cells versus animal cells), we come to explicitly distinguish the common and distinct properties of different objects, which further helps us to master their inherent complexity [37].

Identifying the hierarchies within a complex software system is often not easy because it requires the discovery of patterns among many objects, each of which may embody some tremendously complicated behavior. Once we have exposed these hierarchies, however, the structure of a complex system, and in turn our understanding of it, becomes vastly simplified. Chapter 3 considers in detail the nature of class and object hierarchies, and Chapter 4 describes techniques that facilitate our identification of these patterns.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020