Home > Articles > Web Development

📄 Contents

  1. Sams Teach Yourself SQL in 24 Hours, Third Edition
  2. Table of Contents
  3. Copyright
  4. About the Authors
  5. Acknowledgments
  6. Tell Us What You Think!
  7. Introduction
  8. Part I: A SQL Concepts Overview
  9. Hour 1. Welcome to the World of SQL
  10. SQL Definition and History
  11. SQL Sessions
  12. Types of SQL Commands
  13. An Introduction to the Database Used in This Book
  14. Summary
  15. Q&A
  16. Workshop
  17. Part II: Building Your Database
  18. Hour 2. Defining Data Structures
  19. What Is Data?
  20. Basic Data Types
  21. Summary
  22. Q&A
  23. Workshop
  24. Hour 3. Managing Database Objects
  25. What Are Database Objects?
  26. What Is a Schema?
  27. A Table: The Primary Storage for Data
  28. Integrity Constraints
  29. Summary
  30. Q&A
  31. Workshop
  32. Hour 4. The Normalization Process
  33. Normalizing a Database
  34. Summary
  35. Q&A
  36. Workshop
  37. Hour 5. Manipulating Data
  38. Overview of Data Manipulation
  39. Populating Tables with New Data
  40. Updating Existing Data
  41. Deleting Data from Tables
  42. Summary
  43. Q&A
  44. Workshop
  45. Hour 6. Managing Database Transactions
  46. What Is a Transaction?
  47. What Is Transactional Control?
  48. Transactional Control and Database Performance
  49. Summary
  50. Q&A
  51. Workshop
  52. Part III: Getting Effective Results from Queries
  53. Hour 7. Introduction to the Database Query
  54. What Is a Query?
  55. Introduction to the <tt>SELECT</tt> Statement
  56. Examples of Simple Queries
  57. Summary
  58. Q&amp;A
  59. Workshop
  60. Hour 8. Using Operators to Categorize Data
  61. What Is an Operator in SQL?
  62. Comparison Operators
  63. Logical Operators
  64. Conjunctive Operators
  65. Negating Conditions with the <tt>NOT</tt> Operator
  66. Arithmetic Operators
  67. Summary
  68. Q&amp;A
  69. Workshop
  70. Hour 9. Summarizing Data Results from a Query
  71. What Are Aggregate Functions?
  72. Summary
  73. Q&amp;A
  74. Workshop
  75. Hour 10. Sorting and Grouping Data
  76. Why Group Data?
  77. The <tt>GROUP BY</tt> Clause
  78. <tt>GROUP BY</tt> Versus <tt>ORDER BY</tt>
  79. The <tt>HAVING</tt> Clause
  80. Summary
  81. Q&amp;A
  82. Workshop
  83. Hour 11. Restructuring the Appearance of Data
  84. The Concepts of ANSI Character Functions
  85. Various Common Character Functions
  86. Miscellaneous Character Functions
  87. Mathematical Functions
  88. Conversion Functions
  89. The Concept of Combining Character Functions
  90. Summary
  91. Q&amp;A
  92. Workshop
  93. Hour 12. Understanding Dates and Times
  94. How Is a Date Stored?
  95. Date Functions
  96. Date Conversions
  97. Summary
  98. Q&amp;A
  99. Workshop
  100. Part IV: Building Sophisticated Database Queries
  101. Hour 13. Joining Tables in Queries
  102. Selecting Data from Multiple Tables
  103. Types of Joins
  104. Join Considerations
  105. Summary
  106. Q&amp;A
  107. Workshop
  108. Hour 14. Using Subqueries to Define Unknown Data
  109. What Is a Subquery?
  110. Embedding a Subquery Within a Subquery
  111. Summary
  112. Q&A
  113. Workshop
  114. Hour 15. Combining Multiple Queries into One
  115. Single Queries Versus Compound Queries
  116. Why Would I Ever Want to Use a Compound Query?
  117. Compound Query Operators
  118. Using an <tt>ORDER BY</tt> with a Compound Query
  119. Using <tt>GROUP BY</tt> with a Compound Query
  120. Retrieving Accurate Data
  121. Summary
  122. Workshop
  123. Q&amp;A
  124. Part V: SQL Performance Tuning
  125. Hour 16. Using Indexes to Improve Performance
  126. What Is an Index?
  127. How Do Indexes Work?
  128. The <tt>CREATE INDEX</tt> Command
  129. Types of Indexes
  130. When Should Indexes Be Considered?
  131. When Should Indexes Be Avoided?
  132. Summary
  133. Q&amp;A
  134. Workshop
  135. Hour 17. Improving Database Performance
  136. What Is SQL Statement Tuning?
  137. Database Tuning Versus SQL Tuning
  138. Formatting Your SQL Statement
  139. Full Table Scans
  140. Other Performance Considerations
  141. Performance Tools
  142. Summary
  143. Q&amp;A
  144. Workshop
  145. Part VI: Using SQL to Manage Users and Security
  146. Hour 18. Managing Database Users
  147. Users Are the Reason
  148. The Management Process
  149. Tools Utilized by Database Users
  150. Summary
  151. Q&amp;A
  152. Workshop
  153. Hour 19. Managing Database Security
  154. What Is Database Security?
  155. How Does Security Differ from User Management?
  156. What Are Privileges?
  157. Controlling User Access
  158. Controlling Privileges Through Roles
  159. Summary
  160. Q&amp;A
  161. Workshop
  162. Part VII: Summarized Data Structures
  163. Hour 20. Creating and Using Views and Synonyms
  164. What Is a View?
  165. Creating Views
  166. Dropping a View
  167. What Is a Synonym?
  168. Summary
  169. Q&amp;A
  170. Workshop
  171. Hour 21. Working with the System Catalog
  172. What Is the System Catalog?
  173. How Is the System Catalog Created?
  174. What Is Contained in the System Catalog?
  175. Examples of System Catalog Tables by Implementation
  176. Querying the System Catalog
  177. Updating System Catalog Objects
  178. Summary
  179. Q&amp;A
  180. Workshop
  181. Part VIII: Applying SQL Fundamentals in Today's World
  182. Hour 22. Advanced SQL Topics
  183. Advanced Topics
  184. Cursors
  185. Stored Procedures and Functions
  186. Triggers
  187. Dynamic SQL
  188. Call-Level Interface
  189. Using SQL to Generate SQL
  190. Direct Versus Embedded SQL
  191. Summary
  192. Q&amp;A
  193. Workshop
  194. Hour 23. Extending SQL to the Enterprise, the Internet, and the Intranet
  195. SQL and the Enterprise
  196. Accessing a Remote Database
  197. Accessing a Remote Database Through a Web Interface
  198. SQL and the Internet
  199. SQL and the Intranet
  200. Summary
  201. Q&amp;A
  202. Workshop
  203. Hour 24. Extensions to Standard SQL
  204. Various Implementations
  205. Examples of Extensions from Some Implementations
  206. Interactive SQL Statements
  207. Summary
  208. Q&amp;A
  209. Workshop
  210. Part IX: Appendixes
  211. Appendix A. Common SQL Commands
  212. SQL Statements
  213. SQL Clauses
  214. Appendix B. Using MySQL for Exercises
  215. Windows Installation Instructions
  216. Linux Installation Instructions
  217. Appendix C. Answers to Quizzes and Exercises
  218. Hour 1, "Welcome to the World of SQL"
  219. Hour 2, "Defining Data Structures"
  220. Hour 3, "Managing Database Objects"
  221. Hour 4, "The Normalization Process"
  222. Hour 5, "Manipulating Data"
  223. Hour 6, "Managing Database Transactions"
  224. Hour 7, "Introduction to the Database Query"
  225. Hour 8, "Using Operators to Categorize Data"
  226. Hour 9, "Summarizing Data Results from a Query"
  227. Hour 10, "Sorting and Grouping Data"
  228. Hour 11, "Restructuring the Appearance of Data"
  229. Hour 12, "Understanding Dates and Time"
  230. Hour 13, "Joining Tables in Queries"
  231. Hour 14, "Using Subqueries to Define Unknown Data"
  232. Hour 15, "Combining Multiple Queries into One"
  233. Hour 16, "Using Indexes to Improve Performance"
  234. Hour 17, "Improving Database Performance"
  235. Hour 18, "Managing Database Users"
  236. Hour 19, "Managing Database Security"
  237. Hour 20, "Creating and Using Views and Synonyms"
  238. Hour 21, "Working with the System Catalog"
  239. Hour 22, "Advanced SQL Topics"
  240. Hour 23, "Extending SQL to the Enterprise, the Internet, and the Intranet"
  241. Hour 24, "Extensions to Standard SQL"
  242. Appendix D. <tt>CREATE TABLE</tt> Statements for Book Examples
  243. <tt>EMPLOYEE_TBL</tt>
  244. <tt>EMPLOYEE_PAY_TBL</tt>
  245. <tt>CUSTOMER_TBL</tt>
  246. <tt>ORDERS_TBL</tt>
  247. <tt>PRODUCTS_TBL</tt>
  248. Appendix E. <tt>INSERT</tt> Statements for Data in Book Examples
  249. <tt>INSERT</tt> Statements
  250. Appendix F. Glossary
  251. Appendix G. Bonus Exercises
Recommended Book

Populating Tables with New Data

newterm_icon.gif

Populating a table with data is simply the process of entering new data into a table, whether through a manual process using individual commands or through batch processes using programs or other related software. Manual population of data refers to data entry via a keyboard. Automated population normally deals with obtaining data from an external data source (such as another database) and loading the obtained data into the database.

Many factors can affect what data and how much data can be put into a table when populating tables with data. Some major factors include existing table constraints, the physical table size, column data types, the length of columns, and other integrity constraints, such as primary and foreign keys. The following sections help you learn the basics of inserting new data into a table, in addition to offering some Dos and Don'ts.

Inserting Data into a Table

Use the INSERT statement to insert new data into a table. There are a few options with the INSERT statement; look at the following basic syntax to begin:

   syntax_icon.gif
insert into table_name
VALUES ('value1', 'value2', [ NULL ] );

Using this INSERT statement syntax, you must include every column in the specified table in the VALUES list. Notice that each value in this list is separated by a comma. The values inserted into the table must be enclosed by quotation marks for character and date/time data types. Quotation marks are not required for numeric data types or NULL values using the NULL keyword. A value should be present for each column in the table.

In the following example, you insert a new record into the PRODUCTS_TBL table.

Table structure:

products_tbl 

COLUMN Name                     Null?    DATA Type
------------------------------ -------- -------------
PROD_ID                         NOT NULL VARCHAR2(10)
PROD_DESC                       NOT NULL VARCHAR2(25)
COST                            NOT NULL NUMBER(6,2)

Sample INSERT statement:

   input_icon.gif

   INSERT INTO PRODUCTS_TBL

   VALUES ('7725','LEATHER GLOVES',24.99);
   output_icon.gif
1 row created.

In this example three values were inserted into a table with three columns. The inserted values are in the same order as the columns listed in the table. The first two values are inserted using quotation marks because the data types of the corresponding columns are of character type. The third value's associated column, COST, is a numeric data type and does not require quotation marks, although they can be used.

Inserting Data into Limited Columns of a Table

There is a way you can insert data into specified columns. For instance, suppose you want to insert all values for an employee except a pager number. You must, in this case, specify a column list as well as a VALUES list in your INSERT statement.

   input_icon.gif

   INSERT INTO EMPLOYEE_TBL

   (EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP, PHONE)

   VALUES

   ('123456789', 'SMITH', 'JOHN', 'JAY', '12 BEACON CT',

   'INDIANAPOLIS', 'IN', '46222', '3172996868');
   output_icon.gif1 row created.

The syntax for inserting values into a limited number of columns in a table is as follows:

   syntax_icon.gif
INSERT INTO TABLE_NAME ('COLUMN1', 'COLUMN2')
VALUES ('VALUE1', 'VALUE2');

You use ORDERS_TBL and insert values into only specified columns in the following example.

Table structure:

ORDERS_TBL 

COLUMN NAME                     Null?    DATA TYPE
------------------------------ --------- ------------
ORD_NUM                         NOT NULL VARCHAR2(10)
CUST_ID                         NOT NULL VARCHAR2(10)
PROD_ID                         NOT NULL VARCHAR2(10)
QTY                             NOT NULL NUMBER(4)
ORD_DATE                                 DATE

Sample INSERT statement:

   input_icon.gif

   insert into orders_tbl (ord_num,cust_id,prod_id,qty)

   values ('23A16','109','7725',2);
   output_icon.gif
1 row created.

You have specified a column list enclosed by parentheses after the table name in the INSERT statement. You have listed all columns into which you want to insert data. ORD_DATE is the only excluded column. You can see, if you look at the table definition, that ORD_DATE does not require data for every record in the table. You know that ORD_DATE does not require data because NOT NULL is not specified in the table definition. NOT NULL tells us that NULL values are not allowed in the column. Furthermore, the list of values must appear in the same order as the column list.

Inserting Data from Another Table

You can insert data into a table based on the results of a query from another table using a combination of the INSERT statement and the SELECT statement. Briefly, a query is an inquiry to the database that either expects or not expects data to be returned. See Hour 7, "Introduction to the Database Query," for more information on queries. A query is a question that the user asks the database, and the data returned is the answer. In the case of combining the INSERT statement with the SELECT statement, you are able to insert the data retrieved from a query into a table.

The syntax for inserting data from another table is

   syntax_icon.gif
insert into table_name [('column1', 'column2')]
select [*|('column1', 'column2')]
from table_name
[where condition(s)];

You see three new keywords in this syntax, which are covered here briefly. These keywords are SELECT, FROM, and WHERE. SELECT is the main command used to initiate a query in SQL. FROM is a clause in the query that specifies the names of tables in which the target data should be found. The WHERE clause, also part of the query, is used to place conditions on the query itself. An example condition may state: WHERE NAME = 'SMITH'. These three keywords are covered extensively during Hour 7 and Hour 8, "Using Operators to Categorize Data."

newterm_icon.gif

A condition is a way of placing criteria on data affected by a SQL statement.

The following example uses a simple query to view all data in the PRODUCTS_TBL table. SELECT * tells the database server that you want information on all columns of the table. Because there is not a WHERE clause, you will see all records in the table as well.

   input_icon.gif

   select * from products_tbl;
   output_icon.gif
PROD_ID    PROD_DESC                       COST
---------- ------------------------------ -----
11235      WITCHES COSTUME                29.99
222        PLASTIC PUMPKIN 18 INCH         7.75
13         FALSE PARAFFIN TEETH            1.1
90         LIGHTED LANTERNS               14.5
15         ASSORTED COSTUMES              10
9          CANDY CORN                      1.35
6          PUMPKIN CANDY                   1.45
87         PLASTIC SPIDERS                 1.05
119        ASSORTED MASKS                  4.95
1234       KEY CHAIN                       5.95
2345       OAK BOOKSHELF                  59.99

11 rows selected.

Now, insert values into the PRODUCTS_TMP table based on the preceding query. You can see that 11 rows are created in the temporary table.

   input_icon.gif

   INSERT INTO PRODUCTS_TMP

   SELECT * FROM PRODUCTS_TBL;
   output_icon.gif
11 rows created.

The following query shows all data in the PRODUCTS_TMP table that you just inserted:

   input_icon.gif

   SELECT * FROM PRODUCTS_TMP;
   output_icon.gif
PROD_ID    PROD_DESC                       COST
---------- ------------------------------ -----
11235      WITCHES COSTUME                29.99
222        PLASTIC PUMPKIN 18 INCH         7.75
13         FALSE PARAFFIN TEETH            1.1
90         LIGHTED LANTERNS               14.5
15         ASSORTED COSTUMES              10
9          CANDY CORN                      1.35
6          PUMPKIN CANDY                   1.45
87         PLASTIC SPIDERS                 1.05
119        ASSORTED MASKS                  4.95
1234       KEY CHAIN                       5.95
2345       OAK BOOKSHELF                  59.99

11 rows selected.

Inserting NULL Values

Inserting a NULL value into a column of a table is a simple matter. You might want to insert a NULL value into a column if the value of the column in question is unknown. For instance, not every person carries a pager, so it would be inaccurate to enter an erroneous pager number—not to mention, you would not be budgeting space. A NULL value can be inserted into a column of a table using the keyword NULL.

The syntax for inserting a NULL value follows:

   syntax_icon.gif
insert into schema.table_name values
('column1', NULL, 'column3');

The NULL keyword should be used in the proper sequence of the associated column that exists in the table. That column will not have data in it for that row if you enter NULL. In the syntax, a NULL value is being entered in the place of COLUMN2.

Study the two following examples:

   mysql_icon.gif
   input_icon.gif

   INSERT INTO ORDERS_TBL (ORD_NUM,CUST_ID,PROD_ID,QTY,ORD_DATE)

   VALUES ('23A16','109','7725',2,NULL);
   output_icon.gif
1 row created.

In the first example, all columns in which to insert values are listed, which also happen to be every column in the ORDERS_TBL table. You insert a NULL value for the ORD_DATE column, meaning that you either do not know the order date, or there is no order date at this time.

   input_icon.gif

   INSERT INTO ORDERS_TBL

   VALUES ('23A16','109','7725',2, '');
   output_icon.gif
1 row created.

There are two differences from the first statement in the second example, but the results are the same. First, there is not a column list. Remember that a column list is not required if you are inserting data into all columns of a table. Second, instead of inserting the value NULL into the ORD_DATE column, you insert '' (two single quotation marks together), which also symbolizes a NULL value (because there is nothing between them).

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.