Home > Articles

From the book

Knuth likes to include in those books [The Art of Computer Programming] as much recreational material as he can cram in.
— MARTIN GARDNER, Undiluted Hocus-Pocus (2013)

The second half of this book is devoted to Section 7.2.2.2, "Satisfiability," which addresses one of the most fundamental problems in all of computer science: Given a Boolean function, can its variables be set to at least one pattern of 0s and 1s that will make the function true? This problem arises so often, people have given it a nickname, 'SAT'.

Satisfiability might seem like an abstract exercise in understanding formal systems, but the truth is far different: Revolutionary methods for solving SAT problems emerged at the beginning of the twenty-first century, and they've led to game-changing applications in industry. These so-called "SAT solvers" can now routinely find solutions to practical problems that involve millions of variables and were thought until very recently to be hopelessly difficult.

Satisfiability is important chiefly because Boolean algebra is so versatile. Almost any problem can be formulated in terms of basic logical operations, and the formulation is particularly simple in a great many cases. Section 7.2.2.2 therefore begins with ten typical examples of widely different applications, and closes with detailed empirical results for a hundred different benchmarks. The great variety of these problems—all of which are special cases of SAT—is illustrated on pages 300 and 301 (which are my favorite pages in this book).

The story of satisfiability is the tale of a triumph of software engineering, blended with rich doses of beautiful mathematics. Section 7.2.2.2 explains how such a miracle occurred, by presenting complete details of seven SAT solvers, ranging from the small-footprint methods of Algorithms A and B to the industrial strength, state-of-the-art methods of Algorithms W, L, and C. (Well I have to hedge a little: New techniques are continually being discovered; hence SAT technology is ever-growing and the story is ongoing. But I do think that Algorithms W, L, and C compare reasonably well with the best algorithms of their class that were known in 2010. They're no longer at the cutting edge, but they still are amazingly good.)

Wow—Sections 7.2.2.1 and 7.2.2.2 have turned out to be the longest sections, by far, in The Art of Computer Programming—especially Section 7.2.2.2. The SAT problem is evidently a killer app, because it is key to the solution of so many other problems. Consequently I can only hope that my lengthy treatment does not also kill off my faithful readers! As I wrote this material, one topic always seemed to flow naturally into another, so there was no neat way to break either section up into separate subsections. (And anyway the format of TAOCP doesn't allow for a Section 7.2.2.1.3 or a Section 7.2.2.2.6.)

I've tried to ameliorate the reader's navigation problem by adding subheadings at the top of each right-hand page. Furthermore, as always, the exercises appear in an order that roughly parallels the order in which corresponding topics are taken up in the text. Numerous cross-references are provided between text, exercises, and illustrations, so that you have a fairly good chance of keeping in sync. I've also tried to make the index as comprehensive as possible.

Look, for example, at a "random" page—say page 264, which is part of the subsection about Monte Carlo algorithms. On that page you'll see that exercises 302, 303, 299, and 306 are mentioned. So you can guess that the main exercises about Monte Carlo algorithms are numbered in the early 300s. (Indeed, exercise 306 deals with the important special case of "Las Vegas algorithms"; and the next exercises explore a fascinating concept called "reluctant doubling.") This entire book is full of surprises and tie-ins to other aspects of computer science.

As in previous volumes, sections and subsections of the text are occasionally preceded by an asterisk (∗), meaning that the topics discussed there are "advanced" and skippable on a first reading. You might think that a 700-page book has probably been padded with peripheral material. But I constantly had to "cut, cut, cut" while writing it, because a great deal more is known! I found that new and potentially interesting-yet-unexplored topics kept popping up, more than enough to fill a lifetime; yet I knew that I must move on. So I hope that I've selected for treatment here a significant fraction of the concepts that will be the most important as time passes.

Every week I've been coming across fascinating new things that simply cry out to be part of The Art.
— DONALD E. KNUTH (2008)

Most of this book is self-contained, although there are frequent tie-ins with the topics discussed in previous volumes. Low-level details of machine language programming have already been covered extensively; so the algorithms in the present book are usually specified only at an abstract level, independent of any machine. However, some aspects of combinatorial programming are heavily dependent on low-level details that didn't arise before; in such cases, all examples in this book are based on the MMIX computer, which supersedes the MIX machine that was defined in early editions of Volume 1. Details about MMIX appear in a paperback supplement to that volume called The Art of Computer Programming, Volume 1, Fascicle 1, containing Sections 1.3.1´, 1.3.2´, etc.; they're also available on the Internet, together with downloadable assemblers and simulators.

Another downloadable resource, a collection of programs and data called The Stanford GraphBase, is cited extensively in the examples of this book. Readers are encouraged to play with it, in order to learn about combinatorial algorithms in what I think will be the most efficient and most enjoyable way.

I wrote nearly a thousand computer programs while preparing this material, because I find that I don't understand things unless I try to program them. Most of those programs were quite short, of course; but several of them are rather substantial, and possibly of interest to others. Therefore I've made a selection available by listing some of them on the following webpage: http://www-cs-faculty.stanford.edu/~knuth/programs.html

In particular you can download the programs DLX1, DLX2, DLX3, DLX5, DLX6, and DLX-PRE, which are the experimental versions of Algorithms X, C, M, C$, Z, and P, respectively, that were my constant companions while writing Section 7.2.2.1. Similarly, SAT0, SAT0W, SAT8, SAT9, SAT10, SAT11, SAT11K, SAT13 are the equivalents of Algorithms A, B, W, S, D, L, L􀀀, C, respectively, in Section 7.2.2.2. Such programs will be useful for solving many of the exercises, if you don't have access to other XCC solvers or SAT solvers. You can also download SATexamples.tgz from that page; it's a collection of programs that generate data for all 100 of the benchmark examples discussed in the text, and many more.

Several exercises involve the lists of English words that I've used in preparing examples. You'll need the data from http://www-cs-faculty.stanford.edu/~knuth/wordlists.tgz if you have the courage to work the exercises that use such lists.

Special Note: During the years that I've been preparing Volume 4, I've often run across basic techniques of probability theory that I would have put into Section 1.2 of Volume 1 if I'd been clairvoyant enough to anticipate them in the 1960s. Finally I realized that I ought to collect most of them together in one place, because the story of those developments is too interesting to be broken up into little pieces scattered here and there.

Therefore this book begins with a special tutorial and review of probability theory, in an unnumbered section entitled "Mathematical Preliminaries Redux." References to its equations and exercises use the abbreviation 'MPR'. (Think of the word "improvement.")

Incidentally, just after the special MPR section, Section 7.2.2 begins intentionally on a left-hand page; and its illustrations are numbered beginning with Fig. 68. The reason is that Section 7.2.1 ended in Volume 4A on a right-hand page, and its final illustration was Fig. 67. My editor has decided to treat Chapter 7 as a single unit, even though it is being split into several physical volumes.

Special thanks are due to Nikolai Beluhov, Armin Biere, Niklas E´en, Marijn Heule, Holger Hoos, Wei-Hwa Huang, Svante Janson, Ernst Schulte-Geers, George Sicherman, Filip Stappers, and Udo Wermuth, for their detailed comments on my early attempts at exposition, as well as to dozens and dozens of other correspondents who have contributed crucial corrections. My editor at Addison–Wesley, Mark Taub, has expertly shepherded this series of books into the 21st century; and Julie Nahil, as senior content producer, has meticulously ensured that the highest publication standards have continued to be maintained. Thanks also to Tomas Rokicki for keeping my Dell workstation in shipshape order, as well as to Stanford's InfoLab for providing extra computer power when that machine had reached its limits.

I happily offer a "finder's fee" of $2.56 for each error in this book when it is first reported to me, whether that error be typographical, technical, or historical. The same reward holds for items that I forgot to put in the index. And valuable suggestions for improvements to the text are worth 32/c each. (Furthermore, if you find a better solution to an exercise, I'll actually do my best to give you immortal glory, by publishing your name in subsequent printings:−)

Happy reading!

Stanford, California
D. E. K.
June 2022

(Complete preface in the book includes a note on references and a note on notations.)

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020