Home > Articles

  • Print
  • + Share This
This chapter is from the book

This chapter is from the book

Item 29: Favor generic types

It is generally not too difficult to parameterize your declarations and make use of the generic types and methods provided by the JDK. Writing your own generic types is a bit more difficult, but it’s worth the effort to learn how.

Consider the simple (toy) stack implementation from Item 7:

// Object-based collection - a prime candidate for generics
public class Stack {
    private Object[] elements;
    private int size = 0;
    private static final int DEFAULT_INITIAL_CAPACITY = 16;

    public Stack() {
        elements = new Object[DEFAULT_INITIAL_CAPACITY];
    }

    public void push(Object e) {
        ensureCapacity();
        elements[size++] = e;
    }

    public Object pop() {
        if (size == 0)
            throw new EmptyStackException();
        Object result = elements[--size];
        elements[size] = null; // Eliminate obsolete reference
        return result;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    private void ensureCapacity() {
        if (elements.length == size)
            elements = Arrays.copyOf(elements, 2 * size + 1);
    }
}

This class should have been parameterized to begin with, but since it wasn’t, we can generify it after the fact. In other words, we can parameterize it without harming clients of the original non-parameterized version. As it stands, the client has to cast objects that are popped off the stack, and those casts might fail at runtime. The first step in generifying a class is to add one or more type parameters to its declaration. In this case there is one type parameter, representing the element type of the stack, and the conventional name for this type parameter is E (Item 68).

The next step is to replace all the uses of the type Object with the appropriate type parameter and then try to compile the resulting program:

// Initial attempt to generify Stack - won't compile!
public class Stack<E> {
    private E[] elements;
    private int size = 0;
    private static final int DEFAULT_INITIAL_CAPACITY = 16;

    public Stack() {
        elements = new E[DEFAULT_INITIAL_CAPACITY];
    }

    public void push(E e) {
        ensureCapacity();
        elements[size++] = e;
    }

    public E pop() {
        if (size == 0)
            throw new EmptyStackException();
        E result = elements[--size];
        elements[size] = null; // Eliminate obsolete reference
        return result;
    }
    ... // no changes in isEmpty or ensureCapacity
}

You’ll generally get at least one error or warning, and this class is no exception. Luckily, this class generates only one error:

Stack.java:8: generic array creation
        elements = new E[DEFAULT_INITIAL_CAPACITY];
                   ^

As explained in Item 28, you can’t create an array of a non-reifiable type, such as E. This problem arises every time you write a generic type that is backed by an array. There are two reasonable ways to solve it. The first solution directly circumvents the prohibition on generic array creation: create an array of Object and cast it to the generic array type. Now in place of an error, the compiler will emit a warning. This usage is legal, but it’s not (in general) typesafe:

Stack.java:8: warning: [unchecked] unchecked cast
found: Object[], required: E[]
        elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
                       ^

The compiler may not be able to prove that your program is typesafe, but you can. You must convince yourself that the unchecked cast will not compromise the type safety of the program. The array in question (elements) is stored in a private field and never returned to the client or passed to any other method. The only elements stored in the array are those passed to the push method, which are of type E, so the unchecked cast can do no harm.

Once you’ve proved that an unchecked cast is safe, suppress the warning in as narrow a scope as possible (Item 27). In this case, the constructor contains only the unchecked array creation, so it’s appropriate to suppress the warning in the entire constructor. With the addition of an annotation to do this, Stack compiles cleanly, and you can use it without explicit casts or fear of a ClassCastException:

// The elements array will contain only E instances from push(E).
// This is sufficient to ensure type safety, but the runtime
// type of the array won't be E[]; it will always be Object[]!
@SuppressWarnings("unchecked")
public Stack() {
    elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
}

The second way to eliminate the generic array creation error in Stack is to change the type of the field elements from E[] to Object[]. If you do this, you’ll get a different error:

Stack.java:19: incompatible types
found: Object, required: E
        E result = elements[--size];
                           ^

You can change this error into a warning by casting the element retrieved from the array to E, but you will get a warning:

Stack.java:19: warning: [unchecked] unchecked cast
found: Object, required: E
        E result = (E) elements[--size];
                               ^

Because E is a non-reifiable type, there’s no way the compiler can check the cast at runtime. Again, you can easily prove to yourself that the unchecked cast is safe, so it’s appropriate to suppress the warning. In line with the advice of Item 27, we suppress the warning only on the assignment that contains the unchecked cast, not on the entire pop method:

// Appropriate suppression of unchecked warning
public E pop() {
    if (size == 0)
        throw new EmptyStackException();

    // push requires elements to be of type E, so cast is correct
    @SuppressWarnings("unchecked") E result =
        (E) elements[--size];

    elements[size] = null; // Eliminate obsolete reference
    return result;
}

Both techniques for eliminating the generic array creation have their adherents. The first is more readable: the array is declared to be of type E[], clearly indicating that it contains only E instances. It is also more concise: in a typical generic class, you read from the array at many points in the code; the first technique requires only a single cast (where the array is created), while the second requires a separate cast each time an array element is read. Thus, the first technique is preferable and more commonly used in practice. It does, however, cause heap pollution (Item 32): the runtime type of the array does not match its compile-time type (unless E happens to be Object). This makes some programmers sufficiently queasy that they opt for the second technique, though the heap pollution is harmless in this situation.

The following program demonstrates the use of our generic Stack class. The program prints its command line arguments in reverse order and converted to uppercase. No explicit cast is necessary to invoke String’s toUpperCase method on the elements popped from the stack, and the automatically generated cast is guaranteed to succeed:

// Little program to exercise our generic Stack
public static void main(String[] args) {
    Stack<String> stack = new Stack<>();
    for (String arg : args)
        stack.push(arg);
    while (!stack.isEmpty())
        System.out.println(stack.pop().toUpperCase());
}

The foregoing example may appear to contradict Item 28, which encourages the use of lists in preference to arrays. It is not always possible or desirable to use lists inside your generic types. Java doesn’t support lists natively, so some generic types, such as ArrayList, must be implemented atop arrays. Other generic types, such as HashMap, are implemented atop arrays for performance.

The great majority of generic types are like our Stack example in that their type parameters have no restrictions: you can create a Stack<Object>, Stack<int[]>, Stack<List<String>>, or Stack of any other object reference type. Note that you can’t create a Stack of a primitive type: trying to create a Stack<int> or Stack<double> will result in a compile-time error. This is a fundamental limitation of Java’s generic type system. You can work around this restriction by using boxed primitive types (Item 61).

There are some generic types that restrict the permissible values of their type parameters. For example, consider java.util.concurrent.DelayQueue, whose declaration looks like this:

class DelayQueue<E extends Delayed> implements BlockingQueue<E>

The type parameter list (<E extends Delayed>) requires that the actual type parameter E be a subtype of java.util.concurrent.Delayed. This allows the DelayQueue implementation and its clients to take advantage of Delayed methods on the elements of a DelayQueue, without the need for explicit casting or the risk of a ClassCastException. The type parameter E is known as a bounded type parameter. Note that the subtype relation is defined so that every type is a subtype of itself [JLS, 4.10], so it is legal to create a DelayQueue<Delayed>.

In summary, generic types are safer and easier to use than types that require casts in client code. When you design new types, make sure that they can be used without such casts. This will often mean making the types generic. If you have any existing types that should be generic but aren’t, generify them. This will make life easier for new users of these types without breaking existing clients (Item 26).

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020