Home > Articles > Information Technology

📄 Contents

  1. Management Reference Guide
  2. Table of Contents
  3. Introduction
  4. Strategic Management
  5. Establishing Goals, Objectives, and Strategies
  6. Aligning IT Goals with Corporate Business Goals
  7. Utilizing Effective Planning Techniques
  8. Developing Worthwhile Mission Statements
  9. Developing Worthwhile Vision Statements
  10. Instituting Practical Corporate Values
  11. Budgeting Considerations in an IT Environment
  12. Introduction to Conducting an Effective SWOT Analysis
  13. IT Governance and Disaster Recovery, Part One
  14. IT Governance and Disaster Recovery, Part Two
  15. Customer Management
  16. Identifying Key External Customers
  17. Identifying Key Internal Customers
  18. Negotiating with Customers and Suppliers—Part 1: An Introduction
  19. Negotiating With Customers and Suppliers—Part 2: Reaching Agreement
  20. Negotiating and Managing Realistic Customer Expectations
  21. Service Management
  22. Identifying Key Services for Business Users
  23. Service-Level Agreements That Really Work
  24. How IT Evolved into a Service Organization
  25. FAQs About Systems Management (SM)
  26. FAQs About Availability (AV)
  27. FAQs About Performance and Tuning (PT)
  28. FAQs About Service Desk (SD)
  29. FAQs About Change Management (CM)
  30. FAQs About Configuration Management (CF)
  31. FAQs About Capacity Planning (CP)
  32. FAQs About Network Management
  33. FAQs About Storage Management (SM)
  34. FAQs About Production Acceptance (PA)
  35. FAQs About Release Management (RM)
  36. FAQs About Disaster Recovery (DR)
  37. FAQs About Business Continuity (BC)
  38. FAQs About Security (SE)
  39. FAQs About Service Level Management (SL)
  40. FAQs About Financial Management (FN)
  41. FAQs About Problem Management (PM)
  42. FAQs About Facilities Management (FM)
  43. Process Management
  44. Developing Robust Processes
  45. Establishing Mutually Beneficial Process Metrics
  46. Change Management—Part 1
  47. Change Management—Part 2
  48. Change Management—Part 3
  49. Audit Reconnaissance: Releasing Resources Through the IT Audit
  50. Problem Management
  51. Problem Management–Part 2: Process Design
  52. Problem Management–Part 3: Process Implementation
  53. Business Continuity Emergency Communications Plan
  54. Capacity Planning – Part One: Why It is Seldom Done Well
  55. Capacity Planning – Part Two: Developing a Capacity Planning Process
  56. Capacity Planning — Part Three: Benefits and Helpful Tips
  57. Capacity Planning – Part Four: Hidden Upgrade Costs and
  58. Improving Business Process Management, Part 1
  59. Improving Business Process Management, Part 2
  60. 20 Major Elements of Facilities Management
  61. Major Physical Exposures Common to a Data Center
  62. Evaluating the Physical Environment
  63. Nightmare Incidents with Disaster Recovery Plans
  64. Developing a Robust Configuration Management Process
  65. Developing a Robust Configuration Management Process – Part Two
  66. Automating a Robust Infrastructure Process
  67. Improving High Availability — Part One: Definitions and Terms
  68. Improving High Availability — Part Two: Definitions and Terms
  69. Improving High Availability — Part Three: The Seven R's of High Availability
  70. Improving High Availability — Part Four: Assessing an Availability Process
  71. Methods for Brainstorming and Prioritizing Requirements
  72. Introduction to Disk Storage Management — Part One
  73. Storage Management—Part Two: Performance
  74. Storage Management—Part Three: Reliability
  75. Storage Management—Part Four: Recoverability
  76. Twelve Traits of World-Class Infrastructures — Part One
  77. Twelve Traits of World-Class Infrastructures — Part Two
  78. Meeting Today's Cooling Challenges of Data Centers
  79. Strategic Security, Part One: Assessment
  80. Strategic Security, Part Two: Development
  81. Strategic Security, Part Three: Implementation
  82. Strategic Security, Part Four: ITIL Implications
  83. Production Acceptance Part One – Definition and Benefits
  84. Production Acceptance Part Two – Initial Steps
  85. Production Acceptance Part Three – Middle Steps
  86. Production Acceptance Part Four – Ongoing Steps
  87. Case Study: Planning a Service Desk Part One – Objectives
  88. Case Study: Planning a Service Desk Part Two – SWOT
  89. Case Study: Implementing an ITIL Service Desk – Part One
  90. Case Study: Implementing a Service Desk Part Two – Tool Selection
  91. Ethics, Scandals and Legislation
  92. Outsourcing in Response to Legislation
  93. Supplier Management
  94. Identifying Key External Suppliers
  95. Identifying Key Internal Suppliers
  96. Integrating the Four Key Elements of Good Customer Service
  97. Enhancing the Customer/Supplier Matrix
  98. Voice Over IP, Part One — What VoIP Is, and Is Not
  99. Voice Over IP, Part Two — Benefits, Cost Savings and Features of VoIP
  100. Application Management
  101. Production Acceptance
  102. Distinguishing New Applications from New Versions of Existing Applications
  103. Assessing a Production Acceptance Process
  104. Effective Use of a Software Development Life Cycle
  105. The Role of Project Management in SDLC— Part 2
  106. Communication in Project Management – Part One: Barriers to Effective Communication
  107. Communication in Project Management – Part Two: Examples of Effective Communication
  108. Safeguarding Personal Information in the Workplace: A Case Study
  109. Combating the Year-end Budget Blitz—Part 1: Building a Manageable Schedule
  110. Combating the Year-end Budget Blitz—Part 2: Tracking and Reporting Availability
  111. References
  112. Developing an ITIL Feasibility Analysis
  113. Organization and Personnel Management
  114. Optimizing IT Organizational Structures
  115. Factors That Influence Restructuring Decisions
  116. Alternative Locations for the Help Desk
  117. Alternative Locations for Database Administration
  118. Alternative Locations for Network Operations
  119. Alternative Locations for Web Design
  120. Alternative Locations for Risk Management
  121. Alternative Locations for Systems Management
  122. Practical Tips To Retaining Key Personnel
  123. Benefits and Drawbacks of Using IT Consultants and Contractors
  124. Deciding Between the Use of Contractors versus Consultants
  125. Managing Employee Skill Sets and Skill Levels
  126. Assessing Skill Levels of Current Onboard Staff
  127. Recruiting Infrastructure Staff from the Outside
  128. Selecting the Most Qualified Candidate
  129. 7 Tips for Managing the Use of Mobile Devices
  130. Useful Websites for IT Managers
  131. References
  132. Automating Robust Processes
  133. Evaluating Process Documentation — Part One: Quality and Value
  134. Evaluating Process Documentation — Part Two: Benefits and Use of a Quality-Value Matrix
  135. When Should You Integrate or Segregate Service Desks?
  136. Five Instructive Ideas for Interviewing
  137. Eight Surefire Tips to Use When Being Interviewed
  138. 12 Helpful Hints To Make Meetings More Productive
  139. Eight Uncommon Tips To Improve Your Writing
  140. Ten Helpful Tips To Improve Fire Drills
  141. Sorting Out Today’s Various Training Options
  142. Business Ethics and Corporate Scandals – Part 1
  143. Business Ethics and Corporate Scandals – Part 2
  144. 12 Tips for More Effective Emails
  145. Management Communication: Back to the Basics, Part One
  146. Management Communication: Back to the Basics, Part Two
  147. Management Communication: Back to the Basics, Part Three
  148. Asset Management
  149. Managing Hardware Inventories
  150. Introduction to Hardware Inventories
  151. Processes To Manage Hardware Inventories
  152. Use of a Hardware Inventory Database
  153. References
  154. Managing Software Inventories
  155. Business Continuity Management
  156. Ten Lessons Learned from Real-Life Disasters
  157. Ten Lessons Learned From Real-Life Disasters, Part 2
  158. Differences Between Disaster Recovery and Business Continuity , Part 1
  159. Differences Between Disaster Recovery and Business Continuity , Part 2
  160. 15 Common Terms and Definitions of Business Continuity
  161. The Federal Government’s Role in Disaster Recovery
  162. The 12 Common Mistakes That Cause BIAs To Fail—Part 1
  163. The 12 Common Mistakes That Cause BIAs To Fail—Part 2
  164. The 12 Common Mistakes That Cause BIAs To Fail—Part 3
  165. The 12 Common Mistakes That Cause BIAs To Fail—Part 4
  166. Conducting an Effective Table Top Exercise (TTE) — Part 1
  167. Conducting an Effective Table Top Exercise (TTE) — Part 2
  168. Conducting an Effective Table Top Exercise (TTE) — Part 3
  169. Conducting an Effective Table Top Exercise (TTE) — Part 4
  170. The 13 Cardinal Steps for Implementing a Business Continuity Program — Part One
  171. The 13 Cardinal Steps for Implementing a Business Continuity Program — Part Two
  172. The 13 Cardinal Steps for Implementing a Business Continuity Program — Part Three
  173. The 13 Cardinal Steps for Implementing a Business Continuity Program — Part Four
  174. The Information Technology Infrastructure Library (ITIL)
  175. The Origins of ITIL
  176. The Foundation of ITIL: Service Management
  177. Five Reasons for Revising ITIL
  178. The Relationship of Service Delivery and Service Support to All of ITIL
  179. Ten Common Myths About Implementing ITIL, Part One
  180. Ten Common Myths About Implementing ITIL, Part Two
  181. Characteristics of ITIL Version 3
  182. Ten Benefits of itSMF and its IIL Pocket Guide
  183. Translating the Goals of the ITIL Service Delivery Processes
  184. Translating the Goals of the ITIL Service Support Processes
  185. Elements of ITIL Least Understood, Part One: Service Delivery Processes
  186. Case Study: Recovery Reactions to a Renegade Rodent
  187. Elements of ITIL Least Understood, Part Two: Service Support
  188. Case Studies
  189. Case Study — Preparing for Hurricane Charley
  190. Case Study — The Linux Decision
  191. Case Study — Production Acceptance at an Aerospace Firm
  192. Case Study — Production Acceptance at a Defense Contractor
  193. Case Study — Evaluating Mainframe Processes
  194. Case Study — Evaluating Recovery Sites, Part One: Quantitative Comparisons/Natural Disasters
  195. Case Study — Evaluating Recovery Sites, Part Two: Quantitative Comparisons/Man-made Disasters
  196. Case Study — Evaluating Recovery Sites, Part Three: Qualitative Comparisons
  197. Case Study — Evaluating Recovery Sites, Part Four: Take-Aways
  198. Disaster Recovery Test Case Study Part One: Planning
  199. Disaster Recovery Test Case Study Part Two: Planning and Walk-Through
  200. Disaster Recovery Test Case Study Part Three: Execution
  201. Disaster Recovery Test Case Study Part Four: Follow-Up
  202. Assessing the Robustness of a Vendor’s Data Center, Part One: Qualitative Measures
  203. Assessing the Robustness of a Vendor’s Data Center, Part Two: Quantitative Measures
  204. Case Study: Lessons Learned from a World-Wide Disaster Recovery Exercise, Part One: What Did the Team Do Well
  205. (d) Case Study: Lessons Learned from a World-Wide Disaster Recovery Exercise, Part Two

If we were to ask typical infrastructure managers to name the major elements of facilities management, they would likely mention common items such as air conditioning, electrical power, and perhaps fire suppression. Some may also mention smoke detection, uninterruptible power supplies (UPS), and controlled physical access. Few of them would likely include less common entities such as electrical grounding, vault protection, and static electricity. This article describes both the well-known and the not so well-known physical entities of a typical modern data center. Figure 1 lists a comprehensive list of the major elements of facilities management.

    1. Air conditioning
    2. Humidity
    3. Electrical power
    4. Static electricity
    5. Electrical grounding
    6. Uninterruptible power supply (UPS)
    7. Backup UPS batteries
    8. Backup generator
    9. Water detection
    10. Smoke detection
    11. Fire suppression
    12. Gas Leaks
    13. Facility monitoring with alarms
    14. Earthquake safeguards
    15. Safety training
    16. Supplier management
    17. Controlled physical access
    18. Protected vaults
    19. Physical location
    20. Classified environment

Figure 1 Major Elements of Facilities Management

Temperature and humidity levels should be monitored constantly, either electronically or with recording charts, and reviewed once each shift to detect any unusual trends. Many shops today find it more cost-efficient to use automatic remote monitoring with third party vendors for these measurements during off-hours. In these cases, checks should be made to ensure that monitoring is occurring satisfactorily, and that the vendor knows who to call, how to escalate, and which alternate numbers to use. I know of a few recent instances in which wrong numbers were used, and in one case, where the call was made only after two hours had elapsed from the time a high temperature alarm and alerts were activated. Fortunately, no permanent damage to equipment was sustained, although the delayed response resulted in a four hour outage to critical online systems.

Temperature hot spots are becoming more of a concern these days for data center directors and facilities managers. Equipment such as blade servers compact disk arrays tend to concentrate the production of heat into smaller confined areas of a data center. Most high capacity air conditioning systems for data centers distribute the cooling in a uniform manner. Special venting, the re-routing of ducts and the positioning of fans can direct the cooled air to where it is needed most.

Electrical power includes continuous supply at the proper voltage, current, and phasing as well as the conditioning of the power. Conditioning purifies the quality of the electricity for greater reliability. It involves filtering out stray magnetic fields that can induce unwanted inductance, doing the same to stray electrical fields that can generate unwanted capacitance, and providing surge suppression to prevent voltage spikes. Static electricity, which affects the operation of sensitive equipment, can build up in conductive materials such as carpeting, clothing, draperies, and other non-insulating fibers. Antistatic devices can be installed to minimize this condition. Proper grounding is required to eliminate outages and potential human injury due to short circuits. Another element sometimes overlooked is whether batteries that support an uninterruptible power supply (UPS) are kept fully charged.

Water and smoke detection are common environmental guards in today's data centers as are fire suppression mechanisms. Facility monitoring systems and their alarms should be visible and audible enough to be seen and heard from almost any area in the computer room, even when noisy equipment such as printers are running at their loudest. Equipment should be anchored and secured to withstand moderate earthquakes. Large mainframes decades ago used to be safely anchored, in part, by the massive plumbing for water-cooled processors and by the huge bus and tag cables that interconnected the various units. In today's era of fiber-optic cables, air-cooled processors, and smaller boxes designed for non-raised flooring, this built-in anchoring of equipment is no longer as prevalent.

Emergency preparedness for earthquakes and other natural or man-made disasters should be a basic part of general safety training for all personnel working inside a data center. They should be knowledgeable about emergency powering off, evacuation procedures, first-aid assistance, and emergency telephone numbers. Providing training to data center suppliers in these matters is also recommended.

Most data centers have acceptable methods of controlling physical access into their machine rooms, but not always for vaults or rooms that store sensitive documents, check stock, or tapes. The physical location of a data center can also be problematic. A basement level may be safe and secure from the outside, but it might also be exposed to water leaks and evacuation obstacles, particularly in older buildings. Locating a data center along outside walls of a building can sometimes contribute to sabotage from the outside.

Classified environments almost always require data centers to be located as far away from outside walls as possible to safeguard them from outside physical forces such as bombs or projectiles, as well as from electronic sensing devices.

In fairness to infrastructure managers and operations personnel, several of these elements may be under the management of a company's facilities department. In these cases, no one in IT would have direct responsibility. But even in this instance, infrastructure personnel and operations managers would normally want and need to know who to go to in the facilities department for specific types of environmental issues.

References

Schiesser, Rich, IT Systems Management, Prentice Hall, 2002

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.