Home > Articles > Programming > Windows Programming

  • Print
  • + Share This
From the book 1.5 Using Code Generation

1.5 Using Code Generation

In my discussion so far, I process the DSL to populate the Semantic Model (159) and then execute the Semantic Model to provide the behavior that I want from the controller. This approach is what’s known in language circles as interpretation. When we interpret some text, we parse it and immediately produce the result that we want from the program. (Interpret is a tricky word in software circles, since it carries all sorts of connotations; however, I’ll use it strictly to mean this form of immediate execution.)

In the language world, the alternative to interpretation is compilation. With compilation, we parse some program text and produce an intermediate output, which is then separately processed to provide the behavior we desire. In the context of DSLs, the compilation approach is usually referred to as code generation.

It’s a bit hard to express this distinction using the state machine example, so let’s use another little example. Imagine I have some kind of eligibility rules for people, perhaps to qualify for insurance. One rule might be age between 21 and 40. This rule can be a DSL which we can process in order to test the eligibility of some candidate like me.

With interpretation, the eligibility processor parses the rules and loads up the semantic model while it executes, perhaps at startup. When it tests a candidate, it runs the semantic model against the candidate to get a result.

In the case of compilation, the parser would load the semantic model as part of the build process for the eligibility processor. During the build, the DSL processor would produce some code that would be compiled, packaged up, and incorporated into the eligibility processor, perhaps as some kind of shared library. This intermediate code would then be run to evaluate a candidate.

Our example state machine used interpretation: We parsed the configuration code at runtime and populated the semantic model. But we could generate some code instead, which would avoid having the parser and model code in the toaster.

Figure 1.5 An interpreter parses the text and produces its result in a single process.

Figure 1.6 A compiler parses the text and produces some intermediate code which is then packaged into another process for execution.

Code generation is often awkward in that it often pushes you to do an extra compilation step. To build your program, you have to first compile the state framework and the parser, then run the parser to generate the source code for Miss Grant’s controller, then compile that generated code. This makes your build process much more complicated.

However, an advantage of code generation is that there’s no particular reason to generate code in the same programming language that you used for the parser. In this case, you can avoid the second compilation step by generating code for a dynamic language such as Javascript or JRuby.

Code generation is also useful when you want to use DSLs with a language platform that doesn’t have the tools for DSL support. If we had to run our security system on some older toasters that only understood compiled C, we could do this by having a code generator that uses a populated Semantic Model as input and produces C code that can then be compiled to run on the older toaster. I’ve come across recent projects that generate code for MathCAD, SQL, and COBOL.

Many writings on DSLs focus on code generation, even to the point of making code generation the primary aim of the exercise. As a result, you can find articles and books extolling the virtues of code generation. In my view, however, code generation is merely an implementation mechanism, one that isn’t actually needed in most cases. Certainly there are plenty of times when you must use code generation, but there are even plenty of times where you don’t need it.

Using code generation is one case where many people don’t use a Semantic Model, but parse the input text and directly produce the generated code. Although this is a common way of working with code-generating DSLs, it isn’t one I recommend for any but the very simplest cases. Using a Semantic Model allows you to separate the parsing, the execution semantics, and the code generation. This separation makes the whole exercise much simpler. It also allows you to change your mind; for example, you can change your DSL from an internal to an external DSL without altering the code generation routines. Similarly, you can easily generate multiple outputs without complicating the parser. You can also use both an interpreted model and code generation off the same Semantic Model.

As a result, for most of my book, I’m going to assume that a Semantic Model is present and is the center of the DSL effort.

I usually see two styles of using code generation. One is to generate “first-pass” code, which is expected to be used as a template but is then modified by hand. The second is to ensure that generated code is never touched by hand, perhaps except for some tracing during debugging. I almost always prefer the latter because this allows code to be regenerated freely. This is particularly true with DSLs, since we want the DSL to be the primary representation of the logic that the DSL defines. This means we must be able to change the DSL easily whenever we want to change behavior. Consequently, we must ensure that any generated code isn’t hand-edited, although it can call, and be called by, handwritten code.

  • + Share This
  • 🔖 Save To Your Account

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020