Home > Articles > Hardware

This chapter is from the book

1.2 The Basic Verification Principle

There are two types of design error. The first type of error exists not in the specifications but in the implementations, and it is introduced during the implementation process. An example is human error in interpreting design functionality. To prevent this type of error, we can use a software program to synthesize an implementation directly from the specifications. Although this approach eliminates most human errors, errors can still result from bugs in the software program, or usage errors of the software program may be encountered. Furthermore, this synthesis approach is rather limited in practice for two reasons. First, many specifications are in the form of casual conversational language, such as English, as opposed to a form of precise mathematical language, such as Verilog or C++. We know that automatic synthesis from a loose language is infeasible. In fact, as of this writing, there is no high-level formal language that specifies both functional and timing requirements. A reason for this is that a high-level functional requirement does not lend itself to timing requirements, which are more intuitive at the implementation level. Therefore, timing requirements such as delay and power, when combined with high-level functional specifications, are so overtly inaccurate that people relegate timing specifications to levels of lower abstraction. Second, even if the specifications are written in a precise mathematical language, few synthesis software programs can produce implementations that meet all requirements. Usually, the software program synthesizes from a set of functional specifications but fails to meet timing requirements.

Another method—the more widely used method—to uncover errors of this type is through redundancy. That is, the same specifications are implemented two or more times using different approaches, and the results of the approaches are compared. In theory, the more times and the more different ways the specifications are implemented, the higher the confidence produced by the verification. In practice, more than two approaches is rarely used, because more errors can be introduced in each alternative verification, and costs and time can be insurmountable.

The design process can be regarded as a path that transforms a set of specifications into an implementation. The basic principle behind verification consists of two steps. During the first step, there is a transformation from specifications to an implementation. Let us call this step verification transformation. During the second step, the result from the verification is compared with the result from the design to detect any errors. This is illustrated in Figure 1.3 (A). Oftentimes, the result from a verification transformation takes place in the head of a verification engineer, and takes the form of the properties deduced from the specifications. For instance, the expected result for a simulation input vector is calculated by a verification engineer based on the specifications and is an alternative implementation.

01fig03.gif

Figure 1.3 The basic principle of design verification. (A) The basic methodology of verification by redundancy. (B) A variant of the basic methodology adapted in model checking. (C) Simulation methodology cast in the form of verification by redundancy.

Obviously, if verification engineers go through the exact same procedures as the design engineers, both the design and verification engineers are likely to arrive at the same conclusions, avoiding and committing the same errors. Therefore, the more different the design and verification paths, the higher confidence the verification produces. One way to achieve high confidence is for verification engineers to transform specifications into an implementation model in a language different from the design language. This language is called verification language, as a counterpart to design language. Examples of verification languages include Vera, C/C++, and e. A possible verification strategy is to use C/C++ for the verification model and Verilog/VHSIC Hardware Description Language (VHDL) for the design model.

During the second step of verification, two forms of implementation are compared. This is achieved by expressing the two forms of implementation in a common intermediate form so that equivalency can be checked efficiently. Sometimes, a comparison mechanism can be sophisticated—for example, comparing two networks with arrival packets that may be out of order. In this case, a common form is to sort the arrival packets in a predefined way. Another example of a comparison mechanism is determining the equivalence between a transistor-level circuit and an RTL implementation. A common intermediate form in this case is a binary decision diagram.

Here we see that the classic simulation-based verification paradigm fits the verification principle. A simulation-based verification paradigm consists of four components: the circuit, test patterns, reference output, and a comparison mechanism. The circuit is simulated on the test patterns and the result is compared with the reference output. The implementation result from the design path is the circuit, and the implementation results from the verification path are the test patterns and the reference output. The reason for considering the test patterns and the reference output as implementation results from the verification path is that, during the process of determining the reference output from the test patterns, the verification engineer transforms the test patterns based on the specifications into the reference output, and this process is an implementation process. Finally, the comparison mechanism samples the simulation results and determines their equality with the reference output. The principle behind simulation-based verification is illustrated in Figure 1.3 (C).

Verification through redundancy is a double-edged sword. On the one hand, it uncovers inconsistencies between the two approaches. On the other hand, it can also introduce incompatible differences between the two approaches and often verification errors. For example, using a C/C++ model to verify against a Verilog design may force the verification engineer to resolve fundamental differences between the two languages that otherwise could be avoided. Because the two languages are different, there are areas where one language models accurately whereas the other cannot. A case in point is modeling timing and parallelism in the C/C++ model, which is deficient. Because design codes are susceptible to errors, verification code is equally prone to errors. Therefore, verification engineers have to debug both design errors as well as verification errors. Thus, if used carelessly, redundancy strategy can end up making engineers debug more errors than those that exist in the design—design errors plus verification errors—resulting in large verification overhead costs.

As discussed earlier, the first type of error is introduced during an implementation process. The second type of error exists in the specifications. It can be unspecified functionality, conflicting requirements, and unrealized features. The only way to detect the type of error is through redundancy, because specification is already at the top of the abstraction hierarchy and thus there is no reference model against which to check. Holding a design review meeting and having a team of engineers go over the design architecture is a form of verification through redundancy at work. Besides checking with redundancy directly, examining the requirements in the application environment in which the design will reside when it has become a product also detects bugs during specification, because the environment dictates how the design should behave and thus serves as a complementary form of design specification. Therefore, verifying the design requirements against the environment is another form of verification through redundancy. Furthermore, some of these types of errors will eventually be uncovered as the design takes a more concrete form. For example, at a later stage of implementation, conflicting requirements will surface as consistencies, and features will emerge as unrealizable given the available technologies and affordable resources.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020