Home > Articles

This chapter is from the book

The size of life

Bacteria need only be big enough to hold their vital enzymes, proteins, and genetic machinery. Evolution has eliminated all extraneous structures. Also, a small, simple architecture allows for rapid reproduction, which aids adaptation. Bacterial metabolism is a model of efficiency because of a large surface-to-volume ratio that smallness creates. No part of a bacterial cell is very far from the surface where nutrients enter and toxic wastes exit. Eukaryotic cells that make up humans, algae, redwoods, and protozoa contain varied organelles each surrounded by a membrane. The surface-to-volume ratio in these cells is one-tenth that of bacteria, so shuttling substances across all those organelle membranes, the cytoplasm, and the outer membrane burns energy. Bacterial structure is less demanding and more efficient. Finally, small size contributes to massive bacterial populations that dwarf the populations of any other biota.

Large multicellular beings that produce small litters with long life spans—think whales, elephants, and humans—take a long time to make new, favorable traits part of their genome. Insects evolve faster and can develop a new trait within a few years. In bacteria, evolution occurs overnight. Often, the progeny contain a new trait that makes them better equipped for survival.

No one knows the number of bacterial species. About 5,000 species have been characterized and another 10,000 have been partially identified. Biodiversity authority Edward O. Wilson has estimated that biology has identified no more than 10 percent of all species and possibly as little as 1 percent. Wilson's reasoning would put the total number of bacterial species at 100,000, probably a tenfold underestimate. Most environmental microbiologists believe that less than one-tenth of 1 percent of all bacteria can currently be grown in laboratories so that they can be identified.

Microbial geneticist J. Craig Venter's studies on microbial diversity have correctly pointed out that the number of species may be less important than their diversity and roles in the Earth's biosphere. Venter concluded from a two-year study of marine microbes that for every 200 miles of ocean, 85 percent of the species, judged by unique genetic sequences, changed. The ocean appears to contain millions of subenvironments rather than one massive marine environment, and each milliliter holds millions of bacteria. The actual number of bacteria in the oceans alone may exceed any previous estimates for the entire planet. In future studies of Earth's microbial ecology, the absolute number of species will probably never be determined.

Microbiologists begin defining the microbial world by taking samples from the environment and determining the types of bacteria found there. One of the first questions to answer is: Are any of these bacteria new, previously undiscovered species? To answer this, microbiologists must understand the species that have already been characterized, named, and accepted in biology, such as E. coli.

Taxonomists assign all living things to genus and species according to outward characteristics and the genetics of an organism. Until the late 1970s, microbiologists identified bacteria through enzyme activities, end products, nutrient needs, and appearance in a microscope. In 1977 Carl Woese at the University of Illinois proposed using fragments of a component of cell protein synthesis, ribosomal ribonucleic acid (rRNA). Cellular rRNA takes information contained in genes and helps convert this information into proteins of specific structure and function. Because the genetic information in rRNA is unique to each species, it can act as a type of bacterial fingerprint. Woese's method specifically used a component called 16S rRNA, which relates to a portion of the ribosome, the 16S subunit. This analysis led to a new hierarchy of living things (causing considerable consternation among traditional taxonomists) with bacteria, archaea, and eukaryotes comprising the three domains shown in Figure 1.4. Prior to the new rRNA classifications, biology students had been taught five-, six-, and even eight-kingdom classifications for organizing all plants, animals, and microbes. When I took my first biology classes, the five-kingdom system being taught looked like this:

  • Monera, containing the bacteria
  • Protista, containing protozoa and algae
  • Plantae, containing green plants descended from algae
  • Fungi descended from specific members of the Protista
  • Animalia descended from specific members of the Protista
    Figure 1.4

    Figure 1.4 The three domains. Classification of the world's organisms does not remain static; new technologies constantly force taxonomists to reevaluate and reclassify species.

New technologies for classifying organisms have yet to end confusion that ensues when attempting to organize the world's biota, and for good reason. Taxonomists and philosophers have been trying to figure out organisms' relationships to each other since Aristotle's first attempts. Additionally, since the emergence of DNA analysis in the 1970s, geneticists have discovered more diversity in biota but also a dizzying amount of shared genes, especially among bacteria. The rRNA analysis introduced by Woese showed the degree to which different species shared genes. The studies revealed a significant amount of horizontal gene transfer, which is the appearance of common genes across many unrelated species.

The evolutionary tree we all learned in which families, genera, and species branched from a major trunk does not depict horizontal gene transfer. The evolutionary tree may look more like a bird's nest than an oak. Nowhere may that be truer than in the bacteria. Gene sharing or gene transfer is now known to take place in bacteria, and possibly archaea, more than ever before imagined. In 2002, the 16S rRNA system became further refined by focusing on certain protein-associated genes. But as biologists dig deeper into the genetic makeup of bacteria, they find more shared genes. Some microbiologists have begun to think that the term "species" makes no sense when speaking about bacteria. Currently, if two different strains of bacteria have less than 97 percent identical genes determined by 16S rRNA analysis, then they can be considered two different species. Some microbiologists suggest that only a 1 percent difference in genes differentiates species, not 3 percent.

When microbiologists first developed the bacterial groups known today as species, they let common characteristics of bacteria guide them. Gram reaction, nutrient requirements, unique enzymes, or motility served as features for putting bacteria into various species. Modern nucleic acid analysis has shown whether the traditional classification system still makes sense. With a high percentage of shared genes among bacteria and the ease with which diverse cells transfer genes around, some microbiologists have suggested that classifying bacteria by species is futile. It seems as if all bacteria belong to one mega-species, and different strains within this species differ by the genes they express and the genes they repress. By classifying bacteria into a single species, all bacteria would obey the definition for a species first proposed by Ernst Mayr in 1942: Members of the same species interbreed and members of different species do not.

Genetic analysis has blurred the lines between bacterial species so that the criteria used to classify other living things cannot apply to bacteria. To preserve their sanity, microbiologists need some sort of taxonomic organization so that they can speak the same language when discussing microbes. The traditional methods of grouping bacteria according to similar characteristics have turned out to be the handiest method regardless of DNA results. Microbiologists use the same classification and naming system for bacteria as used for all other life. The system has changed little since botanists in the mid-1800s, Carl Linnaeus being the most famous, developed it. Species classification and naming uses binomial nomenclature to identify every species by a unique two-part Latin name.

Bacteria of the same genus share certain genes, quite a few as mentioned, but different species have a few unique genes. For example, Bacillus is the genus name of a common soil bacterium. The genus contains several different species: Bacillus subtilis (shortened to B. subtilis), B. anthracis, B. megaterium, and so on. If I were a bacterium, my name would be Maczulak anne or M. anne.

To name a new bacterium, microbiologists have several conventions at their disposal. All that matters is that the new name be different from all other names in biology. Table 1.1 shows common naming conventions.

Table 1.1. Origins of bacteria names

Naming Method

Example

Reason for the Name

A historic event

Legionella pneumophila

Cause of a new disease that occurred at a Legionnaires convention in 1976

Color

Cyanobacterium

Blue-green color

Cell shape and arrangement

Streptococcus pyogenes

Long, twisting chains (strepto-) of spherical (-coccus) cells

Place of discovery

Thiomargarita namibiensis

Found off the coast of Namibia

Discoverer

Escherichia coli

Discovered by Theodor Escherich in 1885

In honor of a famous microbiologist

Pasteurella multocida

Genus named for Louis Pasteur

Unique feature

Magnetospirillum magnetotacticum

Spiral-shaped bacteria with magnet-containing magnetosomes inside their cells

Extreme growing conditions

Thermus aquaticus

Grows in very hot waters such as hot springs

Bacterial names will likely never be replaced regardless of scientific advances in classifying and reclassifying the species. Medicine, environmental science, food quality, manufacturing, and biotechnology depend on knowing the identity of a species that causes disease or contamination or makes a useful product. As microbiology fine-tunes its focus from the biosphere to the human body, species identity becomes more important.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020