Home > Store

Signal and Power Integrity - Simplified, 3rd Edition

Signal and Power Integrity - Simplified, 3rd Edition

eBook (Watermarked)

  • Your Price: $92.65
  • List Price: $109.00
  • Includes EPUB, MOBI, and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from your Account page after purchase:

    ePub EPUB The open industry format known for its reflowable content and usability on supported mobile devices.

    MOBI MOBI The eBook format compatible with the Amazon Kindle and Amazon Kindle applications.

    Adobe Reader PDF The popular standard, used most often with the free Adobe® Reader® software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

Also available in other formats.

Register your product to gain access to bonus material or receive a coupon.

Description

  • Copyright 2018
  • Dimensions: 7" x 9-1/8"
  • Pages: 792
  • Edition: 3rd
  • eBook (Watermarked)
  • ISBN-10: 0-13-451220-0
  • ISBN-13: 978-0-13-451220-4

The #1 Practical Guide to Signal Integrity Design—with Revised Content and New Questions and Problems!

This book brings together up-to-the-minute techniques for finding, fixing, and avoiding signal integrity problems in your design. Drawing on his work teaching several thousand engineers and graduate students, world-renowned expert Eric Bogatin systematically presents the root causes of all six families of signal integrity, power integrity, and electromagnetic compatibility problems. Bogatin reviews essential principles needed to understand these problems, and shows how to use best design practices and techniques to prevent or address them early in the design cycle. To help test and reinforce your understanding, this new edition adds questions and problems throughout. Bogatin also presents more examples using free tools, plus new content on high-speed serial links, reflecting input from 130+ of his graduate students.

• A fully up-to-date introduction to signal integrity and physical design
• New questions and problems designed for both students and professional engineers
• How design and technology selection can make or break power distribution network performance
• Exploration of key concepts, such as plane impedance, spreading inductance, decoupling capacitors, and capacitor loop inductance
• Practical techniques for analyzing resistance, capacitance, inductance, and impedance
• Using QUCS to predict waveforms as voltage sources are affected by interconnect impedances
• Identifying reflections and crosstalk with free animation tools
• Solving signal integrity problems via rules of thumb, analytic approximation, numerical simulation, and measurement
• Understanding how interconnect physical design impacts signal integrity
• Managing differential pairs and losses
• Harnessing the full power of S-parameters in high-speed serial link applications
• Designing high-speed serial links associated with differential pairs and lossy lines—including new coverage of eye diagrams
• Ensuring power integrity throughout the entire power distribution path
• Realistic design guidelines for improving signal integrity, and much more

For professionals and students at all levels of experience, this book emphasizes intuitive understanding, practical tools, and engineering discipline, rather than theoretical derivation or mathematical rigor. It has earned a well-deserved reputation as the #1 resource for getting signal integrity designs right—first time, every time.

Sample Content

Table of Contents

Preface to the Third Edition     xix
Preface to the Second Edition     xxi
Preface to the First Edition     xxiii

Chapter 1  Signal Integrity Is in Your Future     1
1.1  What Are Signal Integrity, Power Integrity, and Electromagnetic Compatibility?     3
1.2  Signal-Integrity Effects on One Net     7
1.3  Cross Talk     11
1.4  Rail-Collapse Noise     14
1.5  Electromagnetic Interference (EMI)     17
1.6  Two Important Signal-Integrity Generalizations     19
1.7  Trends in Electronic Products     20
1.8  The Need for a New Design Methodology     26
1.9  A New Product Design Methodology     27
1.10  Simulations     29
1.11  Modeling and Models     34
1.12  Creating Circuit Models from Calculation     36
1.13  Three Types of Measurements     42
1.14  The Role of Measurements     45
1.15  The Bottom Line     48
Review Questions     50
Chapter 2  Time and Frequency Domains     51
2.1  The Time Domain     52
2.2  Sine Waves in the Frequency Domain     54
2.3  Shorter Time to a Solution in the Frequency Domain     56
2.4  Sine-Wave Features     58
2.5  The Fourier Transform     60
2.6  The Spectrum of a Repetitive Signal     62
2.7  The Spectrum of an Ideal Square Wave     64
2.8  From the Frequency Domain to the Time Domain     66
2.9  Effect of Bandwidth on Rise Time     68
2.10  Bandwidth and Rise Time     72
2.11  What Does Significant Mean?     73
2.12  Bandwidth of Real Signals     77
2.13  Bandwidth and Clock Frequency     78
2.14  Bandwidth of a Measurement     80
2.15  Bandwidth of a Model     83
2.16  Bandwidth of an Interconnect     85
2.17  The Bottom Line     89
Review Questions     90
Chapter 3  Impedance and Electrical Models     93
3.1  Describing Signal-Integrity Solutions in Terms of Impedance     94
3.2  What Is Impedance?     97
3.3  Real Versus Ideal Circuit Elements     99
3.4  Impedance of an Ideal Resistor in the Time Domain     102
3.5  Impedance of an Ideal Capacitor in the Time Domain     103
3.6  Impedance of an Ideal Inductor in the Time Domain     107
3.7  Impedance in the Frequency Domain     109
3.8  Equivalent Electrical Circuit Models     115
3.9  Circuit Theory and SPICE     117
3.10  Introduction to Measurement-Based Modeling     121
3.11  The Bottom Line     126
Review Questions     128
Chapter 4  The Physical Basis of Resistance     131
4.1  Translating Physical Design into Electrical Performance     132
4.2  The Only Good Approximation for the Resistance of Interconnects     133
4.3  Bulk Resistivity     136
4.4  Resistance per Length     138
4.5  Sheet Resistance     139
4.6  The Bottom Line     143
Review Questions     145
Chapter 5  The Physical Basis of Capacitance     147
5.1  Current Flow in Capacitors     149
5.2  The Capacitance of a Sphere     150
5.3  Parallel Plate Approximation     152
5.4  Dielectric Constant     153
5.5  Power and Ground Planes and Decoupling Capacitance     156
5.6  Capacitance per Length     159
5.7  2D Field Solvers     165
5.8  Effective Dielectric Constant     168
5.9  The Bottom Line     172
Review Questions     173
Chapter 6  The Physical Basis of Inductance     175
6.1  What Is Inductance?     175
6.2  Inductance Principle 1: There Are Circular Rings of Magnetic-Field Lines Around All Currents     176
6.3  Inductance Principle 2: Inductance Is the Number of Webers of Field Line Rings Around a Conductor per Amp of Current Through It     179
6.4  Self-Inductance and Mutual Inductance     181
6.5  Inductance Principle 3: When the Number of Field Line Rings Around a Conductor Changes, There Will Be a Voltage Induced Across the Ends of the Conductor     184
6.6  Partial Inductance     187
6.7  Effective, Total, or Net Inductance and Ground Bounce     193
6.8  Loop Self- and Mutual Inductance     199
6.9  The Power Distribution Network (PDN) and Loop Inductance     204
6.10  Loop Inductance per Square of Planes     210
6.11  Loop Inductance of Planes and Via Contacts     211
6.12  Loop Inductance of Planes with a Field of Clearance Holes     214
6.13  Loop Mutual Inductance     216
6.14  Equivalent Inductance of Multiple Inductors     216
6.15  Summary of Inductance     219
6.16  Current Distributions and Skin Depth     220
6.17  High-Permeability Materials     229
6.18  Eddy Currents     232
6.19  The Bottom Line     235
Review Questions     237
Chapter 7  The Physical Basis of Transmission Lines     239
7.1  Forget the Word Ground     240
7.2  The Signal     242
7.3  Uniform Transmission Lines     243
7.4  The Speed of Electrons in Copper     245
7.5  The Speed of a Signal in a Transmission Line     247
7.6  Spatial Extent of the Leading Edge     251
7.7  “Be the Signal”     252
7.8  The Instantaneous Impedance of a Transmission Line     256
7.9  Characteristic Impedance and Controlled Impedance     259
7.10  Famous Characteristic Impedances     262
7.11  The Impedance of a Transmission Line     266
7.12  Driving a Transmission Line     271
7.13  Return Paths     274
7.14  When Return Paths Switch Reference Planes     278
7.15  A First-Order Model of a Transmission Line     291
7.16  Calculating Characteristic Impedance with Approximations     297
7.17  Calculating the Characteristic Impedance with a 2D Field Solver     300
7.18  An n-Section Lumped-Circuit Model     306
7.19  Frequency Variation of the Characteristic Impedance     314
7.20  The Bottom Line     316
Review Questions     318
Chapter 8  Transmission Lines and Reflections     321
8.1  Reflections at Impedance Changes     323
8.2  Why Are There Reflections?     324
8.3  Reflections from Resistive Loads     328
8.4  Source Impedance     331
8.5  Bounce Diagrams     333
8.6  Simulating Reflected Waveforms     335
8.7  Measuring Reflections with a TDR     337
8.8  Transmission Lines and Unintentional Discontinuities     340
8.9  When to Terminate     343
8.10  The Most Common Termination Strategy for Point-to-Point Topology     345
8.11  Reflections from Short Series Transmission Lines     348
8.12  Reflections from Short-Stub Transmission Lines     351
8.13  Reflections from Capacitive End Terminations     353
8.14  Reflections from Capacitive Loads in the Middle of a Trace     356
8.15  Capacitive Delay Adders     359
8.16  Effects of Corners and Vias     361
8.17  Loaded Lines     367
8.18  Reflections from Inductive Discontinuities     370
8.19  Compensation     375
8.20  The Bottom Line     377
Review Questions     379
Chapter 9  Lossy Lines, Rise-Time Degradation, and Material Properties     381
9.1  Why Worry About Lossy Lines?     382
9.2  Losses in Transmission Lines     385
9.3  Sources of Loss: Conductor Resistance and Skin Depth     387
9.4  Sources of Loss: The Dielectric     392
9.5  Dissipation Factor     396
9.6  The Real Meaning of Dissipation Factor     399
9.7  Modeling Lossy Transmission Lines     405
9.8  Characteristic Impedance of a Lossy Transmission Line     413
9.9  Signal Velocity in a Lossy Transmission Line     415
9.10  Attenuation and dB     417
9.11  Attenuation in Lossy Lines     423
9.12  Measured Properties of a Lossy Line in the Frequency Domain     433
9.13  The Bandwidth of an Interconnect     438
9.14  Time-Domain Behavior of Lossy Lines     445
9.15  Improving the Eye Diagram of a Transmission Line     448
9.16  How Much Attenuation Is Too Much?     450
9.17  The Bottom Line     452
Review Questions     454
Chapter 10  Cross Talk in Transmission Lines     457
10.1  Superposition     459
10.2  Origin of Coupling: Capacitance and Inductance     460
10.3  Cross Talk in Transmission Lines: NEXT and FEXT     462
10.4  Describing Cross Talk     464
10.5  The SPICE Capacitance Matrix     467
10.6  The Maxwell Capacitance Matrix and 2D Field Solvers     471
10.7  The Inductance Matrix     478
10.8  Cross Talk in Uniform Transmission Lines and Saturation Length     479
10.9  Capacitively Coupled Currents     485
10.10  Inductively Coupled Currents     489
10.11  Near-End Cross Talk     492
10.12  Far-End Cross Talk     496
10.13  Decreasing Far-End Cross Talk     503
10.14  Simulating Cross Talk     505
10.15  Guard Traces     512
10.16  Cross Talk and Dielectric Constant     519
10.17  Cross Talk and Timing     521
10.18  Switching Noise     524
10.19  Summary of Reducing Cross Talk     528
10.20  The Bottom Line     528
Review Questions     530
Chapter 11  Differential Pairs and Differential Impedance     533
11.1  Differential Signaling     534
11.2  A Differential Pair     538
11.3  Differential Impedance with No Coupling     541
11.4  The Impact from Coupling     545
11.5  Calculating Differential Impedance     552
11.6  The Return-Current Distribution in a Differential Pair     555
11.7  Odd and Even Modes     561
11.8  Differential Impedance and Odd-Mode Impedance     566
11.9  Common Impedance and Even-Mode Impedance     567
11.10  Differential and Common Signals and Odd- and Even-Mode Voltage Components     570
11.11  Velocity of Each Mode and Far-End Cross Talk     573
11.12  Ideal Coupled Transmission-Line Model or an Ideal Differential Pair     579
11.13  Measuring Even- and Odd-Mode Impedance     580
11.14  Terminating Differential and Common Signals     583
11.15  Conversion of Differential to Common Signals     590
11.16  EMI and Common Signals     595
11.17  Cross Talk in Differential Pairs     601
11.18  Crossing a Gap in the Return Path     604
11.19  To Tightly Couple or Not to Tightly Couple     607
11.20  Calculating Odd and Even Modes from Capacitance- and Inductance-Matrix Elements     608
11.21  The Characteristic Impedance Matrix     612
11.22  The Bottom Line     615
Review Questions     617
Chapter 12  S-Parameters for Signal-Integrity Applications     619
12.1  S-Parameters, the New Universal Metric     619
12.2  What Are S-Parameters?     621
12.3  Basic S-Parameter Formalism     623
12.4  S-Parameter Matrix Elements     627
12.5  Introducing the Return and Insertion Loss     631
12.6  A Transparent Interconnect     636
12.7  Changing the Port Impedance     639
12.8  The Phase of S21 for a Uniform     50-Ohm Transmission Line     641
12.9  The Magnitude of S21 for a Uniform Transmission Line     644
12.10  Coupling to Other Transmission Lines     649
12.11  Insertion Loss for Non-50-Ohm Transmission Lines     655
12.12  Data-Mining S-Parameters     661
12.13  Single-Ended and Differential S-Parameters     663
12.14  Differential Insertion Loss     668
12.15  The Mode Conversion Terms     672
12.16  Converting to Mixed-Mode S-Parameters     675
12.17  Time and Frequency Domains     676
12.18  The Bottom Line     681
Review Questions     683
Chapter 13  The Power Distribution Network (PDN)     685
13.1  The Problem     686
13.2  The Root Cause     688
13.3  The Most Important Design Guidelines for the PDN     690
13.4  Establishing the Target Impedance Is Hard     691
13.5  Every Product Has a Unique PDN Requirement     700
13.6  Engineering the PDN     701
13.7  The VRM     703
13.8  Simulating Impedance with SPICE     706
13.9  On-Die Capacitance     707
13.10  The Package Barrier     710
13.11  The PDN with No Decoupling Capacitors     715
13.12  The MLCC Capacitor     717
13.13  The Equivalent Series Inductance     721
13.14  Approximating Loop Inductance     724
13.15  Optimizing the Mounting of Capacitors     733
13.16  Combining Capacitors in Parallel     740
13.17  Engineering a Reduced Parallel Resonant Peak by Adding More Capacitors     746
13.18  Selecting Capacitor Values     748
13.19  Estimating the Number of Capacitors Needed     754
13.20  How Much Does a nH Cost?     756
13.21  Quantity or Specific Values?     760
13.22  Sculpting the Impedance Profiles: The Frequency-Domain Target Impedance Method (FDTIM)     766
13.23  When Every pH Counts     772
13.24  Location, Location, Location     777
13.25  When Spreading Inductance Is the Limitation     781
13.26  The Chip View     785
13.27  Bringing It All Together     789
13.28  The Bottom Line     792
Review Questions     794
Appendix A  100+ General Design Guidelines to Minimize Signal-Integrity Problems     797
Appendix B  100 Collected Rules of Thumb to Help Estimate Signal-Integrity Effects     805
Appendix C  Selected References     815
Appendix D  Review Questions and Answers     819
Index     931


Updates

Submit Errata

More Information

Unlimited one-month access with your purchase
Free Safari Membership