Home > Store

R for Everyone: Advanced Analytics and Graphics, 2nd Edition

R for Everyone: Advanced Analytics and Graphics, 2nd Edition

eBook (Watermarked)

  • Your Price: $28.79
  • List Price: $35.99
  • Estimated Release: Jun 9, 2017
  • Includes EPUB, MOBI, and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from your Account page after purchase:

    ePub EPUB The open industry format known for its reflowable content and usability on supported mobile devices.

    MOBI MOBI The eBook format compatible with the Amazon Kindle and Amazon Kindle applications.

    Adobe Reader PDF The popular standard, used most often with the free Adobe® Reader® software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

Also available in other formats.

Register your product to gain access to bonus material or receive a coupon.


  • Copyright 2017
  • Dimensions: 7" x 9-1/8"
  • Pages: 592
  • Edition: 2nd
  • eBook (Watermarked)
  • ISBN-10: 0-13-454697-0
  • ISBN-13: 978-0-13-454697-1

Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals

Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone, Second Edition, is the solution.

Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks.

Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, manipulation, and visualization; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques.

By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most.

Coverage includes

  • Exploring R, RStudio, and R packages
  • Using R for math: variable types, vectors, calling functions, and more
  • Exploiting data structures, including data.frames, matrices, and lists
  • Reading many different types of data
  • Creating attractive, intuitive statistical graphics
  • Writing user-defined functions
  • Controlling program flow with if, ifelse, and complex checks
  • Improving program efficiency with group manipulations
  • Combining and reshaping multiple datasets
  • Manipulating strings using R’s facilities and regular expressions
  • Creating normal, binomial, and Poisson probability distributions
  • Programming basic statistics: mean, standard deviation, and t-tests
  • Building linear, generalized linear, and nonlinear models
  • Training machine learning models
  • Assessing the quality of models and variable selection
  • Preventing overfitting, using the Elastic Net and Bayesian methods
  • Analyzing univariate and multivariate time series data
  • Grouping data via K-means and hierarchical clustering
  • Preparing reports, slideshows, and web pages with knitr
  • Displaying interactive data with RMarkdown and htmlwidgets
  • Implementing dashboards with Shiny
  • Building reusable R packages with devtools and Rcpp
  • Getting involved with the R global community

Sample Content

Table of Contents



About the Author

Chapter 1: Getting R
Chapter 2: The R Environment
Chapter 3: R Packages
Chapter 4: Basics of R
Chapter 5: Advanced Data Structures
Chapter 6: Reading Data into R
Chapter 7: Statistical Graphics
Chapter 8: Writing R Functions
Chapter 9: Control Statements
Chapter 10: Loops, the Un-R Way to Iterate
Chapter 11: Group Manipulation
Chapter 12: Faster Group Manipulation with dplyr
Chapter 13: Iterating with purrr
Chapter 14: Data Reshaping
Chapter 15: Reshaping Data in the Tidyverse
Chapter 16: Manipulating Strings
Chapter 17: Probability Distributions
Chapter 18: Basic Statistics
Chapter 19: Linear Models
Chapter 20: Generalized Linear Models
Chapter 21: Model Diagnostics
Chapter 22: Regularization and Shrinkage
Chapter 23: Nonlinear Models
Chapter 24: Time Series and Autocorrelation

Chapter 25: Clustering

Chapter 26: Model Fitting with caret

Chapter 27: Reproducibility and Reports with knitr

Chapter 28: Rich Documents with RMarkdown

Chapter 29: Interactive Dashboards with Shiny

Chapter 30: Building R Packages

Appendix A: Real-Life Resources 

Appendix B: Glossary

List of Figures

List of Tables

General Index

Index of Functions

Index of Packages

Index of People

Data Index


Submit Errata

More Information

Unlimited one-month access with your purchase
Free Safari Membership