Home > Store

Digital Signal Integrity: Modeling and Simulation with Interconnects and Packages

Register your product to gain access to bonus material or receive a coupon.

Digital Signal Integrity: Modeling and Simulation with Interconnects and Packages

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

  • In-depth reviews—Inductance, capacitance, resistance, single and multiconductor transmission lines, generalized termination schemes, crosstalk, differential signaling, and other modeling/simulation issues.
  • Multiconductor interconnects—Packages, sockets, connectors, and buses.
  • Model decomposition.
    • Helps students understand the outputs generated by commercial modeling software.

  • Layer peeling with time-domain reflectometry.
  • Experimental techniques for characterizing interconnect parasitics.

Description

  • Copyright 2001
  • Dimensions: 7" x 9-1/2"
  • Pages: 560
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-028904-3
  • ISBN-13: 978-0-13-028904-9

  • State-of-the-art techniques for predicting and achieving target performance levels
  • Theory, practice, general signal integrity issues, and leading-edge experimental techniques

Model and simulate high-speed digital systems for maximum performance

Maximizing the performance of digital systems means optimizing their high-speed interconnections. Digital Signal Integrity gives engineers all the theory and practical methods they need to accurately model and simulate those interconnections and predict real-world performance. Whether you're modeling microprocessors, memories, DSPs, or ASICs, these techniques will get you to market faster with greater reliability. Coverage includes:

  • In-depth reviews of inductance, capacitance, resistance, single and multiconductor transmission lines, generalized termination schemes, crosstalk, differential signaling, and other modeling/simulation issues
  • Multiconductor interconnects: packages, sockets, connectors and buses
  • Modal decomposition: understanding the outputs generated by commercial modeling software
  • Layer peeling with time-domain reflectometry: its power and limitations
  • Experimental techniques for characterizing interconnect parasitics

In Digital Signal Integrity, Motorola senior engineer Brian Young presents broad coverage of modeling from data obtained through electromagnetic simulation, transmission line theory, frequency and time-domain modeling, analog circuit simulation, digital signaling, and architecture. Young offers a strong mathematical foundation for every technique, as well as over 100 end-of-chapter problems. If you're stretching the performance envelope, you must be able to rely on your models and simulations. With this book, you can.

Sample Content

Downloadable Sample Chapter

Click here for a sample chapter for this book: 0130289043.pdf

Table of Contents



1. Digital Systems and Signaling.

Tradeoffs for Performance Enhancement. Signaling Standards and Logic Families. Interconnects. Modeling of Digital Systems.



2. Signal Integrity.

Transmission Lines. Ideal Point-to-Point Signaling. Nonideal Signaling. Discontinuities. Crosstalk. Topology. Simultaneous Switching Noise. System Timing. Exercises.



3. Simultaneous Switching Noise.

Origins of SSN. Effective Inductance. Off-Chip SSN Dependencies. SSN-Induced Skew. Fast Simulation of Banks. Exercises.



4. Multiport Circuits.

Z-and Y-Parameters. S-Parameters. Multiport Conversions Between S-, Y-, and Z-Parameters. Normalization of S-Parameters. Matrix Reductions. Exercises.



5. Inductance.

Summary of an Electromagnetic Result. Definitions of Inductance. Definition of Mutual Inductance. Calculations with Neumann's Formula. Definition of Partial Inductance. Formulas for Partial Self- and Mutual Inductance. Circuit Symbols. Modal Decomposition. Nonuniqueness of Partial Inductance. Open Loop Modeling. Manipulating the Reference Lead. Model Reduction. Exercises.



6. Capacitance.

Definition of Capacitance. Capacitance between Several Conductors. Energy Definition of Capacitance. Frequency Dependence. Circuit Equations with Capacitance. Modal Decomposition and Passivity. Reference and Capacitance. Model Reduction. Exercises.



7. Resistance.

Skin Effect. Current Crowding. PEEC Method. Ladder Networks. Transresistance. Exercises.



8. Measurement of Parasitics.

Measurement Counts. Impedance Analyzer. Vector Network Analyzer. Time-Domain Reflectometer. Tradeoffs. Exercises.



9. Lumped Modeling.

Transmission Line Introduction. Multiconductor Modeling with Two Samples. Multiconductor Modeling with One Sample. Internal Nodes. Frequency Dependence. Iterative Impedance and Bandwidth. Model Reduction. Approaches for Specific Interconnects. General Topology. Multidrop Nets. Exercises.



10. Wideband Modeling.

Transmission Line Lumped Modeling. Coupled Transmission Lines. Skin Effect Models. Black Box Modeling. Exercises.



11. Enhancing Signal Integrity.

Differential Signaling. Termination. Multiconductor Termination. Power Distribution. Advanced Packaging. Exercises.



Appendix A: Solutions to Selected Problems.


Appendix B: Coaxial Peec Calculator.


Appendix C: Sample Spice SSN Simulations.


Appendix D: Sample Modal Decomposition Code.


Appendix E: Sample Layer Peeling Code.


Index.


About the Author.

Preface

Preface

Effects of interconnects on the electrical performance of digital components, such as microprocessors, have historically been small enough to handle with simple rules of thumb. As clock rates, bus widths, and bus speeds have increased, packaging and interconnects have more importance and in some cases actually limit or define the system, where silicon performance is usually found to be the gating factor. This role reversal will become more common, and it may be that packaging and interconnects dominate electrical considerations at some point in the future as networks become more prominent.

The relatively recent growth of packaging and interconnects as significant issues in electrical performance means that relatively few resources exist for learning and training. Much of it exists as scattered applications notes, many of which are quite useful but are sometimes somewhat dated (i.e., notes on ECL rather than CMOS) or are from the less accessible technical literature. Since many organizations are newly finding the need for expertise in the field, in-house experts may not be available to act as mentors.

This book represents my efforts at collecting and deriving the necessary material to support a career in digital signal integrity modeling and simulation. A huge part of such a job is package and interconnect modeling from electromagnetic simulation and/or measurements. By necessity, the book spans a broad spectrum of techniques, including electromagnetic simulation, transmission line theory, frequency-domain modeling, time-domain modeling, analog circuit simulation, digital signaling, and some architectural issues, to put it all in perspective. Such a broad technological reach makes for a very interesting and challenging job. Since I believe that the number of engineers working this area will need to increase dramatically to support the technological trends, I hope that this book will provide a sufficient set of tools to help engineers succeed in this field.

The goal of the book is to provide detailed introductory material that is self-consistent and self-contained. As such, there are very few references. There is nothing in the book that is new to the field, so technical credit must go to the innumerable contributors to the technical literature, application notes, and standards.

The book is organized to move gradually from broad, general topics to specific modeling techniques. Particular emphasis is placed on rigorous derivation and on multiconductor interconnects. Chapter discusses the role of signal integrity in digital systems. Chapters and then cover issues in signaling and signal integrity. Chapters through cover detailed concepts in basic passive circuit components, with particular emphasis on multiconductor interconnects. One of the more difficult aspects of detailed simulations in signal integrity is the need to model multiconductor interconnects such as sockets, packages, edge connectors, and buses. Experimental characterization of interconnects is covered in chapter, where emphasis is on measurements of very small parasitics for high leadcount interconnects. Interconnect modeling is covered in chapters and, where distinction is drawn between low-frequency lumped modeling and high-frequency wideband modeling. Because interconnects are often physically small, lumped modeling is often the optimal choice. Finally, chapter provides extended coverage of signal integrity topics and represents advanced application of material and concepts from prior chapters.

The manuscript was typeset using running under Linux on a PC clone based on a Tyan motherboard with a Cyrix processor. The text was prepared using a custom text editor written in Tcl/Tk. Circuit simulations used Berkeley SPICE 3f4. The figures were prepared using Xfig. Symbolic manipulation usedMathematica.

Brian Young
Austin, Texas

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020