Home > Articles > Programming > C/C++

This chapter is from the book

Classifying Students, Revisited

In a previous chapter, we looked at the problem of copying records with failing grades into a separate vector and then removing those records from the existing vector. The obvious, easy approach to this problem proved to have abysmal performance as the input size grew. We went on to show how to solve the performance problem by using a list instead of a vector, but we also promised to revisit the problem and show an algorithmic solution that would perform similarly to the revised data structure.

We can use the algorithm library to demonstrate two other solutions. The first is slightly slower because it uses a pair of library algorithms and visits every element twice. We can do better by using a more specialized library algorithm that will let us solve the problem in a single pass.

A Two-Pass Solution

Our first approach will use a strategy similar to the one that we used when we wanted only the nonzero homework grades. In that case, we didn't want to change homework itself, so we used remove_copy to put copies of the nonzero homework grades into a separate vector. In our current problem, we need both to copy and "remove" the nonzero elements:

vector<Student_info> extract_fails(vector<Student_info>& students) 
{ vector<Student_info> fail; remove_copy_if(students.begin(), 
students.end(), back_inserter(fail), pgrade); 
students.erase(remove_if(students.begin(), students.end(), fgrade), 
students.end()); return fail; } 

The interface to the program is identical to that which presented the obvious vector-based solution that used iterators instead of indices. As in that solution, we'll use the vector that we were passed to hold grades for students who passed, and we'll define fail to hold the failing grades. There the similarities end.

In the original program, we used an iterator named iter to march through the container, copying the records with failing grades into fail and using the erase member to erase them from students. This time, we use the remove_copy_if function to copy the failing grades into fail. That function operates as did the remove_copy function that we used, except that it uses a predicate as its test rather than a value. We give it a predicate that inverts the result of calling fgrade:

bool pgrade(const Student_info& s) { return !fgrade(s); } 

When we pass a predicate to remove_copy_if, we are asking it to "remove" each element that satisfies the predicate. In this context, "removing" an element means not copying it, so we copy only those elements that do not satisfy the predicate. Therefore, passing pgrade to remove_copy_if copies only the student records with failing grades.

The next statement is somewhat complicated. First, we call remove_if to "remove" the elements that correspond to failing grades. Again, nothing is actually "removed." Instead, remove_if copies all the elements that do not satisfy the predicate—in this case, all the student records with passing grades.

This call is tricky to understand because remove_if uses the same sequence as its source and destination. What it really does is copy to the beginning of the sequence the elements that don't meet the predicate. For example, suppose that we started with seven students with grades as follows:

pass pass 
students.begin() 
fail fail 
pass fail 
pass 
students.end() 

Then the call to remove_if would leave the first two records untouched because they're already in the right places. It would "remove" the next two records by treating them as free space to be overwritten by the next records that should be kept. So, when it sees the fifth record, which represents a student who passed, it would copy that record into the now free position that used to hold the first of the "removed" failing records, and so on:

pass pass 
students.begin() 
fail fail 
pass fail 
pass 
students.end() 

The result in this case would be to copy the four passing records to the beginning of the sequence, leaving the remaining three records untouched. So that we can know how much of the sequence is still relevant, remove_if returns an iterator that refers to one past the last element that it did not "remove":

pass pass pass pass pass fail pass 
students.begin() 
result of remove_if students.end() 

Next, we need to erase these unneeded records from students. We have not used this version of erase before. It takes two iterators and erases all the elements in the range delimited by those iterators. If we erase the elements between the iterator returned from the call to remove_if and students.end(), we are left with just the passing records:

pass pass pass pass 
students.begin() 
students.end() 

A Single-Pass Solution

Our first algorithmic solution performs pretty well, but we should be able to do slightly better. The reason is that the previous solution calculates the grade for every element in students twice: once from remove_copy_if and a second time from remove_if.

Although there is no library algorithm that does exactly what we want, there is one that approaches our problem from a different angle: It takes a sequence and rearranges its elements so that the ones that satisfy a predicate precede the ones that do not satisfy it.

There are really two versions of this algorithm, which are named partition and stable_partition. The difference is that partition might rearrange the elements within each category, and stable_partition keeps them in the same order aside from the partitioning. So, for example, if the student names were already in alphabetical order and we wanted to keep them that way within each category, we would need to use stable_partition rather than partition.

Each of these algorithms returns an iterator that represents the first element of the second section. Therefore, we can extract the failing grades this way:

vector<Student_info> extract_fails(vector<Student_info>& students) 
{ vector<Student_info>::iterator iter = 
stable_partition(students.begin(), students.end(), pgrade); 
vector<Student_info> fail(iter, students.end()); 
students.erase(iter, students.end());
     return fail; 
   }	

To understand what is going on here, let's start with our hypothetical input data again:

pass

pass

fail

fail

pass

fail

pass

students.begin()

 

 

 

 

 

students.end()


After calling stable_partition, we would have:

pass

pass

pass

pass

fail

fail

fail

students.begin()

 

 

iter

 

 

students.end()


We construct fail from a copy of the failing records, which are the ones in the range [iter, students.end()), and then erase those elements from students.

When we ran our algorithm-based solutions, they had roughly the same overall performance as the list-based solution. As expected, once the input was large enough, the algorithm and list-based solutions were substantially better than the vector solution that used erase. The two algorithmic solutions are good enough that the time consumed by the input library dominated the timings for input files up to about 75,000 records. To compare the effects of the two strategies in extract_fails, we separately analyzed the performance of just this portion of the program. Our timings confirmed that the one-pass algorithm ran about twice as fast as the two-pass solution.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020