Home > Store

Structured Computer Organization, 6th Edition

Register your product to gain access to bonus material or receive a coupon.

Structured Computer Organization, 6th Edition

Book

  • Your Price: $186.99
  • List Price: $219.99
  • Usually ships in 24 hours.

About

Features

  • Comprehensive coverage of computer hardware and architecture basics — Uses a clear, approachable writing style to introduce students to multilevel machines, CPU organization, gates and Boolean algebra, microarchitecture, ISA level, flow of controls, virtual memory, and assembly language.
  • Accessible to all students — Covers common devices in a practical manner rather than with an abstract discussion of theory and concepts.
  • Designed for undergraduate students — Not simply a watered-down adaptation of a graduate-level text.

Description

  • Copyright 2013
  • Dimensions: 7" x 9-1/8"
  • Pages: 808
  • Edition: 6th
  • Book
  • ISBN-10: 0-13-291652-5
  • ISBN-13: 978-0-13-291652-3

Structured Computer Organization, specifically written for undergraduate students, is a best-selling guide that provides an accessible introduction to computer hardware and architecture. This text will also serve as a useful resource for all computer professionals and engineers who need an overview or introduction to computer architecture.

This book takes a modern structured, layered approach to understanding computer systems. It's highly accessible - and it's been thoroughly updated to reflect today's most critical new technologies and the latest developments in computer organization and architecture. Tanenbaum’s renowned writing style and painstaking research make this one of the most accessible and accurate books available, maintaining the author’s popular method of presenting a computer as a series of layers, each one built upon the ones below it, and understandable as a separate entity.

Sample Content

Table of Contents

1.1 STRUCTURED COMPUTER ORGANIZATION 2
1.1.1 Languages, Levels, and Virtual Machines 2
1.1.2 Contemporary Multilevel Machines 5
1.1.3 Evolution of Multilevel Machines 8
1.2 MILESTONES IN COMPUTER ARCHITECTURE 13
1.2.1 The Zeroth Generation–Mechanical Computers (1642—1945) 13
1.2.2 The First Generation–Vacuum Tubes (1945—1955) 16
1.2.3 The Second Generation–Transistors (1955—1965) 19
1.2.4 The Third Generation–Integrated Circuits (1965—1980) 21
1.2.5 The Fourth Generation–Very Large Scale Integration (1980—?) 23
1.2.6 The Fifth Generation–Low-Power and Invisible Computers 26
1.3 THE COMPUTER ZOO 28
1.3.1 Technological and Economic Forces 28
1.3.2 The Computer Spectrum 30
1.3.3 Disposable Computers 31
1.3.4 Microcontrollers 33
1.3.5 Mobile and Game Computers 35
1.3.6 Personal Computers 36
1.3.7 Servers 36
1.3.8 Mainframes 38
1.4 EXAMPLE COMPUTER FAMILIES 39
1.4.1 Introduction to the x86 Architecture 39
1.4.2 Introduction to the ARM Architecture 45
1.4.3 Introduction to the AVR Architecture 47
1.5 METRIC UNITS 49
1.6 OUTLINE OF THIS BOOK 50
2.1 PROCESSORS 55
2.1.1 CPU Organization 56
2.1.2 Instruction Execution 58
2.1.3 RISC versus CISC 62
2.1.4 Design Principles for Modern Computers 63
2.1.5 Instruction-Level Parallelism 65
2.1.6 Processor-Level Parallelism 69
2.2 PRIMARYMEMORY 73
2.2.1 Bits 74
2.2.2 Memory Addresses 74
2.2.3 Byte Ordering 76
2.2.4 Error-Correcting Codes 78
2.2.5 Cache Memory 82
2.2.6 Memory Packaging and Types 85
2.3 SECONDARYMEMORY 86
2.3.1 Memory Hierarchies 86
2.3.2 Magnetic Disks 87
2.3.3 IDE Disks 91
2.3.4 SCSI Disks 92
2.3.5 RAID 94
2.3.6 Solid-State Disks 97
2.3.7 CD-ROMs 99
2.3.8 CD-Recordables 103
2.3.9 CD-Rewritables 105
2.3.10 DVD 106
2.3.11 Blu-ray 108
2.4 INPUT/OUTPUT 108
2.4.1 Buses 108
2.4.2 Terminals 113
2.4.3 Mice 118
2.4.4 Game Controllers 120
2.4.5 Printers 122
2.4.6 Telecommunications Equipment 127
2.4.7 Digital Cameras 135
2.4.8 Character Codes 137
2.5 SUMMARY 142
3.1 GATES AND BOOLEAN ALGEBRA 147
3.1.1 Gates 148
3.1.2 Boolean Algebra 150
3.1.3 Implementation of Boolean Functions 152
3.1.4 Circuit Equivalence 153
3.2 BASIC DIGITAL LOGIC CIRCUITS 158
3.2.1 Integrated Circuits 158
3.2.2 Combinational Circuits 159
3.2.3 Arithmetic Circuits 163
3.2.4 Clocks 168
3.3 MEMORY 169
3.3.1 Latches 169
3.3.2 Flip-Flops 172
3.3.3 Registers 174
3.3.4 Memory Organization 174
3.3.5 Memory Chips 178
3.3.6 RAMs and ROMs 180
3.4 CPU CHIPS AND BUSES 185
3.4.1 CPU Chips 185
3.4.2 Computer Buses 187
3.4.3 Bus Width 190
3.4.4 Bus Clocking 191
3.4.5 Bus Arbitration 196
3.4.6 Bus Operations 198
3.5 EXAMPLE CPU CHIPS 201
3.5.1 The Intel Core i7 201
3.5.2 The Texas Instruments OMAP4430 System-on-a-Chip 208
3.5.3 The Atmel ATmega168 Microcontroller 212
3.6 EXAMPLE BUSES 214
3.6.1 The PCI Bus 215
3.6.2 PCI Express 223
3.6.3 The Universal Serial Bus 228
3.7 INTERFACING 232
3.7.1 I/O Interfaces 232
3.7.2 Address Decoding 233
3.8 SUMMARY 235
4.1 AN EXAMPLE MICROARCHITECTURE 243
4.1.1 The Data Path 244
4.1.2 Microinstructions 251
4.1.3 Microinstruction Control: The Mic-1 253
4.2 AN EXAMPLE ISA: IJVM 258
4.2.1 Stacks 258
4.2.2 The IJVM Memory Model 260
4.2.3 The IJVM Instruction Set 262
4.2.4 Compiling Java to IJVM 266
4.3 AN EXAMPLE IMPLEMENTATION 267
4.3.1 Microinstructions and Notation 267
4.3.2 Implementation of IJVM Using the Mic-1 272
4.4 DESIGN OF THE MICROARCHITECTURE LEVEL 283
4.4.1 Speed versus Cost 283
4.4.2 Reducing the Execution Path Length 286
4.4.3 A Design with Prefetching: The Mic-2 293
4.4.4 A Pipelined Design: The Mic-3 293
4.4.5 A Seven-Stage Pipeline: The Mic-4 301
4.5 IMPROVING PERFORMANCE 305
4.5.1 Cache Memory 306
4.5.2 Branch Prediction 312
4.5.3 Out-of-Order Execution and Register Renaming 317
4.5.4 Speculative Execution 322
4.6 EXAMPLES OF THE MICROARCHITECTURE LEVEL 324
4.6.1 The Microarchitecture of the Core i7 CPU 325
4.6.2 The Microarchitecture of the OMAP4430 CPU 331
4.6.3 The Microarchitecture of the ATmega168 Microcontroller 336
4.7 COMPARISON OF THE I7, OMAP4430, AND ATMEGA168 338
4.8 SUMMARY 339
5.1 OVERVIEW OF THE ISA LEVEL
5.1.1 Properties of the ISA Level
5.1.2 Memory Models
5.1.3 Registers
5.1.4 Instructions
5.1.5 Overview of the Core i7 ISA Level
5.1.6 Overview of the OMAP4430 ARM ISA Level
5.1.7 Overview of the ATmega168 AVR ISA Level
5.2 DATA TYPES
5.2.1 Numeric Data Types
5.2.2 Nonnumeric Data Types
5.2.3 Data Types on the Core i7
5.2.4 Data Types on the OMAP4430 ARM CPU
5.2.5 Data Types on the ATmega168 AVR CPU
5.3 INSTRUCTION FORMATS
5.3.1 Design Criteria for Instruction Formats
5.3.2 Expanding Opcodes
5.3.3 The Core i7 Instruction Formats
5.3.4 The OMAP4430 ARM CPU Instruction Formats
5.3.5 The ATmega168 AVR Instruction Formats
5.4 ADDRESSING
5.4.1 Addressing Modes
5.4.2 Immediate Addressing
5.4.3 Direct Addressing
5.4.4 Register Addressing
5.4.5 Register Indirect Addressing
5.4.6 Indexed Addressing
5.4.7 Based-Indexed Addressing
5.4.8 Stack Addressing
5.4.9 Addressing Modes for Branch Instructions
5.4.10 Orthogonality of Opcodes and Addressing Modes
5.4.11 The Core i7 Addressing Modes
5.4.12 The OMAP4440 ARM CPU Addressing Modes
5.4.13 The ATmega168 AVR Addressing Modes
5.4.14 Discussion of Addressing Modes
5.5 INSTRUCTION TYPES
5.5.1 Data Movement Instructions
5.5.2 Dyadic Operations
5.5.3 Monadic Operations
5.5.4 Comparisons and Conditional Branches
5.5.5 Procedure Call Instructions
5.5.6 Loop Control
5.5.7 Input/Output
5.5.8 The Core i7 Instructions
5.5.9 The OMAP4430 ARM CPU Instructions
5.5.10 The ATmega168 AVR Instructions
5.5.11 Comparison of Instruction Sets
5.6 FLOWOF CONTROL
5.6.1 Sequential Flow of Control and Branches
5.6.2 Procedures
5.6.3 Coroutines
5.6.4 Traps
5.6.5 Interrupts
5.7 A DETAILED EXAMPLE: THE TOWERS OF HANOI
5.7.1 The Towers of Hanoi in Core i7 Assembly Language
5.7.2 The Towers of Hanoi in OMAP4430 ARM Assembly Language
5.8 THE IA-64 ARCHITECTURE AND THE ITANIUM 2
5.8.1 The Problem with the IA-32 ISA
5.8.2 The IA-64 Model: Explicitly Parallel Instruction Computing
5.8.3 Reducing Memory References
5.8.4 Instruction Scheduling
5.8.5 Reducing Conditional Branches: Predication
5.8.6 Speculative Loads
5.9 SUMMARY
6.1 VIRTUAL MEMORY
6.1.1 Paging
6.1.2 Implementation of Paging
6.1.3 Demand Paging and the Working Set Model
6.1.4 Page Replacement Policy
6.1.5 Page Size and Fragmentation
6.1.6 Segmentation
6.1.7 Implementation of Segmentation
6.1.8 Virtual Memory on the Core i7
6.1.9 Virtual Memory on the OMAP4430 ARM CPU
6.1.10 Virtual Memory and Caching
6.2 VIRTUAL I/O INSTRUCTIONS
6.2.1 Files
6.2.2 Implementation of Virtual I/O Instructions
6.2.3 Directory Management Instructions
6.3 VIRTUAL INSTRUCTIONS FOR PARALLEL PROCESSING
6.3.1 Process Creation
6.3.2 Race Conditions
6.3.3 Process Synchronization Using Semaphores
6.4 EXAMPLE OPERATING SYSTEMS
6.4.1 Introduction
6.4.2 Examples of Virtual Memory
6.4.3 Examples of Virtual I/O
6.4.4 Examples of Process Management
6.5 SUMMARY
7.1 INTRODUCTION TO ASSEMBLY LANGUAGE
7.1.1 What Is an Assembly Language?
7.1.2 Why Use Assembly Language?
7.1.3 Format of an Assembly Language Statement
7.1.4 Pseudoinstructions
7.2 MACROS
7.2.1 Macro Definition, Call, and Expansion
7.2.2 Macros with Parameters
7.2.3 Advanced Features
7.2.4 Implementation of a Macro Facility in an Assembler
7.3 THE ASSEMBLY PROCESS
7.3.1 Two-Pass Assemblers
7.3.2 Pass One
7.3.3 Pass Two
7.3.4 The Symbol Table
7.4 LINKING AND LOADING
7.4.1 Tasks Performed by the Linker
7.4.2 Structure of an Object Module
7.4.3 Binding Time and Dynamic Relocation
7.4.4 Dynamic Linking
7.5 SUMMARY
8.1 ON-CHIP PARALELLISM
8.1.1 Instruction-Level Parallelism
8.1.2 On-Chip Multithreading
8.1.3 Single-Chip Multiprocessors
8.2 COPROCESSORS
8.2.1 Network Processors
8.2.2 Media Processors
8.2.3 Cryptoprocessors
8.3 SHARED-MEMORYMULTIPROCESSORS
8.3.1 Multiprocessors vs. Multicomputers
8.3.2 Memory Semantics
8.3.3 UMA Symmetric Multiprocessor Architectures
8.3.4 NUMA Multiprocessors
8.3.5 COMA Multiprocessors
8.4 MESSAGE-PASSING MULTICOMPUTERS
8.4.1 Interconnection Networks
8.4.2 MPPs–Massively Parallel Processors
8.4.3 Cluster Computing
8.4.4 Communication Software for Multicomputers
8.4.5 Scheduling
8.4.6 Application-Level Shared Memory
8.4.7 Performance
8.5 GRID COMPUTING
8.6 SUMMARY
9.1 SUGGESTIONS FOR FURTHER READING
9.1.1 Introduction and General Works
9.1.2 Computer Systems Organization
9.1.3 The Digital Logic Level
9.1.4 The Microarchitecture Level
9.1.5 The Instruction Set Architecture Level
9.1.6 The Operating System Machine Level
9.1.7 The Assembly Language Level
9.1.8 Parallel Computer Architectures
9.1.9 Binary and Floating-Point Numbers
9.1.10 Assembly Language Programming
9.2 ALPHABETICAL BIBLIOGRAPHY
A.1 FINITE-PRECISION NUMBERS
A.2 RADIX NUMBER SYSTEMS
A.3 CONVERSION FROM ONE RADIX TO ANOTHER
A.4 NEGATIVE BINARY NUMBERS
A.5 BINARY ARITHMETIC
B.1 PRINCIPLES OF FLOATING POINT
B.2 IEEE FLOATING-POINT STANDARD 754
C.1 OVERVIEW
C.1.1 Assembly Language
C.1.2 A Small Assembly Language Program
C.2 THE 8088 PROCESSOR
C.2.1 The Processor Cycle
C.2.2 The General Registers
C.2.3 Pointer Registers
C.3 MEMORY AND ADDRESSING
C.3.1 Memory Organization and Segments
C.3.2 Addressing
C.4 THE 8088 INSTRUCTION SET
C.4.1 Move, Copy and Arithmetic
C.4.2 Logical, Bit and Shift Operations
C.4.3 Loop and Repetitive String Operations
C.4.4 Jump and Call Instructions
C.4.5 Subroutine Calls
C.4.6 System Calls and System Subroutines
C.4.7 Final Remarks on the Instruction Set
C.5 THE ASSEMBLER
C.5.1 Introduction
C.5.2 The ACK-Based Assembler, as88
C.5.3 Some Differences with Other 8088 Assemblers
C.6 THE TRACER
C.6.1 Tracer Commands
C.7 GETTING STARTED
C.8 EXAMPLES
C.8.1 Hello World Example
C.8.2 General Registers Example
C.8.3 Call Command and Pointer Registers
C.8.4 Debugging an Array Print Program
C.8.5 String Manipulation and String Instructions
C.8.6 Dispatch Tables
C.8.7 Buffered and Random File Access

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020