Home > Store

UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers

Register your product to gain access to bonus material or receive a coupon.

UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

Description

  • Copyright 1994
  • Dimensions: 7-1/4" x 9-1/4"
  • Pages: 424
  • Edition: 1st
  • Book
  • ISBN-10: 0-201-63338-8
  • ISBN-13: 978-0-201-63338-2

This book represents a significant new milestone in UNIX kernel internals books. Symmetric multiprocessing and cache memory systems are important cost-effective technologies for improving performance in today's state-of-the-art systems.

Written for the UNIX kernel developer, this book provides a complete yet comprehensible explanation of the operation of caches and symmetric multiprocessors, how they work together, and the issues operating systems must address in order to run on the machines that incorporate them.

After a review of UNIX kernel internals, Curt Schimmel launches into a detailed description of cache memory systems, including several kinds of virtual and physical caches, as well as a chapter on efficient cache management. For each type of cache, the book covers the impact on the software and the operating system changes necessary for these systems. The next section details the operation of the tightly-coupled, shared memory, symmetric multiprocessor. It examines the problems these multiprocessors present to the operating system, such as race conditions, deadlocks, and the ordering of memory operations, and looks at how the UNIX kernel can be adapted to run on such systems. Finally, the book looks at the interaction between cache memory systems and multiprocessors and the new problems that this interaction presents to the kernel. Techniques for solving these problems are then explained.

Numerous examples representing CISC and RISC processors, such as the Intel 80486 and Pentium, the Motorola 68040 and 88000, as well as theMIPS and SPARC processors, illustrate the concepts presented. To reinforce the concepts, each chapter contains a set of exercises with answers to selected exercises included in the back.

"This book UNIX Systems for Modern Architectures for the systems programmer covers almost everything you wanted to know about caches, multiprocessor systems, and cached multiprocessor systems, especially as related to UNIX."-Unix Review



0201633388B04062001

Sample Content

Table of Contents



Preface.


Notational Conventions.


Introduction.


1. Review of UNIX Kernel Internals.

Introduction.

Processes, Programs, and Threads.

The Process Address Space.

Context Switch.

Memory and Process Management System Calls.

Summary.

Exercises.

Further Reading.

I. CACHE MEMORY SYSTEMS. @CHAPTER 2. Introduction to Cache Memory Systems.

Memory Hierarchies.

Cache Fundamentals.

Direct Mapped Caches.

Two-Way Set Associative Caches.

n-Way Set Associative Caches.

Fully Associative Caches.

Summary of n-Way Set Associative Caches.

Cache Flushing.

Uncached Operation.

Separate Instruction and Data Caches.

Cache Performance.

How Cache Architectures Differ.

Exercises.

Further Reading.

3. Virtual Caches.

Virtual Cache Operation.

Problems with Virtual Caches.

Managing a Virtual Cache.

Summary.

Exercises.

Further Reading.

4. Virtual Caches with Keys.

The Operation of a Virtual Cache with Keys.

Managing a Virtual Cache with Keys.

Virtual Cache Usage in MMUs.

Summary.

Exercises.

Further Reading.

5. Virtual Caches with Physical Address Tags.

The Organization of a Virtual Cache with Physical Tags.

Managing a Virtual Cache with Physical Tags.

Summary.

Exercises.

Further Reading.

6. Physical Caches.

The Organization of a Physical Cache.

Managing a Physical Cache.

Multilevel Caches.

Primary Virtual Cache with Secondary Physical Cache.

Summary.

Exercises.

Further Reading.

7. Efficient Cache Management Techniques.

Introduction.

Address Space Layout.

Cache Size Bounded Flushing—Delayed Cache Invalidations.

Cache-Aligning Data Structures.

Summary.

Exercises.

Further Reading.

II. MULTIPROCESSOR SYSTEMS.

8. Introduction to Multiprocessor Systems.

Introduction.

The Tightly Coupled, Shared Memory, Symmetric.

Multiprocessor.

The MP Memory Model.

Mutual Exclusion.

Review of Mutual Exclusion on Uniprocessor.

UNIX Systems.

Problems Using UP Mutual Exclusion Policies on MPs.

Summary.

Exercises.

Further Reading.

9. Master-Slave Kernels.

Introduction.

Spin Locks.

Deadlocks.

Master-Slave Kernel Implementation.

Performance Considerations.

Summary.

Exercises.

Further Reading.

10. Spin-Locked Kernels.

Introduction.

Giant Locking.

Multithreading Cases Requiring No Locks.

Coarse-Grained Locking.

Fine-Grained Locking.

Effects of Sleep and Wakeup on Multiprocessors.

Summary.

Exercises.

Further Reading.

11. Semaphored Kernels.

Introduction.

Deadlocks.

Implementing Semaphores.

Coarse-Grained Semaphore Implementations.

Multithreading with Semaphores.

Performance Considerations.

Summary.

Exercises.

Further Reading.

12. Other MP Primitives.

Introduction.

Monitor.

Eventcounts and Sequencers.

The MP Primitives of SVR4.2 MP.

Comparison of MP Synchronization Primitives.

Summary.

Exercises.

Further Reading.

13. Other Memory Models.

Introduction.

Dekker's Algorithm.

Other Memory Models.

Total Store Ordering.

Partial Store Ordering.

The Store Buffer as Part of the Memory Hierarchy.

Summary.

Exercises.

Further Reading.

III. MULTIPROCESSOR SYSTEMS WITH CACHES.

14. Introduction to MP Cache Consistency.

Introduction.

The Cache Consistency Problem.

Software Cache Consistency.

Summary.

Exercise.

Further Reading.

15. Hardware Cache Consistency.

Introduction.

Write-Invalidate Protocols.

Write-Update Protocols.

Consistency of Read-Modify-Write Operations.

Hardware Consistency for Multilevel Caches.

Other Main Memory Architectures.

Effects on the Software.

Hardware Consistency for Nonsequential Memory Models.

Performance Considerations for Software.

Summary.

Exercises.

Further Reading.

Appendix A: Architecture Summary.
Appendix B: Answers to Selected Exercises.
Index. 0201633388T04062001

Preface

The goal of this book is to provide practical information on the issues operating systems must address in order to run on modern computer systems that employ cache memories and/or multiprocessors. At the time of this writing, a number of books describe UNIX system implementations, but none describes in detail how caches and multiprocessors should be managed. Many computer architecture books describe caches and multiprocessors from the hardware aspect, but none successfully deals with the operating system issues that these modern architectures present. This book is intended to fill these gaps by bridging computer architecture and operating systems.

Written with the operating developer in mind, this book explains the operation of caches and multiprocessors from the system programmers point of view. While targeted toward UNIX system programmers, the book has been written so that the information can be applied to any operating system, including all UNIX variations. This is accomplished by explaining the issues and solutions at a conceptual level and using the UNIX system services as examples of where the issues will be encountered. The solutions can then be applied to other operating systems in the corresponding situations.

This book is intended to assist the operating system developer in two ways. First, the reader will learn how existing operating systems must be adapted to run on modern architectures. This is accomplished by a detailed examination of the operation of these architectures from the operating system perspective and an explanation of what the operating system must do to manage them. Second, the reader will learn the trade-offs involved in the different approaches taken by modern architectures. This will give the operating system developer the background needed when involved in the design of new computer systems employing caches and multiprocessors.

The reader is assumed to be familiar with the UNIX system call interface and the high-level concepts of UNIX kernel internals. The reader should also be familiar with computer architecture and computer system organization as would be taught in an undergraduate-level computer science course.

This book is an extension of a course I developed for UNIX system professionals in the computer industry. The course has been taught during the past four years in the United States at USENIX conferences, and in Europe at the EurOpen and UKUUG conferences. The course is a one-day tutorial and as such is limited in the amount of material that can be covered. This book covers all the course material on cache memories and multiprocessors in greater detail and includes additional topics.

This book is suitable for use in an upper-division undergraduate-level course or at the graduate level. Each chapter concludes with a list of exercises. The questions were chosen so that they could be solved with the information provided in the chapter plus some additional thought, rather than simply parrot the material. In many cases, the exercises build upon the examples presented in the chapter. Answers are generally expected to take the form of a short paragraph (four to five sentences in most cases, sometimes longer). The reader is urged to try all the questions in order to reinforce the concepts learned. Answers to selected exercises are provided in the back of the book.

We begin with a review of the UNIX system internals that are relevant to the discussion in the remainder of the book. The purpose of the review is to reinforce the concepts of the UNIX operating system and to define terminology used later. The book is then divided into three main parts: cache memory systems, multiprocessor UNIX implementations, and multiprocessor cache consistency. The first part, cache memory systems, introduces cache architecture, terminology, and concepts. It then proceeds to take a detailed look at four common cache implementations: three variations of the virtual cache and then the physical cache. The second part, multiprocessor UNIX implementations, looks at the problems and design issues faced when adapting a uniprocessor kernel implementation to run on a tightly coupled, shared memory multiprocessor. Several different implementations are examined. The final part, multiprocessor cache consistency, combines the concepts of the first two parts by examining the operating system and cache architecture issues that occur when caches are added to a tightly coupled, shared memory multiprocessor system.

A selected set of modern microprocessor architectures is used to illustrate the concepts where appropriate. Representing the traditional CISC (complex instruction set computer) processors are the Motorola 68040 and the Intel 80X86 line (80386, 80486, and Pentium). The RISC (reduced instruction set computer) approach is represented by the MIPS line (R2000, R3000, and R4000), the Motorola 88000, and the SPARC version 8 compatible processors from Texas Instruments (the MicroSPARC and the SuperSPARC). Several other examples, including Sun and Apollo workstations and the Intel i860, are also presented. A summary of the characteristics of these processors can be found in Appendix A.

I owe my gratitude to the people who offered their time to review the manuscript before publication. In particular, I would like to thank Steve Albert, Paul Borman, Steve Buroff, Clement Cole, Peter Collinson, Geoff Collyer, Bruce Curtis, Mukesh Kacker, Brian Kernighan, Steve Rago, Mike Scheer, Brian Silverio, Rich Stevens, Manu Thapar, Chris Walquist, and Erez Zadok. I would also like to thank the Addison-Wesley staff for their help and advice on this project, particularly Kim Dawley, Kathleen Duff, Tiffany Moore, Simone Payment, Marty Rabinowitz, and John Wait. They have helped make this a better book than I could have done on my own. I would also like to thank the many people who took the time to provide thoughtful feedback by filling out the course evaluations during the tutorial sessions.

Comments, suggestions, and bug fixes regarding the contents of this book are welcome and can be sent by email to schimmel@aw.com.



0201633388P04062001

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020