Home > Store

Predictive Analytics: Microsoft® Excel 2016, Rough Cuts, 2nd Edition

Predictive Analytics: Microsoft® Excel 2016, Rough Cuts, 2nd Edition

Rough Cuts

  • Available to Safari Subscribers
  • About Rough Cuts
  • Rough Cuts are manuscripts that are developed but not yet published, available through Safari. Rough Cuts provide you access to the very latest information on a given topic and offer you the opportunity to interact with the author to influence the final publication.

Not for Sale

Also available in other formats.


  • Copyright 2018
  • Dimensions: 7" x 9-1/8"
  • Pages: 384
  • Edition: 2nd
  • Rough Cuts
  • ISBN-10: 0-13-484531-5
  • ISBN-13: 978-0-13-484531-9

This is the Rough Cut version of the printed book.


Now, you can apply cutting-edge predictive analytics techniques to help your business win–and you don’t need multimillion-dollar software to do it. All the tools you need are available in Microsoft Excel 2016, and all the knowledge and skills are right here, in this book!

Microsoft Excel MVP Conrad Carlberg shows you how to use Excel predictive analytics to solve real problems in areas ranging from sales and marketing to operations. Carlberg offers unprecedented insight into building powerful, credible, and reliable forecasts, helping you gain deep insights from Excel that would be difficult to uncover with costly tools such as SAS or SPSS.

Fully updated for Excel 2016, this guide contains valuable new coverage of accounting for seasonality and managing complex consumer choice scenarios. Throughout, Carlberg provides downloadable Excel 2016 workbooks you can easily adapt to your own needs, plus VBA code–much of it open-source–to streamline especially complex techniques.

Step by step, you’ll build on Excel skills you already have, learning advanced techniques that can help you increase revenue, reduce costs, and improve productivity. By mastering predictive analytics, you’ll gain a powerful competitive advantage for your company and yourself.

Learn the “how” and “why” of using data to make better decisions, and choose the right technique for each problem

  • Capture live real-time data from diverse sources, including third-party websites
  • Use logistic regression to predict behaviors such as “will buy” versus “won’t buy”
  • Distinguish random data bounces from real, fundamental changes
  • Forecast time series with smoothing and regression
  • Account for trends and seasonality via Holt-Winters smoothing
  • Prevent trends from running out of control over long time horizons
  • Construct more accurate predictions by using Solver
  • Manage large numbers of variables and unwieldy datasets with principal components analysis and Varimax factor rotation
  • Apply ARIMA (Box-Jenkins) techniques to build better forecasts and clarify their meaning
  • Handle complex consumer choice problems with advanced logistic regression
  • Benchmark Excel results against R results

Sample Content

Table of Contents


    1   Building a Collector

    2   Linear Regression

    3   Forecasting with Moving Averages

    4   Forecasting a Time Series: Smoothing

    5   More Advanced Smoothing Models

    6   Forecasting a Time Series: Regression

    7   Logistic Regression: The Basics

    8   Logistic Regression: Further Issues

    9   Multinomial Logistic Regressioin

  10   Principal Components Analysis

  11   Box-Jenkins ARIMA Models

  12   Varimax Factor Rotation in Excel


Submit Errata

More Information