Home > Store

Machine Learning Fundamentals with Amazon SageMaker on AWS LiveLessons (Video Training)

Register your product to gain access to bonus material or receive a coupon.

Machine Learning Fundamentals with Amazon SageMaker on AWS LiveLessons (Video Training)

Online Video

  • Your Price: $239.99
  • List Price: $299.99
  • Estimated Release: Oct 18, 2019
  • About this video
  • Video accessible from your Account page after purchase.

Description

  • Copyright 2020
  • Edition: 1st
  • Online Video
  • ISBN-10: 0-13-594527-5
  • ISBN-13: 978-0-13-594527-8

5+ Hours of Video Instruction


Machine Learning Fundamentals with Amazon SageMaker on AWS LiveLessons teaches the fundamental concepts and taxonomy for machine learning and provides a high-level overview of the tools, languages, and libraries that Amazon SageMaker uses, including the AWS console, Jupyter Notebooks, languages, and interactive data analysis libraries.


Overview


Machine Learning Fundamentals with Amazon SageMaker on AWS LiveLessons teaches the fundamental concepts and taxonomy for machine learning. It provides specific scenarios, so the user can determine if ML would be beneficial. The course also provides a high-level overview of the tools, languages, and libraries that Amazon SageMaker uses, including the AWS console, Jupyter Notebooks, languages such as Python, and interactive data analysis libraries such as Pandas. This course will also discusses common algorithms and models used with ML and Amazon SageMaker, which will help determine the appropriate model to use in specific business scenarios.


Through this course the user will walk through Amazon SageMaker’s end-to-end workflow using practical and pragmatic business scenarios. You’ll see how you can benefit from the ability of a machine to make predictions on future data through hands-on labs and key concepts. AWS is continuing to make great strides to innovate their Artificial Intelligence and Machine Learning Platform. The concepts learned in this course will provide you with the foundation to build your own innovative systems on this dynamic platform.


Topics include:


Module 1: What is Amazon SageMaker?
Module 2: Fundamentals Machine Learning Concepts with Practical Applications
Module 3: Amazon SageMaker Supporting Tools and Technologies
Module 4: Data and Model Management with Amazon SageMaker
Module 5: Predictions and Deployment with Amazon SageMaker



Skill Level

  • Beginner


Learn How To

  • Understand key machine learning concepts and taxonomy
  • Identify appropriate use cases and business scenarios than can benefit from Amazon SageMaker
  • Leverage the languages, libraries, and tools used in conjunction with Amazon SageMaker
  • Identify, prepare, and load data for analysis with Amazon SageMaker
  • Build and train datasets, train and fine tune models, create predictions and deploy these models to production using Amazon SageMaker
  • Use Amazon SageMaker with the AWS Console & SageMaker Dashboard
  • Couple conceptual knowledge with the hands-on experience to generate real time and batch predictions
  • Use common tools used in Machine Learning such as Jupyter Notebooks
  • Walk away with a preliminary understanding of the languages and libraries used with Machine Learning


Who Should Take This Course

  • Data scientist or developer who would like to build, train, and deploy machine learning models with speed and ease
  • Software programmers or data analysts who want to remain current on the latest AI/ML developments
  • Anyone wanting to learn the fundamentals of machine learning including concepts, taxonomy, workflow, and tools
  • Anyone wanting to accelerate your learning of Amazon SageMaker by learning principles combined with pragmatic experience


Course Requirements

  • An AWS Account, should you wish to follow along (AWS Free Tier can be used for 2 months.)
  • Ideally, have some experience with AWS, but not required
  • Ideally, you should have familiarity with software languages used with data analytics or software development preferred (for example, Python, R)


Lesson Descriptions


Module 1, "What is Amazon SageMaker?," provides a history of the evolution of AI and ML. The benefits of Amazon SageMaker will be reviewed and sample use cases are provided. After you're comfortable with the basics, you'll learn about how Amazon SageMaker works. We’ll talk about the lifecycle of ML processing and options for data sources. In the last lesson, we’ll do a walkthrough of the Amazon SageMaker console and discuss the various sub-services available within Amazon SageMaker. By the end of this module, you should be able to explain Amazon SageMaker to your friends and have some experience with the AWS Console.


Module 2, "Fundamentals Machine Learning Concepts with Practical Applications," dives into the taxonomy and terms used in the machine-learning world. This module is all about information architecture, including features, observations, and ground truth. We’ll learn about what makes good data and how you can make intelligent choices with preparing your data for Amazon ML.


Module 3, "Amazon SageMaker Supporting Tools and Technologies." After a quick refresher on key technologies used in conjunction with Amazon SageMaker, the remainder of this module is entirely composed of demos, which is designed to share the hands-on experience creating a new Amazon SageMaker data source, configuring that data source, and refining the schema. We’ll work directly with the S3 and the Amazon SageMaker console and experiment with features on managing your Amazon SageMaker data source. We will do this by leveraging the sample notebooks and algorithms provided by Amazon SageMaker.


Module 4, "Data and Model Management with Amazon SageMaker," will show how to prepare and upload data to Amazon S3. Using a real-life example, we’ll spend two lessons on learning about algorithms so that we can build an appropriate model. After we have our model in place, we’ll cover tips on how you can assess performance and fine tune the model as necessary.


Module 5, "Predictions and Deployment with Amazon SageMaker," talks about deployment and dives into predictions and determining future data. So far, we have provided you with the tools to construct quality datasets so that your SageMaker model performs well. Now, we will deploy that model in order to conduct predictions. This is a great way to build sales forecasts, as well as value a curated collection. It also provides some helpful cleanup tips so that you don’t incur unnecessary charges.


About Pearson Video Training


Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Prentice Hall, Sams, and Que. Topics include: IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.


Video Lessons are available for download for offline viewing within the streaming format. Look for the green arrow in each lesson.

Sample Content

Table of Contents

Module 1: What is Amazon SageMaker?
Lesson 1: Amazon Artificial Intelligence and Machine Learning Overview
Lesson 2: How Does Amazon SageMaker Work?
Lesson 3: Which Use Cases Can Amazon SageMaker Solve?
Lesson 4: High Level Overview of the Amazon SageMaker Components


Module 2: Fundamentals Machine Learning Concepts with Practical Applications
Lesson 5: Machine Learning Concepts and Taxonomy
Lesson 6: Selecting the Appropriate Data
Lesson 7: Practical Applications for Machine Learning


Module 3: Amazon SageMaker Supporting Tools and Technologies
Lesson 8: Refresher on Technologies Leveraged by Amazon SageMaker
Lesson 9: Interactive Lab: Review the SageMaker Console
Lesson 10: Interactive Lab: Working with Jupyter Notebooks
Lesson 11: Interactive Lab: Example SageMaker Notebooks


Module 4: Data and Model Management with Amazon SageMaker
Lesson 12: Data and Model Management with Amazon SageMaker
Lesson 13: A Closer Look at Algorithms
Lesson 14: Algorithms Selection
Lesson 15: Model Training
Lesson 16: Assess Model Performance


Module 5: Predictions and Deployment with Amazon SageMaker
Lesson 17: Deploy Model
Lesson 18: Predictions or Inferences
Lesson 19: Call to Action & Conclusion

Updates

Submit Errata

More Information

Unlimited one-month access with your purchase
Free Safari Membership