Home > Store > Engineering > Chemical Engineering

Essentials of Chemical Reaction Engineering

Essentials of Chemical Reaction Engineering

eBook (Adobe DRM)

  • Your Price: $88.40
  • List Price: $104.00
  • About Adobe DRM eBooks
  • This eBook requires the free Adobe® Digital Editions software.

    Before downloading this DRM-encrypted PDF, be sure to:


    • Install the free Adobe Digital Editions software on your machine. Adobe Digital Editions only works on Macintosh and Windows, and requires the Adobe Flash Player. Please see the official system requirements.
    • Authorize your copy of Adobe Digital Editions using your Adobe ID (select AdobeID as the eBook vendor). If you don't already have an Adobe ID, you can create one here.

Also available in other formats.

Register your product to gain access to bonus material or receive a coupon.

Description

  • Copyright 2011
  • Dimensions: 8" x 10"
  • Pages: 792
  • Edition: 1st
  • eBook (Adobe DRM)
  • ISBN-10: 0-13-231716-8
  • ISBN-13: 978-0-13-231716-0

Learn Chemical Reaction Engineering through Reasoning, Not Memorization

Essentials of Chemical Reaction Engineering is a complete yet concise, modern introduction to chemical reaction engineering for undergraduate students. While the classic Elements of Chemical Reaction Engineering, Fourth Edition, is still available, H. Scott Fogler distilled that larger text into this volume of essential topics for undergraduate students.

Fogler’s unique way of presenting the material helps students gain a deep, intuitive understanding of the field’s essentials through reasoning, not memorization. He especially focuses on important new energy and safety issues, ranging from solar and biomass applications to the avoidance of runaway reactions.

Thoroughly classroom tested, this text reflects feedback from hundreds of students at the University of Michigan and other leading universities. It also provides new resources to help students discover how reactors behave in diverse situations.

Coverage includes

  • Crucial safety topics, including ammonium nitrate CSTR explosions, nitroaniline and T2 Laboratories batch reactor runaways, and SAChE/CCPS resources
  • Greater emphasis on safety: following the recommendations of the Chemical Safety Board (CSB) 2 case studies from plant explosions and two homework problems which discuss another explosion.
  • Solar energy conversions: chemical, thermal, and catalytic water spilling
  • Algae production for biomass
  • Mole balances: batch, continuous-flow, and industrial reactors
  • Conversion and reactor sizing: design equations, reactors in series, and more
  • Rate laws and stoichiometry
  • Isothermal reactor design: conversion and molar flow rates
  • Collection and analysis of rate data
  • Multiple reactions: parallel, series, and complex reactions; membrane reactors; and more
  • Reaction mechanisms, pathways, bioreactions, and bioreactors
  • Catalysis and catalytic reactors
  • Nonisothermal reactor design: steady-state energy balance and adiabatic PFR applications
  • Steady-state nonisothermal reactor design: flow reactors with heat exchange

Sample Content

Table of Contents

Preface xv

About the Author xxix

Chapter 1: Mole Balances 1

1.1 The Rate of Reaction, —rA 4

1.2 The General Mole Balance Equation 8

1.3 Batch Reactors (BRs) 10

1.4 Continuous-Flow Reactors 12

1.5 Industrial Reactors 22

Chapter 2: Conversion and Reactor Sizing 33

2.1 Definition of Conversion 34

2.2 Batch Reactor Design Equations 34

2.3 Design Equations for Flow Reactors 37

2.4 Sizing Continuous-Flow Reactors 40

2.5 Reactors in Series 49

2.6 Some Further Definitions 60

Chapter 3: Rate Laws 73

3.1 Basic Definitions 74

3.2 The Reaction Order and the Rate Law 76

3.3 The Reaction Rate Constant 86

3.4 Present Status of Our Approach to Reactor Sizing and Design 93

Chapter 4: Stoichiometry 105

4.1 Batch Systems 107

4.2 Flow Systems 113

Chapter 5: Isothermal Reactor Design: Conversion 139

5.1 Design Structure for Isothermal Reactors 140

5.2 Batch Reactors (BRs) 144

5.3 Continuous Stirred Tank Reactors (CSTRs) 152

5.4 Tubular Reactors 162

5.5 Pressure Drop in Reactors 169

5.6 Synthesizing the Design of a Chemical Plant 188

Chapter 6: Isothermal Reactor Design: Molar Flow Rates 207

6.1 The Molar Flow Rate Balance Algorithm 208

6.2 Mole Balances on CSTRs, PFRs, PBRs, and Batch Reactors 208

6.3 Applications of the Molar Flow Rate Algorithm to Microreactors 212

6.4 Membrane Reactors 217

6.5 Unsteady-State Operation of Stirred Reactors 225

6.6 Semibatch Reactors 226

Chapter 7: Collection and Analysis of Rate Data 245

7.1 The Algorithm for Data Analysis 246

7.2 Determining the Reaction Order for Each of Two Reactants Using the Method of Excess 248

7.3 Integral Method 249

7.4 Differential Method of Analysis 253

7.5 Nonlinear Regression 259

7.6 Reaction Rate Data from Differential Reactors 264

7.7 Experimental Planning 271

Chapter 8: Multiple Reactions 283

8.1 Definitions 283

8.2 Algorithm for Multiple Reactions 286

8.3 Parallel Reactions 289

8.4 Reactions in Series 298

8.5 Complex Reactions 308

8.6 Membrane Reactors to Improve Selectivity in Multiple Reactions 316

8.7 Sorting It All Out 321

8.8 The Fun Part 321

Chapter 9: Reaction Mechanisms, Pathways, Bioreactions, and Bioreactors 339

9.1 Active Intermediates and Nonelementary Rate Laws 340

9.2 Enzymatic Reaction Fundamentals 349

9.3 Inhibition of Enzyme Reactions 364

9.4 Bioreactors and Biosynthesis 371

Chapter 10: Catalysis and Catalytic Reactors 409

10.1 Catalysts 409

10.2 Steps in a Catalytic Reaction 415

10.3 Synthesizing a Rate Law, Mechanism, and Rate-Limiting Step 431

10.4 Heterogeneous Data Analysis for Reactor Design 446

10.5 Reaction Engineering in Microelectronic Fabrication 456

10.6 Model Discrimination 461

Chapter 11: Nonisothermal Reactor Design—The Steady State Energy Balance and Adiabatic PFR Applications 477

11.1 Rationale 478

11.2 The Energy Balance 479

11.3 The User Friendly Energy Balance Equations 486

11.4 Adiabatic Operation 492

11.5 Adiabatic Equilibrium Conversion and Reactor Staging 502

11.6 Optimum Feed Temperature 509

Chapter 12: Steady-State Nonisothermal Reactor Design–Flow Reactors with Heat Exchange 521

12.1 Steady-State Tubular Reactor with Heat Exchange 522

12.2 Balance on the Heat Transfer Fluid 525

12.3 Algorithm for PFR/PBR Design with Heat Effects 527

12.4 CSTR with Heat Effects 545

12.5 Multiple Steady States (MSS) 556

12.6 Nonisothermal Multiple Chemical Reactions 563

12.7 Safety 577

Chapter 13: Unsteady-State Nonisothermal Reactor Design 601

13.1 The Unsteady-State Energy Balance 602

13.2 Energy Balance on Batch Reactors 604

13.3 Semibatch Reactors with a Heat Exchanger 615

13.4 Unsteady Operation of a CSTR 620

13.5 Nonisothermal Multiple Reactions 624

Appendix A: Numerical Techniques 649

Appendix B: Ideal Gas Constant and Conversion Factors 655

Appendix C: Thermodynamic Relationships Involving the Equilibrium Constant 659

Appendix D: Nomenclature 665

Appendix E: Software Packages 669

E.1 Polymath 669

E.2 AspenTech 670

E.3 COMSOL 671

E.4 Software Packages 671

Appendix F: Rate Law Data 673

Appendix G: Open-Ended Problems 675

G.1 Design of Reaction Engineering Experiment 675

G.2 Effective Lubricant Design 675

G.3 Peach Bottom Nuclear Reactor 675

G.4 Underground Wet Oxidation 675

G.5 Hydrodesulfurization Reactor Design 676

G.6 Continuous Bioprocessing 676

G.7 Methanol Synthesis 676

G.8 Alcohol Metabolism 676

G.9 Methanol Poisoning 676

G.10 Cajun Seafood Gumbo 676

Appendix H: How to Use the DVD-ROM 679

H.1 DVD-ROM Components 679

H.2 How the DVD-ROM/Web Can Help Learning Styles 682

H.3 Navigation 683

Index 685

Updates

Submit Errata

More Information

Unlimited one-month access with your purchase
Free Safari Membership