Home > Articles > Data

This chapter is from the book

Structural Mapping Patterns

When people talk about object-relational mapping, mostly what they mean is these kinds of structural mapping patterns, which you use when mapping between in-memory objects and database tables. These patterns aren't usually relevant for Table Data Gateway (144), but you may use a few of them if you use Row Data Gateway (152) or Active Record (160). You'll probably need to use all of them for Data Mapper (165).

Mapping Relationships

The central issue here is the different way in which objects and relations handle links, which leads to two problems. First there's a difference in representation. Objects handle links by storing references that are held by the runtime of either memory-managed environments or memory addresses. Relational databases handle links by forming a key into another table. Second, objects can easily use collections to handle multiple references from a single field, while normalization forces all relation links to be single valued. This leads to reversals of the data structure between objects and tables. An order object naturally has a collection of line item objects that don't need any reference back to the order. However, the table structure is the other way around—the line item must include a foreign key reference to the order since the order can't have a multivalued field.

The way to handle the representation problem is to keep the relational identity of each object as an Identity Field (216) in the object, and to look up these values to map back and forth between the object references and the relational keys. It's a tedious process but not that difficult once you understand the basic technique. When you read objects from the disk you use an Identity Map (195) as a lookup table from relational keys to objects. Each time you come across a foreign key in the table, you use Foreign Key Mapping (236) (see Figure 3.5) to wire up the appropriate inter-object reference. If you don't have the key in the Identity Map (195), you need to either go to the database to get it or use a Lazy Load (200). Each time you save an object, you save it into the row with the right key. Any inter-object reference is replaced with the target object's ID field.

Figure 3.5Figure 3.5 Use a Foreign Key Mapping (236) to map a single-valued field.

On this foundation the collection handling requires a more complex version of Foreign Key Mapping (236) (see Figure 3.6). If an object has a collection, you need to issue another query to find all the rows that link to the ID of the source object (or you can now avoid the query with Lazy Load (200)). Each object that comes back gets created and added to the collection. Saving the collection involves saving each object in it and making sure it has a foreign key to the source object. This gets messy, especially when you have to detect objects added or removed from the collection. This can get repetitive when you get the hang of it, which is why some form of metadata-based approach becomes an obvious move for larger systems (I'll elaborate on that later). If the collection objects aren't used outside the scope of the collection's owner, you can use Dependent Mapping (262) to simplify the mapping.

Figure 3.6Figure 3.6 Use a Foreign Key Mapping (236) to map a collection field.

objects aren't used outside the scope of the collection's owner, you can use Dependent Mapping (262) to simplify the mapping.

A different case comes up with a many-to-many relationship, which has a collection on both ends. An example is a person having many skills and each skill knowing the people who use it. Relational databases can't handle this directly, so you use an Association Table Mapping (248) (see Figure 3.7) to create a new relational table just to handle the many-to-many association.

Figure 3.7Figure 3.7 Use an Association Table Mapping (248) to map a many-to-many association.

When you're working with collections, a common gotcha is to rely on the ordering within the collection. In OO languages it's common to use ordered collections such as lists and arrays—indeed, it often makes testing easier. Nevertheless, it's very difficult to maintain an arbitrarily ordered collection when saved to a relational database. For this reason it's worth considering using unordered sets for storing collections. Another option is to decide on a sort order whenever you do a collection query, although that can be quite expensive.

In some cases referential integrity can make updates more complex. Modern systems allow you to defer referential integrity checking to the end of the transaction. If you have this capability, there's no reason not to use it. Otherwise, the database will check on every write. In this case you have to be careful to do your updates in the right order. How to do this is out of the scope of this book, but one technique is to do a topological sort of your updates. Another is to hardcode which tables get written in which order. This can sometimes reduce deadlock problems inside the database that cause transactions to roll back too often.

Identity Field (216) is used for inter-object references that turn into foreign keys, but not all object relationships need to be persisted that way. Small Value Objects (486), such as date ranges and money objects clearly shouldn't be represented as their own table in the database. Instead, take all the fields of the Value Object (486) and embed them into the linked object as a Embedded Value (268). Since Value Objects (486) have value semantics, you can happily create them each time you get a read and you don't need to bother with an Identity Map (195). Writing them out is also easy—just dereference the object and spit out its fields into the owning table.

You can do this kind of thing on a larger scale by taking a whole cluster of objects and saving them as a single column in a table as a Serialized LOB (272). LOB stands for "Large OBject," which can be either binary (BLOB) textual (CLOB—Character Large OBject). Serializing a clump of objects as an XML document is an obvious route to take for a hierarchic object structure. This way you can grab a whole bunch of small linked objects in a single read. Often databases perform poorly with small highly interconnected objects—where you spend a lot of time making many small database calls. Hierarchic structures such as org charts and bills of materials are where a Serialized LOB (272) can save a lot of database roundtrips.

The downside is that SQL isn't aware of what's happening, so you can't make portable queries against the data structure. Again, XML may come to the rescue here, allowing you to embed XPath query expressions within SQL calls, although the embedding is largely nonstandard at the moment. As a result Serialized LOB (272) is best used when you don't want to query for the parts of the stored structure.

Usually a Serialized LOB (272) is best for a relatively isolated group of objects that make part of an application. If you use it too much, it ends up turning your database into little more than a transactional file system.

Inheritance

In the above hierarchies I'm talking about compositional hierarchies, such as a parts tree, which relational system traditionally do poorly. There's another kind of hierarchy that causes relational headaches: a class hierarchy linked by inheritance. Since there's no standard way to do inheritance in SQL, we again have a mapping to perform. For any inheritance structure there are basically three options. You can have a one table for all the classes in the hierarchy: Single Table Inheritance (278) (see Figure 3.8); one table for each concrete class: Concrete Table Inheritance (293) (see Figure 3.9); or one table per class in the hierarchy; Class Table Inheritance (285) (see Figure 3.10).

Figure 3.8Figure 3.8 Single Table Inheritance (278) uses one table to store all the classes in a hierarchy.


Figure 3.9Figure 3.9 Concrete Table Inheritance (293) uses one table to store each concrete class in a ierarchy.


Figure 3.10Figure 3.10 \Class Table Inheritance (285) uses one table for each class in a hierarchy.

The trade-offs are all between duplication of data structure and speed of access. Class Table Inheritance (285) is the simplest relationship between the classes and the tables, but it needs multiple joins to load a single object, which usually reduces performance. Concrete Table Inheritance (293) avoids the joins, allowing you pull a single object from one table, but it's brittle to changes. With any change to a superclass you have to remember to alter all the tables (and the mapping code). Altering the hierarchy itself can cause even bigger changes. Also, the lack of a superclass table can make key management awkward and get in the way of referential integrity, although it does reduce lock contention on the superclass table. In some databases Single Table Inheritance (278)'s biggest downside is wasted space, since each row has to have columns for all possible subtypes and this leads to empty columns. However, many databases do a very good job of compressing wasted table space. Another problem with Single Table Inheritance (278) is its size, making it a bottleneck for accesses. Its great advantage is that it puts all the stuff in one place, which makes modification easier and avoids joins.

The three options aren't mutually exclusive, and in one hierarchy you can mix patterns. For instance, you could have several classes pulled together with Single Table Inheritance (278) and use Class Table Inheritance (285) for a few unusual cases. Of course, mixing patterns adds complexity.

There's no clearcut winner here. You need to take into account your own circumstances and preferences, much as with all the rest of these patterns. My first choice tends to be Single Table Inheritance (278), as it's easy to do and is resilient to many refactorings. I tend to use the other two as needed to help solve the inevitable issues with irrelevant and wasted columns. Often the best is to talk to the DBAs; they often have good advice as to the sort of access that makes the most sense for the database.

All the examples just described, and in the patterns, use single inheritance. Although multiple inheritance is becoming less fashionable these days and most languages are increasingly avoiding it, the issue still appears in O/R mapping when you use interfaces, as in Java and .NET. The patterns here don't go into this topic specifically, but essentially you cope with multiple inheritance using variations of the trio of inheritance patterns. Single Table Inheritance (278) puts all superclasses and interfaces into the one big table, Class Table Inheritance (285) makes a separate table for each interface and superclass, and Concrete Table Inheritance (293) includes all interfaces and superclasses in each concrete table.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020