Home > Store

C++ Gotchas: Avoiding Common Problems in Coding and Design

Register your product to gain access to bonus material or receive a coupon.

C++ Gotchas: Avoiding Common Problems in Coding and Design

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

The professional programmer's manual for avoiding or correcting 99 of the most common, destructive, and interesting C++ programming errors.

° Author is highly regarded and very well known.

° Provides intermediate programmers with the practical know-how needed to gain expert status.

° In the prestigious Addison-Wesley Professional Computing Series!

Description

  • Copyright 2003
  • Dimensions: 7-3/8" x 9-1/4"
  • Pages: 352
  • Edition: 1st
  • Book
  • ISBN-10: 0-321-12518-5
  • ISBN-13: 978-0-321-12518-7

C++ Gotchas is the latest addition to the distinguished roster of Addison-Wesley's bestselling programming titles, such as Effective C++ and Exceptional C++. While appealing to the same broad audience of intermediate C++ programmers, this book has a completely different approach. The author presents 99 "gotchas" - common and preventable problems in C++ programming and design. The gotchas run the gamut from minor syntactic annoyances to basic design flaws to psychological behavior. The material has been selected based on the author's extensive experience presenting gotchas in his training classes, speaking engagements, and magazine articles. By learning the lessons in this book C++ programmers will save themselves much time and wasted effort. C++ Gotchas is destined to become an invaluable reference to many programmers.

Extras

Author's Site

Click below for Web Resources related to this title:
Author Web Site

Sample Content

Online Sample Chapter

C++ Memory and Resource Management

Downloadable Sample Chapter

Click below for Sample Chapter(s) related to this title:
Sample Chapter 6

Sample Pages

Download the sample pages (includes Chapter 6 and Index)

Table of Contents



Preface.


Acknowledgments.


1. Basics.

Gotcha #1: Excessive Commenting.

Gotcha #2: Magic Numbers.

Gotcha #3: Global Variables.

Gotcha #4: Failure to Distinguish Overloading from Default Initialization.

Gotcha #5: Misunderstanding References.

Gotcha #6: Misunderstanding Const.

Gotcha #7: Ignorance of Base Language Subtleties.

Gotcha #8: Failure to Distinguish Access and Visibility.

Gotcha #9: Using Bad Language.

Gotcha #10: Ignorance of Idiom.

Gotcha #11: Unnecessary Cleverness.

Gotcha #12: Adolescent Behavior.



2. Syntax.

Gotcha #13: Array/Initializer Confusion.

Gotcha #14: Evaluation Order Indecision.

Gotcha #15: Precedence Problems.

Gotcha #16: for Statement Debacle.

Gotcha #17: Maximal Munch Problems.

Gotcha #18: Creative Declaration-Specifier Ordering.

Gotcha #19: Function/Object Ambiguity.

Gotcha #20: Migrating Type-Qualifiers.

Gotcha #21: Self Initialization.

Gotcha #22: Static and Extern Types.

Gotcha #23: Operator Function Lookup Anomaly.

Gotcha #24: Operator — Subtleties.



3. The Preprocessor.

Gotcha #25: #define Literals.

Gotcha #26: #define Pseudofunctions.

Gotcha #27: Overuse of #if.

Gotcha #28: Side Effects in Assertions.



4. Conversions.

Gotcha #29: Converting Through void *.

Gotcha #30: Slicing.

Gotcha #31: Misunderstanding Pointer-to-Const Conversion.

Gotcha #32: Misunderstanding Pointer-to-Pointer-to-Const Conversion.

Gotcha #33: Misunderstanding Pointer-to-Pointer-to-Base Conversion.

Gotcha #34: Pointer-to-MultiDimensional Array Problems.

Gotcha #35: Unchecked Downcasting.

Gotcha #36: Misusing Conversion Operators.

Gotcha #37: Unintended Constructor Conversion.

Gotcha #38: Casting Under Multiple Inheritance.

Gotcha #39: Casting Incomplete Types.

Gotcha #40: Old-Style Casts.

Gotcha #41: Static Casts.

Gotcha #42: Temporary Initialization of Formal Arguments.

Gotcha #43: Temporary Lifetime.

Gotcha #44: References and Temporaries.

Gotcha #45: Ambiguity Failure of dynamic_cast.

Gotcha #46: Misunderstanding Contravariance.



5. Initialization.

Gotcha #47: Assignment/Initialization Confusion.

Gotcha #48: Improperly Scoped Variables.

Gotcha #49: Failure to Appreciate C++'s Fixation on Copy Operations.

Gotcha #50: Bitwise Copy of Class Objects.

Gotcha #51: Confusing Initialization and Assignment in Constructors.

Gotcha #52: Inconsistent Ordering of the Member Initialization List.

Gotcha #53: Virtual Base Default Initialization.

Gotcha #54: Copy Constructor Base Initialization.

Gotcha #55: Runtime Static Initialization Order.

Gotcha #56: Direct versus Copy Initialization.

Gotcha #57: Direct Argument Initialization.

Gotcha #58: Ignorance of the Return Value Optimizations.

Gotcha #59: Initializing a Static Member in a Constructor.



6. Memory and Resource Management.

Gotcha #60: Failure to Distinguish Scalar and Array Allocation.

Gotcha #61: Checking for Allocation Failure.

Gotcha #62: Replacing Global New and Delete.

Gotcha #63: Confusing Scope and Activation of Member new and delete.

Gotcha #64: Throwing String Literals.

Gotcha #65: Improper Exception Mechanics.

Gotcha #66: Abusing Local Addresses.

Gotcha #67: Failure to Employ Resource Acquisition Is Initialization.

Gotcha #68: Improper Use of auto_ptr.



7. Polymorphism.

Gotcha #69: Type Codes.

Gotcha #70: Nonvirtual Base Class Destructor.

Gotcha #71: Hiding Nonvirtual Functions.

Gotcha #72: Making Template Methods Too Flexible.

Gotcha #73: Overloading Virtual Functions.

Gotcha #74: Virtual Functions with Default Argument Initializers.

Gotcha #75: Calling Virtual Functions in Constructors and Destructors.

Gotcha #76: Virtual Assignment.

Gotcha #77: Failure to Distinguish among Overloading, Overriding, and Hiding.

Gotcha #78: Failure to Grok Virtual Functions and Overriding.

Gotcha #79: Dominance Issues.



8. Class Design.

Gotcha #80: Get/Set Interfaces.

Gotcha #81: Const and Reference Data Members.

Gotcha #82: Not Understanding the Meaning of Const Member Functions.

Gotcha #83: Failure to Distinguish Aggregation and Acquaintance.

Gotcha #84: Improper Operator Overloading.

Gotcha #85: Precedence and Overloading.

Gotcha #86: Friend versus Member Operators.

Gotcha #87: Problems with Increment and Decrement.

Gotcha #88: Misunderstanding Templated Copy Operations.



9. Hierarchy Design.

Gotcha #89: Arrays of Class Objects.

Gotcha #90: Improper Container Substitutability.

Gotcha #91: Failure to Understand Protected Access.

Gotcha #92: Public Inheritance for Code Reuse.

Gotcha #93: Concrete Public Base Classes.

Gotcha #94: Failure to Employ Degenerate Hierarchies.

Gotcha #95: Overuse of Inheritance.

Gotcha #96: Type-Based Control Structures.

Gotcha #97: Cosmic Hierarchies.

Gotcha #98: Asking Personal Questions of an Object.

Gotcha #99: Capability Queries.



Bibliography.


Index. 0321125185T11072002

Preface

This book is the result of nearly two decades of minor frustrations, serious bugs, late nights, and weekends spent involuntarily at the keyboard. This collection consists of 99 of some of the more common, severe, or interesting C++ gotchas, most of which I have (I'm sorry to say) experienced personally.The term "gotcha" has a rather cloudy history, and a variety of definitions. For the purposes of this book, we'll define C++ gotchas as common and preventable problems in C++ programming and design. The gotchas described here run the gamut from minor syntactic annoyances to basic design flaws to full-blown sociopathic behavior.

Almost ten years ago, I started including notes about individual gotchas in my C++ course material. My feeling was that pointing out these common misconceptions and misapplications in apposition to correct use would have the effect of inoculating the student against them, and help to prevent new generations of C++ programmers from repeating the gotchas of the past. By and large, the approach worked, and I was induced to collect sets of related gotchas together for presentation at conferences. These presentations proved to be popular (misery loves company?) and I was encouraged to write a "gotcha" book.Any discussion of avoiding or recovering from C++ gotchas involves other subjects, most commonly design patterns, idioms, and technical details of C++ language features.

This is not a book about design patterns, but we often find ourselves referring to patterns as a means of avoiding or recovering from a particular gotcha. Conventionally, the pattern name is capitalized, as in "Template Method" pattern or "Bridge" pattern. When we mention a pattern, we describe its mechanics briefly if they are simple, but delegate detailed discussion of patterns to works devoted to them. Unless otherwise noted, a fuller description of a pattern, as well as a richer discussion of patterns in general, may be found in Design Patterns. Descriptions of the Acyclic Visitor, Monostate, and Null Object patterns may be found in Agile Software Development (see the bibliography).

From the perspective of gotchas, design patterns have two important properties. First, they describe proven, successful design techniques that can be customized in a context-dependent way to new design situations. Second, and perhaps more importantly, mentioning the application of a particular pattern serves to document not only the technique that is applied, but also the reasons for its application and the effect of having applied it. For example, when we see that the Bridge pattern has been applied to a design, we know at a simple mechanical level that an abstract data type implementation has been separated into an interface class and an implementation class. Additionally, we know that the reason this was done was to separate strongly the interface from the implementation, so that changes to the implementation will not affect users of the interface. We also know that there is a runtime cost for this separation, how the source code for the abstract data type should be arranged, and many other details. A pattern name is an efficient, unambiguous handle to a wealth of information and experience about a technique, and careful, accurate use of patterns and pattern terminology in design and documentation clarify code and help to prevent gotchas from occurring.

C++ is a complex programming language, and the more complex a language is, the more important is the use of idiom in programming. For a programming language, an idiom is a commonly used and generally understood combination of lower-level language features that produces a higher-level construct, in much the same way that patterns do at higher levels of design. Therefore, in C++ we can discuss copy operations, function objects, smart pointers, and throwing an exception without having to specify these concepts at their lowest level of implementation. It is important to note that an idiom is not only a common combination of language features, but also a common set of expectations about how these combined features should behave. What do copy operations mean? What can we expect to happen when an exception is thrown? Much of the advice found in this book involves being aware of and employing idioms in C++ coding and design. Many of the gotchas listed here could be described simply as departing from a particular C++ idiom, and the accompanying solution to the problem could often be described simply as following the appropriate idiom (see Gotcha #10).A significant portion of this book is spent in describing the nuances of certain areas of the C++ language that are commonly misunderstood and frequently lead to gotchas. While some of this material may have an esoteric feel to it, unfamiliarity with these areas of the language is a source of problems and a barrier to expert use of C++. These "dark corners" of the language also make an interesting and profitable study in themselves. They are in the C++ language for a reason, and expert C++ programmers often find use for them in advanced programming and design.

Another area of connection between gotchas and design patterns is the similar importance of describing relatively simple instances. Simple patterns are important. In some respects, they may be more important than technically difficult patterns because they are likely to be more commonly employed. The benefits obtained from the pattern description will, therefore, be leveraged over a larger body of code and design. In much the same way, the gotchas described in this book range over a wide range of difficulty, from a simple exhortation to act like a responsible professional (Gotcha #12) to warnings to avoid misunderstanding the dominance rule under virtual inheritance (Gotcha #79). But, as in the analogous case with patterns, acting responsibly is probably more commonly applicable on a day-to-day basis than is the dominance rule.

Two common themes run through the presentation. The first is the overriding importance of convention. This is especially important in a complex language like C++. Adherence to established convention allows us to communicate efficiently and accurately with others. The second theme is the recognition that others will maintain the code we write. The maintenance may be direct, so that our code must be readily and generally understood by competent maintainers; or it may be indirect, in which case we must ensure that our code remains correct even as its behavior is modified by remote changes.

The gotchas in this book are presented as a collection of short essays, each of which describes a gotcha, or a set of related gotchas, along with suggestions for avoiding or correcting them. I'm not sure that any book about gotchas can be entirely cohesive, due to the anarchistic nature of the subject. However, the gotchas are grouped into chapters according to their general nature or area of (mis)applicability. Additionally, discussion of one gotcha inevitably touches on others. Where it makes sense to do so--and it generally does--I've made these links explicit. Cohesion within each item is sometimes at risk as well. Often it is necessary, before getting to the description of a particular gotcha, to describe the context in which it appears. That description, in turn, may require discussion of a technique, idiom, pattern, or language nuance that may lead us even further afield before we return to the advertised gotcha. I've tried to keep this meandering to a minimum, but it would have been dishonest, I think, to attempt to avoid it entirely. Effective programming in C++ involves intelligent coordination of so many disparate areas, that it's impractical to imagine that one can examine its etiology effectively without involving a similar eclectic collection of topics.

It is certainly not necessary--and possibly inadvisable--to read this book straight through from Gotcha #1 to Gotcha #99. Such a concentrated dose of mayhem may put you off programming in C++ altogether. A better approach may be to start with a gotcha that you have experienced or with one that sounds interesting, and follow links to related gotchas. Alternatively, you may sample the gotchas at random.

The text employs a number of devices that are intended to clarify the presentation. First, incorrect or inadvisable code is indicated by a grey background, whereas correct and proper code is presented with no background. Second, code that appears in the text has been edited for brevity and clarity. As a result, it is often the case that the examples, as presented, will not compile without additional, supporting code. The source code for non-trivial examples is available from the author's web site: www.semantics.org. All such code is indicated in the text by an abbreviated pathname appearing near the code example, as in gotcha00/somecode.cpp.

Finally, a warning: The one thing you should not do with gotchas is elevate them to the same status as idioms or patterns. One of the signs that you're using patterns and idiom properly is that the pattern or idiom appropriate to the design or coding context will arise "spontaneously" from your subconscious just when you need it. However, you do not want to encourage a similar spontaneous recall of gotchas, since you're interested in how to produce an effective design or correct code, not how to produce a failed design and buggy code. Rather, learning to recognize a gotcha is analogous to a conditioned response to danger: once burned, twice shy. The recollection of the appropriate gotcha is triggered by its presence; it is not considered and rejected a priori. However, as with matches and firearms, it is not necessary to suffer a burn or a gunshot wound to the head personally to learn how to recognize and avoid a dangerous situation; generally all that's necessary is advance warning. Consider this collection as a means to keep your head in the face of C++ gotchas.

Stephen C. Dewhurst
Carver, Massachusetts
July 2002


0321125185P07192002

Index

Click below to download the Index file related to this title:
Index

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020