
http://www.facebook.com/share.php?u=http://www.quepublishing.com/title/9780789749413
http://twitter.com/?status=RT: download a free sample chapter http://www.quepublishing.com/title/9780789749413
https://plusone.google.com/share?url=http://www.quepublishing.com/title/9780789749413
http://www.linkedin.com/shareArticle?mini=true&url=http://www.quepublishing.com/title/9780789749413
http://www.stumbleupon.com/submit?url=http://www.quepublishing.com/title/9780789749413/Free-Sample-Chapter

 Conrad Carlberg

 Predictive
Analytics:

Microsoft® Excel

 C o n t e n t s a t a G l a n c e

 Introduction .. 1
 1 Building a Collector ...7
 2 Linear Regression .. 35
 3 Forecasting with Moving Averages ... 65
 4 Forecasting a Time Series: Smoothing ..83
 5 Forecasting a Time Series: Regression ...123
 6 Logistic Regression: The Basics ...149
 7 Logistic Regression: Further Issues ..169
 8 Principal Components Analysis ... 211
 9 Box-Jenkins ARIMA Models ...241
 10 Varimax Factor Rotation in Excel...267
 Index ...283

800 East 96th Street,

Indianapolis, Indiana 46240

USA

 Editor-in-Chief
Greg Wiegand

 Acquisitions Editor
Loretta Yates

 Development Editor
Charlotte Kughen

 Managing Editor
Sandra Schroeder

 Senior Project Editor
Tonya Simpson

 Copy Editor
Water Crest Publishing

 Indexer
Tim Wright

 Proofreader
Debbie Williams

 Technical Editor
Bob Umlas

 Publishing Coordinator
Cindy Teeters

 Book Designer
Anne Jones

 Compositor
Nonie Ratcliff

Predictive Analytics: Microsoft® Excel
 Copyright © 2013 by Pearson Education, Inc.
 All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, with-
out written permission from the publisher. No patent liability
is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained
herein.

 ISBN-13: 978-0-7897-4941-3
 ISBN-10: 0-7897-4941-6

 Library of Congress Cataloging-in-Publication data is on file.

 Printed in the United States of America

Second Printing: March 2013

Trademarks
 All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized. Que
Publishing cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

 Microsoft is a registered trademark of Microsoft Corporation.

Warning and Disclaimer
 Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any per-
son or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
 Que Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

 For sales outside the United States, please contact

International Sales
international@pearsoned.com

 Table of Contents
 Introduction . 1

1 Building a Collector . 7

Planning an Approach . 8
A Meaningful Variable. 8
Identifying Sales. 8

Planning the Workbook Structure . 9
Query Sheets. 9
Summary Sheets . 13
Snapshot Formulas . 15
More Complicated Breakdowns . 16

The VBA Code . 18
The DoItAgain Subroutine. 19
The GetNewData Subroutine . 20
The GetRank Function . 24
The GetUnitsLeft Function . 26
The RefreshSheets Subroutine . 27

The Analysis Sheets . 28
Defining a Dynamic Range Name . 29
Using the Dynamic Range Name . 30

2 Linear Regression .35

Correlation and Regression . 35
Charting the Relationship . 36
Calculating Pearson’s Correlation Coefficient. 38
Correlation Is Not Causation . 41

Simple Regression. 42
Array-Entering Formulas. 44
Array-Entering LINEST() . 44

Multiple Regression . 45
Creating the Composite Variable . 45
Analyzing the Composite Variable. 48

Assumptions Made in Regression Analysis . 50
Variability . 50

Using Excel’s Regression Tool . 54
Accessing the Data Analysis Add-In. 54
Running the Regression Tool . 56

3 Forecasting with Moving Averages. .65

About Moving Averages. 65
Signal and Noise. 66

Predictive Analytics: Microsoft Exceliv

Smoothing Versus Tracking . 68
Weighted and Unweighted Moving Averages . 70

Criteria for Judging Moving Averages . 73
Mean Absolute Deviation . 73
Least Squares . 74
Using Least Squares to Compare Moving Averages . 74

Getting Moving Averages Automatically . 76
Using the Moving Average Tool . 76

4 Forecasting a Time Series: Smoothing .83

Exponential Smoothing: The Basic Idea. 84

Why “Exponential” Smoothing? . 86

Using Excel’s Exponential Smoothing Tool . 89
Understanding the Exponential Smoothing Dialog Box . 90

Choosing the Smoothing Constant. 96
Setting Up the Analysis . 97
Using Solver to Find the Best Smoothing Constant. 99
Understanding Solver’s Requirements . 104
The Point . 107

Handling Linear Baselines with Trend . 108
Characteristics of Trend . 108
First Differencing . 111

Holt’s Linear Exponential Smoothing. 115
About Terminology and Symbols in Handling Trended Series. 115
Using Holt Linear Smoothing . 116

5 Forecasting a Time Series: Regression .123

Forecasting with Regression . 123
Linear Regression: An Example . 125
Using the LINEST() Function . 128

Forecasting with Autoregression . 133
Problems with Trends . 134
Correlating at Increasing Lags . 134
A Review: Linear Regression and Autoregression . 137
Adjusting the Autocorrelation Formula . 139
Using ACFs. 140
Understanding PACFs . 142
Using the ARIMA Workbook . 147

6 Logistic Regression: The Basics .149

Traditional Approaches to the Analysis . 149
Z-tests and the Central Limit Theorem . 149
Using Chi-Square . 153
Preferring Chi-square to a Z-test . 155

vContents

Regression Analysis on Dichotomies . 158
Homoscedasticity . 158
Residuals Are Normally Distributed . 161
Restriction of Predicted Range . 161

Ah, But You Can Get Odds Forever . 162
Probabilities and Odds. 163
How the Probabilities Shift. 164
Moving On to the Log Odds . 166

7 Logistic Regression: Further Issues. .169

An Example: Predicting Purchase Behavior. 170
Using Logistic Regression . 171
Calculation of Logit or Log Odds . 179

Comparing Excel with R: A Demonstration . 193
Getting R . 193
Running a Logistic Analysis in R. 194
The Purchase Data Set. 195

Statistical Tests in Logistic Regression . 198
Models Comparison in Multiple Regression . 198
Calculating the Results of Different Models . 199
Testing the Difference Between the Models . 200
Models Comparison in Logistic Regression. 201

8 Principal Components Analysis .211

The Notion of a Principal Component . 211
Reducing Complexity. 212
Understanding Relationships Among Measurable Variables . 213
Maximizing Variance . 214
Components Are Mutually Orthogonal . 215

Using the Principal Components Add-In . 216
The R Matrix . 219
The Inverse of the R Matrix. 220
Matrices, Matrix Inverses, and Identity Matrices . 222
Features of the Correlation Matrix’s Inverse. 223
Matrix Inverses and Beta Coefficients . 225
Singular Matrices . 227
Testing for Uncorrelated Variables . 228
Using Eigenvalues . 229
Using Component Eigenvectors . 231
Factor Loadings . 233
Factor Score Coefficients . 233

Principal Components Distinguished from Factor Analysis . 236
Distinguishing the Purposes. 236
Distinguishing Unique from Shared Variance . 237
Rotating Axes . 238

Predictive Analytics: Microsoft Excelvi

9 Box-Jenkins ARIMA Models. .241

The Rationale for ARIMA . 241
Deciding to Use ARIMA . 242
ARIMA Notation . 242

Stages in ARIMA Analysis. 244

The Identification Stage. 244
Identifying an AR Process . 244
Identifying an MA Process . 248
Differencing in ARIMA Analysis . 249
Using the ARIMA Workbook . 252
Standard Errors in Correlograms . 253
White Noise and Diagnostic Checking. 254
Identifying Seasonal Models. 255

The Estimation Stage . 257
Estimating the Parameters for ARIMA(1,0,0). 257
Comparing Excel’s Results to R’s . 259
Exponential Smoothing and ARIMA(0,0,1). 261
Using ARIMA(0,1,1) in Place of ARIMA(0,0,1) . 263

The Diagnostic and Forecasting Stages . 264

10 Varimax Factor Rotation in Excel .267

Getting to a Simple Structure . 267
Rotating Factors: The Rationale . 268
Extraction and Rotation: An Example . 271
Showing Text Labels Next to Chart Markers. 275

Structure of Principal Components and Factors . 276
Rotating Factors: The Results . 277
Charting Records on Rotated Factors . 279
Using the Factor Workbook to Rotate Components . 281

 Index . 283

 About the Author
 Counting conservatively, this is Conrad Carlberg’s eleventh book about quantitative
analysis using Microsoft Excel, which he still regards with a mix of awe and exasperation.
A look back at the “About the Author” paragraph in Carlberg’s first book, published in
1995, shows that the only word that remains accurate is “He.” Scary.

 Dedication
 For Sweet Sammy and Crazy Eddie. Welcome to the club, guys.

 Acknowledgments
 Once again I thank Loretta Yates of Que for backing her judgment. Charlotte Kughen for
her work on guiding this book through development, and Sarah Kearns for her skillful copy
edit. Bob Umlas, of course, a.k.a. The Excel Trickster, for his technical edit, which kept me
from veering too far off course. And Que in general, for not being Wiley.

 We Want to Hear from You!
 As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

 As an editor-in-chief for Que Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

 Please note that I cannot help you with technical problems related to the topic of this book. We do
have a User Services group, however, where I will forward specific technical questions related to
the book.

 When you write, please be sure to include this book’s title and author as well as your name,
email address, and phone number. I will carefully review your comments and share them
with the author and editors who worked on the book.

 Email: feedback@quepublishing.com

 Mail: Greg Wiegand
Editor-in-Chief
Que Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

 Reader Services
 Visit our website and register this book at quepublishing.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

 Introduction

 A few years ago, a new word started to show up on
my personal reading lists: analytics . It threw me for
a while because I couldn’t quite figure out what it
really meant.

 In some contexts, it seemed to mean the sort of
numeric analysis that for years my compatriots and
I had referred to as stats or quants . Ours is a living
language and neologisms are often welcome. McJob.
Tebowing. Yadda yadda yadda.

 Welcome or not, analytics has elbowed its way into
our jargon. It does seem to connote quantitative
analysis, including both descriptive and inferential
statistics, with the implication that what is being
analyzed is likely to be web traffic: hits, conversions,
bounce rates, click paths, and so on. (That impli-
cation seems due to Google’s Analytics software,
which collects statistics on website traffic.)

 Furthermore, there are at least two broad, identifi-
able branches to analytics: decision and predictive :

 ■ Decision analytics has to do with classifying
(mainly) people into segments of interest to the
analyst. This branch of analytics depends heav-
ily on multivariate statistical analyses, such as
cluster analysis and multidimensional scaling.
Decision analytics also uses a method called
 logistic regression to deal with the special prob-
lems created by dependent variables that are
binary or nominal, such as buys versus doesn’t
buy and survives versus doesn’t survive.

 ■ Predictive analytics deals with forecasting, and
often employs techniques that have been used
for decades. Exponential smoothing (also
termed exponentially weighted moving aver-
ages or EMWA) is one such technique, as is
autoregression. Box-Jenkins analysis dates to

Introduction2

the middle of the twentieth century and comprises the moving average and regression
approaches to forecasting.

 Of course, these two broad branches aren’t mutually exclusive. There’s not a clear dividing
line between situations in which you would use one and not the other, although that’s often
the case. But you can certainly find yourself asking questions such as these:

 ■ I’ve classified my current database of prospects into likely buyers and likely non-buyers,
according to demographics such as age, income, ZIP Code, and education level. Can I
create a credible quarterly forecast of purchase volume if I apply the same classification
criteria to a data set consisting of past prospects?

 ■ I’ve extracted two principal components from a set of variables that measure the weekly
performance of several product lines over the past two years. How do I forecast the
performance of the products for the next quarter using the principal components as the
outcome measures?

 So, there can be overlap between decision analytics and predictive analytics. But not
always—sometimes all you want to do is forecast, say, product revenue without first doing
any classification or multivariate analysis. But at times you believe there’s a need to forecast
the behavior of segments or of components that aren’t directly measurable. It’s in that sort
of situation that the two broad branches, decision and predictive analytics, nourish one
another.

 You, Analytics, and Excel
 Can you do analytics—either kind—using Excel? Sure. Excel has a large array of tools that
bear directly on analytics, including various mathematical and statistical functions that cal-
culate logarithms, regression statistics, matrix multiplication and inversion, and many of the
other tools needed for different kinds of analytics.

 But not all the tools are native to Excel. For example, some situations call for you to use
logistic regression: a technique that can work much better than ordinary least-squares
regression when you have an outcome variable that takes on a very limited range of values,
perhaps only two. Odds ratios are the workhorses of logistic regression, but although Excel
offers a generous supply of least-squares functions, it doesn’t offer a maximum likelihood
odds ratio function.

 Nevertheless, the tools are there. Using native Excel worksheet functions and formulas, you
can build the basic model needed to do logistic regression. And if you apply Excel’s Solver
add-in to that model, you can turn out logistic regression analyses that match anything you
can get from SAS, R, or any similar application designed specifically for statistical analysis.
Furthermore, when you build the analysis yourself you can arrange for all the results that
you might find of interest. There’s no need to rely on someone else’s sense of what matters.
Most important, you maintain control over what’s going on in the analysis.

3You, Analytics, and Excel

 Similarly, if you’re trying to make sense of the relationships between the individual variables
in a 20-by-20 correlation matrix, principal components analysis is a good place to start and
often represents the first step in more complex analyses, such as factor analysis with differ-
ent kinds of axis rotation. Simple matrix algebra makes it a snap to get factor loadings and
factor coefficients, and Excel has native worksheet functions that transpose, multiply, and
invert matrices—and get their determinants with a simple formula.

 This branch of analytics is often called data reduction , and it makes it feasible to forecast
from an undifferentiated mass of individual variables. You do need some specialized soft-
ware in the form of an Excel add-in to extract the components in the first place, and that
software is supplied via download with this book.

 Now, if you’re already an analytics maven, you might have little need for a book like this
one. You probably have access to specialized software that returns the results of logistic
regression, that detects and accounts for seasonality in a time series, that determines how
many principal components to retain by testing residual matrices, and so on.

 But that specialized software sometimes tends to be singularly uninformative regarding the
analysis. Figure I.1 shows a typical example.

 Figure I.1
 A logistic regression
analysis prepared using
the freeware statistical
analysis application R .

 R is a fairly popular statistics application that, like all applications, has its fair share of
detractors. (I use it, but for confirmation and benchmarking purposes only, and that’s how I
use it in a couple of chapters in this book.) Its documentation is terse and dense. It can take
much more work than it should to determine what a particular number in the output rep-
resents and how it was calculated. If you’re an experienced R user, you’ve probably tracked
down all that information and feel perfectly comfortable with it.

 If you’re like many of the rest of us, you want to see intermediate results. You want to see
the individual odds ratios that come together in an overall likelihood ratio. You want to
know if the Newton-Raphson algorithm used a “multistart” option. In short, you want to
know more about the analysis than R (or SAS or Stata or SPSS, for that matter) provides.

Introduction4

 Excel as a Platform
 And that’s one major reason I wrote this book. For years I have believed that so-called
“advanced” statistical analysis does not require a greater degree of intelligence or imagina-
tion for understanding. That understanding tends to require more work, though, because
there are more steps involved in getting from the raw data to the end product.

 That makes Excel an ideal platform for working your way through a problem in analytics.
Excel does not offer a tool that automatically determines the best method to forecast from
a given baseline of data and then applies that method on your behalf. It does give you the
tools to make that determination yourself and use its results to build your own forecasts.

 On your way to the forecast, you can view the results of the intermediate steps. And more
often than not, you can alter the inputs to see the effects of your edits: Is the outcome
robust with respect to minor changes in the inputs? Or can a single small change make a
major difference in the model that you’re building? That’s the sort of insight that you can
create very easily in Excel but that comes only with much more effort with an application
that is focused primarily on statistical analysis.

 I would argue that if you’re responsible for making a forecast, if you’re directly involved
in a predictive analytics project, you should also be directly involved at each step of the
process. Because Excel gives you the tools but in general not the end result, it’s an excellent
way to familiarize yourself not only with how an analytic method works generally but also
how it works with a particular data set.

 What’s in This Book
 Because the term “analytics” is so wide-ranging, a single book on the topic necessarily
has to do some picking and choosing. I wanted to include material that would enable you
to acquire data from websites that engage in consumer commerce. But if you’re going to
deploy Google Analytics, or its more costly derivative Urchin, on Amazon.com, then you
have to own Amazon.com.

 But there are ways to use Excel and its data acquisition capabilities to get your hands on
data from sites you don’t own. I’ve been doing so for years to track the sales of my own
books on sites such as Amazon. I have tens of thousands of data points to use as a predictive
baseline and much more often than not I can forecast with great accuracy the number of
copies of a given book that will be sold next month. I start this book showing you the way I
use Excel to gather this information for me 24 × 7.

 It seemed to me that the most valuable tools in the analytics arsenal are logistic regres-
sion, data reduction techniques, and Box-Jenkins forecasting. Logistic regression underlies
everything from studies of predictive survival curves used by oncologists to the marketing
programs designed to sell distressed resort properties. The singular aspect of that sort of
work is that the outcome variable has two, or at most a few, nominal values. In this book, I
discuss both the binomial analysis traditionally employed to assess that sort of data and the
benefits—and drawbacks—of using logistic regression instead. You also see how to perform

5What’s in This Book

a logistic regression directly on an Excel worksheet, assisted by Excel’s Solver (which does
tell you whether or not you’re using a multistart option).

 As introduction to the more involved techniques of factor analysis, I discuss the rationale
and methods for principal components analysis. Again, you can manage the analysis directly
on the Excel worksheet, but you’re assisted by VBA code that takes care of the initial
extraction of the components from the raw data or, if you prefer, from a correlation matrix.

 And this book addresses the techniques of forecasting in several chapters. Regression and
autoregression get their own treatments, as do moving averages and the extension of that
technique to exponential smoothing. Finally, I introduce ARIMA, which brings together
autoregression and moving averages under one umbrella. The most exacting part of
ARIMA analysis, the derivation of the autocorrelation and the partial autocorrelation coef-
ficients from a baseline of data, is handled for you in open source VBA code that accompa-
nies this book—so you can see for yourself exactly how it’s done.

This page intentionally left blank This page intentionally left blank

 Building a Collector

 The word analytics connotes, among other notions,
the idea that the raw data that gets analyzed includes
quantitative measures of online browsing behavior.
Data collection instruments such as Omniture and
Google Analytics are useful in part because they
track a variety of behavior—hits, views, downloads,
buys, and so on—along with information about the
source of the visit. However, there are times that
you want to measure product performance but can’t
access the traffic data.

 Suppose you supply a product that another company
or companies resell on their own websites. Although
those companies might share their web traffic infor-
mation with you, it’s more likely that they regard it
as proprietary. In that case, if you want to analyze
end users’ purchasing behavior, you might be lim-
ited to any data that the resellers’ websites make
generally available.

 That’s the position that I’m in when it comes to
sales of my books by web resellers such as Amazon.
Although I hear rumors from time to time that
Amazon shares data about actual sales with book
authors, suppliers of music, and manufacturers of
tangible products, it hasn’t reached me in any par-
ticularly useful form. So I have to roll my own.

 Fortunately, one of the sales and marketing devices
that Amazon employs is product rankings. As to
books, there are a couple of different rankings:
overall sales, and sales within categories such as
Books > Computers & Technology > Microsoft >
Applications > Excel. Although as an author I hope
that my books achieve a high sales ranking in a cat-
egory—that gives them greater visibility—I really
hope that they achieve a nice, high overall sales
ranking, which I believe to bear a closer relationship
to actual sales.

 Planning an Approach . 8

 Planning the Workbook Structure 9

 The VBA Code . 18

 The Analysis Sheets . 28

 I N T H I S C H A P T E R :

 1

1

Chapter 1 Building a Collector8

 So what I want to do is create a means of accessing information about book ratings (includ-
ing titles that compete with mine), save the data in a form that I can use for analysis, and
make inferences about the results of the analysis.

 In this chapter, I show you how to do just that: get analytics without the active cooperation
of the website. The techniques don’t require that you be interested in book sales. They can
be used for anything from product sales to stock prices to yards gained per pass attempt.

 Planning an Approach
 Before you undertake something like the project I’m about to describe, there are a few
issues you should keep in mind. If you can’t think of a satisfactory way to deal with them,
you might want to consider taking a completely different approach.

 A Meaningful Variable
 Most important is the availability of one or more variables on a website that bear on what
you’re interested in, even if only indirectly.

 For example, Amazon does not publish on a publically accessible web page how many cop-
ies of a book it has sold, whether actual, physical books or downloaded electronic copies.
But as I mentioned in the prior section, Amazon does publish sales rankings. For the proj-
ect described here, I decided that I could live with the sales rankings as an indicator of sales
figures.

 I also learned that although Amazon usually updates the sales ranking every hour, some-
times the updates don’t take place. Sometimes they’re a little late. Sometimes several hours
pass without any update occurring. And sometimes the rankings don’t entirely make sense;
particularly in the wee hours, a ranking can drift from, say, 20,000 at 4:00 a.m. to 19,995 at
5:00 a.m. to 19,990 at 6:00 a.m. and so on. That kind of movement can’t reflect sales, and
the deltas are much smaller and more regular than at other times of day. But I found that
most of the time the updates take place hourly—give or take a couple of minutes—and cor-
respond either to no sales (the rankings get larger) or to a presumed sale (the rankings get
smaller, often by a generous amount).

 Identifying Sales
 I decided that I could live with changes in rankings as a stand-in for actual sales. I also
decided that I could make an assumption about an increase in ranking, such as from 25,000
to 20,000. That’s a big enough jump that I can assume a sale took place. I can’t tell for sure
how many units were sold. But these books don’t sell like a Stieg Larsson novel. Amazon
sells four or five copies of one of my books each day. So when I see an improvement in
ranking of a few thousand ranks, it almost certainly indicates the sale of a single unit.

 Given that information (or, maybe more accurately, educated guesses), it’s possible to get
a handle on what you need to include in a workbook to access, analyze, and synthesize the
data sensibly.

9Planning the Workbook Structure

1

 Planning the Workbook Structure
 Your workbook needs three types of worksheets: one type to collect the data from your web
queries, one type to bring the query data together in a single place, and one type to run
whatever analyses you decide are needed. (You also need a VBA module to hold your code,
but that is covered in a later section of this chapter.)

 Those three types of worksheet are discussed in the next three sections.

 Query Sheets
 If you haven’t used Excel to retrieve data from the Web, you might be surprised at how easy
it is. I’m not speaking here of using your browser to get to a web page, selecting and copy-
ing some or part of its contents, and then pasting back into the workbook. I’m speaking of
queries that can execute automatically and on a predetermined schedule, thus enabling you
to walk away and let the computer gather data without you micromanaging it.

 Suppose that you want to retrieve data from Amazon about a book entitled Statistical
Analysis with Excel . You open a new workbook and rename an unused worksheet to some-
thing such as “Stats.”

 Next, start your browser if necessary and navigate to Amazon’s page for that book. When
you’re there, copy the page’s full address from the browser’s address box—drag across the
address to highlight it and either press Ctrl + C or use the browser’s Edit menu to choose
the Copy command.

 Switch back to Excel and click the Ribbon’s Data tab. Click the From Web button in the
Get External Data group. The New Web Query window displays as shown in Figure 1.1 .

 Figure 1.1
 What you see at first
depends on your brows-
er’s home page.

 Drag through the address that appears in the Address box and press Ctrl + V to paste the
address you copied. When you click the Go button, the query window opens the Amazon
page (see Figure 1.2).

1

Chapter 1 Building a Collector10

 Typically you see one or more square icons (a black arrow on a yellow background) that
identify the locations of different parts of the web page, called tables . You can select them by
clicking them. When you click one of these icons to select it, the icon turns green to indi-
cate that you want to download the data in that table.

 When you position your mouse pointer over a yellow icon, a heavy border appears around
the table that’s associated with the icon. This helps you select one or more tables to
download.

 Nevertheless, I recommend that you select the entire page by clicking the icon in the
upper-left corner of the window. If you select only a table or tables that contain the data
you’re interested in, it could easily happen that a day, week, or month from now the page
might be changed, so that the data you want appears in a different table. Then your query
will miss the data.

 But if you select the entire web page instead of just a table or tables, the page’s owner would
have to remove the data you’re interested in completely for you to miss it, and in that case
it wouldn’t matter how much of the page you selected to download.

 The individual table icons are useful mainly when you want to do a one-time-only down-
load from a web page. Then you might want to avoid downloading a lot of extraneous stuff
that would just make it harder to find the data you’re after. In the type of case I’m describ-
ing here, though, you’ll let Excel do the finding for you.

 Furthermore, you don’t save much time or bandwidth by selecting just a subset of the web
page. In most cases you’re picking up a few thousand bytes of text at most in an entire page.

 Speed of Execution
 Nevertheless, you should be aware of a speed versus version tradeoff. I have learned that
using Excel 2007 and 2010, web queries can take significantly more time to complete than
in earlier versions of Excel. Among the changes made to Excel 2007 was the addition of
much more thorough checks of the data returned from web pages for malicious content.

 Figure 1.2
 Web pages normally
consist of several tables ,
rectangular areas that
divide the page into dif-
ferent segments.

11Planning the Workbook Structure

1

 I’ve found that when using Excel 2002, it takes about 30 seconds to execute eight web que-
ries in the way I’m describing here. Using Excel 2010, it takes nearly three times as long.

 The basic intent of the project I’m describing here is to automatically and regularly update
your downloaded data, so it probably seems unimportant to worry about whether the pro-
cess takes half a minute or a minute and a half. Occasionally, though, for one reason or
another I want to get an immediate update of the information and so I force the process to
run manually. On those occasions I’d rather not wait.

 Perhaps I shouldn’t, but I trust the results of my Amazon queries to be free of malicious
content, so I run my app on the more quick-footed Excel 2002. It’s safer, though, to give
yourself the added protections afforded by Excel 2007 or 2010, and if you can stand the
extra minute or so of query execution time then by all means you should use the slower,
safer way.

 Bringing the Data Back
 After you have clicked a yellow icon to turn it green (using, I hope, the one in the upper-
left corner of the New Web Query window so that you get the entire page), click the
Import button at the bottom of the New Web Query window. After a few seconds, the
Import Data window appears as shown in Figure 1.3 .

 Figure 1.3
 You can import immedi-
ately, but it’s a good idea
to check the property
settings first.

 Accept the default destination of cell A1 and click OK. (The reason to use cell A1 becomes
apparent when it’s time to refresh the query using VBA, later in this chapter.) There are
some useful properties to set, so I recommend that you click the Properties button before
you complete the import. The Properties window that displays is shown in Figure 1.4 .
 Be sure that the Save Query Definition box is checked. That way you can repeatedly run
the query without having to define it all over again.

 The Enable Background Refresh checkbox requires a little explanation. If it is filled, any
VBA procedure that is running continues running as the query executes, and other direct
actions by the user can proceed normally. Sometimes that can cause problems if a procedure
depends on the results of the query: If the procedure expects to find data that isn’t available
yet, you might get a run-time error or a meaningless result. Therefore, I usually clear the
Enable Background Refresh checkbox.

1

Chapter 1 Building a Collector12

 The various options in the Properties dialog box listed under Data Formatting and Layout
are subtly different but can be important. I spend three pages detailing the differences in
another Que book, Managing Data with Excel , and I don’t propose to do it again here. For
present purposes, you might just as well accept the default values.

 Click OK when you have made any changes you want and then click OK in the Import
Data window. Excel completes the query, usually within a few seconds, and writes the
results to the worksheet (see Figure 1.5).

 Figure 1.4
 By default the Save Query
Definition checkbox is
filled, but you should
verify the setting when
you create the query.

 Figure 1.5
 When the query has
finished executing, you
wind up with a haystack
of text and numbers. The
next step is to find the
needle.

 Finding the Data
 After the data has been retrieved from the web page, the next task is to locate the piece or
pieces of information you’re looking for. I want to stress, though, that you need do this

13Planning the Workbook Structure

1

once only for each product you’re tracking—and quite possibly just once for all the prod-
ucts. It depends on how the web page administrator is managing the data.

 What you need to look for is a string of text that’s normally a constant: one that doesn’t
change from hour to hour or day to day. Figure 1.6 shows a portion of the results of a
query.

 Figure 1.6
 In this case, the string
 Sellers Rank in cell
A199 uniquely locates the
product ranking.

 If you use Excel’s Find feature to scan a worksheet for the string Sellers Rank , you can
locate the worksheet cell that also contains the ranking for the product. With just a little
more work, which you can easily automate and which I describe in the next section about
VBA code, you can isolate the actual ranking from the surrounding text; it’s that ranking
that you’re after.

 Why not just note the cell address where the ranking is found after the query is finished?
That would work fine if you could depend on the web page’s layout remaining static. But
the website administrator has only to add an extra line, or remove one, above the data’s cur-
rent location, and that will throw off the location of the cell with the data you’re after. No,
you have to look for it each time, and the Find operation occurs very fast anyway.

 Summary Sheets
 After you’ve acquired the data from a web page and isolated the figure you’re looking for,
you need a place to put that figure plus other relevant information such as date and time.
That place is normally a separate worksheet. You normally expect to be querying the same
web page repeatedly, as hours and days elapse. Therefore, you’ll want to store information
that you’ve already retrieved somewhere that won’t get overwritten the next time the
query runs.

 So, establish an unused worksheet and name it something appropriate such as Summary or
 Synthesis or All Products . There are a few structural rules covered in the next section that
you’ll find helpful to follow. But you can include some other useful analyses on the sum-
mary sheet, as long as they don’t interfere with the basic structure.

 Structuring the Summary Sheet
 Figure 1.7 shows the structures that I put on my summary sheet.

1

Chapter 1 Building a Collector14

 In Figure 1.7 , the first few columns are reserved for the rankings that I have obtained via
web queries from the appropriate Amazon pages. I also store the date and time the queries
finished executing in column A. That time data provides my basis for longitudinal summa-
ries: a baseline for the forecasting analyses that I discuss in Chapters 3 , 4 , 5 , and 9 .

 It’s at this point that you have a decision to make. It’s nice to be able to retrieve data about
sales rankings for products such as books. If you’ve written a good one, it’s gratifying to
see the rankings drop as time goes by. (Remember, high rankings are better: A rank of 1 is
a best seller.) But you likely never got paid a royalty or a commission, or had to fill a re-
order, strictly on the basis of a sales ranking. It’s the sales themselves that you’re ultimately
seeking: Granted that intermediate objectives such as clicks and conversions and rankings
are important indicators, they don’t directly represent revenue.

 Identifying Sales
 So how do you translate sales rankings into a count of sales? I started by tracking sales
rankings on Amazon for about a week and noticed some points of interest.

 Telling a Sale from No Sale A jump from a lower ranking to a higher ranking probably
means the sale of at least one item. If the item has no sales during a given period, its ranking
declines as other items do sell and move up.

 Ranking Sales How do you rank sales? You can’t do it strictly on the number sold. A book,
for example, might have sold 200 copies over a two-year period. Another book might have
sold 100 copies since it was published last week. The second book is clearly performing bet-
ter than the first, so you have to combine elapsed time somehow with number sold. Amazon
doesn’t say, but my guess would be that the rankings are based in part on the ratio of sales to
days elapsed since publication—in other words, sales per day.

 Improved Rankings Without Sales There are periods when an item’s ranking improves very
gradually over a period of hours. There’s no reason to believe that an improvement from
a ranking of, say, 20,000 to 19,999 indicates a sale. More likely it is a result of another day

 Figure 1.7
 You can put snapshot
analyses supported by
worksheet functions on
the summary sheet.

15Planning the Workbook Structure

1

passing and the rankings recalculating accordingly. That means that before you conclude a
sale took place, you need a minimum criterion.

 Deciding on a Criterion The criterion should be a rate, not a constant number. If a book
jumps from a ranking of 200,101 to 200,001, that 100-place increase is considerably differ-
ent from a book that jumps from a ranking of 101 to 1. I decided to conclude that a sale had
taken place if an increase in rankings equaled or exceeded ten percent of the prior ranking.
So, if a book ranked 15,000 at 3:00 p.m. and 13,000 at 4:00 p.m.:

 (15000 − 13000)/15000 = 0.13 or 13%

 I conclude that a sale took place.

 Structuring the Formula Suppose that I have two rankings for a given product, one taken at
3:00 p.m. in cell C18 and one taken at 4:00 p.m. in cell C19. If I want to test whether a sale
took place between 3:00 p.m. and 4:00 p.m., I can enter this formula in, say, L19:

 =IF((C18-C19)/C18>0.1,1,0)

 The formula returns a 1 if the difference between the two rankings is positive (for example,
an increase from a ranking of 1,000 to 900 is positive) and exceeds 10% of the earlier rank-
ing. The formula returns a zero otherwise. After the formula is established on the work-
sheet, I use the same VBA code that re-executes the queries to copy the formula to the next
available row.

 Snapshot Formulas
 I also like to watch two other statistics that don’t depend on an ordered baseline of data the
way that sales estimates do. These are the total sales per book and the minimum (that is,
the highest) sales ranking attained by each book since I started tracking the rankings.

 I use Excel’s MIN() and SUM() functions to get those analyses. I put them at the top of the
columns so that they won’t interfere with the results that come back from the web pages as
the queries execute over time.

 Figure 1.8 shows what those analyses look like.
 So, for example, cell J2 might contain this formula:

 =SUM(J5:J1000000)

 It sums the values from the fifth to the millionth row in column J, which contains a 1 for
every assumed sale, and a 0 otherwise. The result tells me the number of copies of this book
that I assume have been sold by Amazon, judging by the changes in sales rankings.

 To get the minimum, best sales ranking for the same book, I use this formula in cell T2:

 =MIN(B4:B1000000)

1

Chapter 1 Building a Collector16

 The formula returns the smallest numeric value for the fourth to the millionth row in
column B.

 Notice that the range address in these formulas uses a constant, 1,000,000. There are more
elegant ways of making sure that you capture all relevant cells (such as dynamic range
names and tables), but this one is simple, pragmatic, and doesn’t slow down processing.

 More Complicated Breakdowns
 Figure 1.9 shows a table I use for a quick monthly tabulation of sales of certain books. I
get similar tables for daily breakdowns, but they are pivot tables and can get a little cum-
bersome when you have as many as a couple of hundred days to summarize. The table in
 Figure 1.9 is driven by worksheet functions and is a quick monthly overview instead of a
more detailed daily analysis.

 Figure 1.8
 You can put snapshot
analyses supported by
worksheet functions on
the summary sheet.

 Figure 1.9
 This table counts sales per
month and projects sales
for a full month.

 Column S in Figure 1.9 simply contains the numbers of the months that I’m interested in:
May through December. When I get to May 2012, it will be necessary to add a column
with the year, to distinguish May 2011 from May 2012.

 Columns T and U contain array formulas. I describe the formulas in column T here; the
formulas in column U work the same way but use different columns as the data sources.

 The array formulas in column T check the month number in column S against the month
implied by the date in column A. If the two month indicators are equal, the formula sums
the values in columns J and K. I go into the topic of array formulas, what they require, and
why they’re sometimes needed, in Chapter 5 , “Forecasting a Time Series: Regression.” For

17Planning the Workbook Structure

1

now, though, it’s enough to be aware that you need to enter these formulas with a special
keyboard sequence. Instead of simply typing the formula and pressing Enter, you type it
and then press Ctrl + Shift + Enter. This procedure is called array-entering a formula. Excel
notices that you have array-entered a formula, and in that case it surrounds the formula as
shown in the formula box with curly braces.

 It’s useful to take the formula apart to see what’s going on inside it. Here’s the full formula
for the August figures:

 =SUM(IF(MONTH(A3:A1000000)=$S5238,J$3:K$1000000,0))

 Working from the inside out, consider this fragment:

 MONTH(A3:A1000000)

 The MONTH() function returns the month of a date, and column A consists of dates fol-
lowing the second row. When you apply the MONTH function to an array of dates, as is
done here, you get an array of month numbers. (That’s one reason the formula must be
entered as an array formula using Ctrl + Shift + Enter: The MONTH() function normally
expects to evaluate a single date value, not a whole array of them. Array-entering the for-
mula alerts Excel to the possibility that a function that normally takes a single value will be
taking multiple values.)

 That MONTH() fragment is surrounded by an IF() function. The IF() function tests
whether the month numbers returned by MONTH() equal the number in cell S5238. In
 Figure 1.9 , cell S5238 contains the number 8—the eighth month, or August. So the IF()
function begins by converting all those month numbers from MONTH() to TRUE and
FALSE values, depending on whether MONTH() returns an 8.

 The next argument to the IF() function in this case is the range J3:K1000000. That range
contains the 1’s and 0’s calculated from the changes in the sales rankings. Those 1’s and 0’s
are retained by the IF() given that the logical test, month equals 8, is true. The IF() func-
tion retains any row where the month of the date in column A is 8, and in that case it holds
on to the values found in columns J and K.

 What if a date in column A does not fall in the month of August? Then the logical test
posed by the IF() function fails, and the IF()’s third argument, 0, is used.

 Here’s the formula as I’ve discussed it so far:

 IF(MONTH(A3:A1000000)=$S5238,J$3:K$1000000,0)

 More briefly: If the dates in column A are in the month shown in S5238 (which is 8), use
the associated values in columns J and K. Otherwise, use the number 0.

 Finally, surround the fragment with the SUM() function:

 =SUM(IF(MONTH(A3:A1000000)=$S5238,J$3:K$1000000,0))

1

Chapter 1 Building a Collector18

 That is, take the sum of the values in columns J and K if they were observed during August,
using zero instead if they were observed during some other month.

 The same formula, adjusted to total two different columns, is in cell U5238:

 =SUM(IF(MONTH(A3:A1000000)=$S5238,L$3:M$1000000,0))

 Here, we total the values found in columns L and M if the associated date is from August.
Columns L and M contain sales estimates for a different book than columns J and K. (You
probably have noticed that a book gets two columns because there is a paperback edition as
well as a Kindle edition of each.)

 Column V simply totals the results from columns T and U:

 =T5238+U5238

 And column W calculates the average number of books sold during the month:

 =V5238/31

 That calculation is a little tricky during the current month. Cell W5242 uses this formula
while the current date is still within December:

 =V5242/(TODAY()-DATEVALUE(“11/30/2011”))

 I don’t want to divide by 31 before we reach the end of the month, so I need to calculate
the number of days that have elapsed during the current month. That number is the differ-
ence between the value returned by the TODAY() function (which gives today’s date) minus
the value of the last day in the prior month. So if today is December 20, the result of the
subtraction is 20.

 The VBA Code
 This section walks you through the VBA code that I use to update my data collector hourly.
It runs itself, so I can get it going, walk away, and not come back for hours or days. You can
start by using Alt+F11 to open the Visual Basic Editor. Then arrange for a fresh module by
choosing Insert, Module. The code that’s shown in this chapter, or your own VBA code,
goes into the new module.

 Although the figures in this chapter indicate that I’m obtaining data on several books, I’m
limiting the code used here to just two. You can extend it to more products than two if you
want.

 I should also note that I’ve revised the code somewhat to make clearer what’s going on. A
number of modifications would structure the code a bit more tightly and run a little faster.
But they tend to obscure the general flow of the task.

 Option Explicit

19The VBA Code

1

 I always specify Option Explicit at the top of my VBA modules. Doing so forces me to
declare variables explicitly, often with Dim statements. For example:

 Dim NextRow as Integer

 Dim , short for dimension , informs VBA that a variable named NextRow is intended to exist in
the module’s code: The variable is declared to exist. Later on, if I mistype the name of the
variable in the code

 NextRoe = NextRow + 1

 for example, VBA complains that I’m trying to use a variable that I haven’t declared. If I
don’t have Option Explicit at the top of the module, VBA assumes that I meant to implic-
itly declare a new variable, NextRoe , and assign to it the current value of NextRow + 1 . The
implicit, on-the-fly declaration of variables was common programming practice 40 years
ago. VBA still tolerates it unless you protect yourself with Option Explicit .

 The DoItAgain Subroutine
 This very short, three-statement subroutine causes the main GetNewData subroutine to run
an hour from now:

 Private Sub DoItAgain()
 Application.OnTime Now + TimeValue(“01:01:00”), “GetNewData”
 End Sub

 The DoItAgain subroutine uses VBA’s OnTime method to schedule the time when
a procedure is to run next. The time is specified first, using the fragment Now +
TimeValue(“01:01:00”) . VBA has a function named Now that returns the current system date
and time. VBA has another function named TimeValue that converts a string to a time value.

 So, Now + TimeValue(“01:01:00”) gets the time as of right now and adds to it one hour,
one minute, and zero seconds.

 The second argument to OnTime as used here is GetNewData , which is the code’s main proce-
dure. Its name must be enclosed in quotes when used as an argument.

 The full statement instructs VBA to run the procedure named GetNewData , 61 minutes after
the OnTime method is invoked.

 I settled on an hour and a minute after some experimenting. Amazon states that it updates
the rankings hourly, and that seems to be nearly correct. Sometimes the update doesn’t hap-
pen exactly when it should, and sometimes several hours pass before the next update takes
place. These events are mildly atypical, though, and something close to an hour is normal.

 However, it takes a bit of time for my code to run: to acquire new data by way of the que-
ries and to test the changes in rankings for evidence of a sale. So I add a minute to the one
hour in order to catch back up with Amazon’s schedule.

1

Chapter 1 Building a Collector20

 The GetNewData Subroutine
 Here’s the main procedure: GetNewData . It executes web queries, obtains sales rankings, and
copies and pastes formulas that convert rankings to assumed sales figures.

 Sub GetNewData()
 Dim NextRow As Integer, NextRank As Long
 Dim UnitsLeft As Integer, NextLeft As Integer

 I begin by declaring the variables I need in this procedure:

 ■ NextRow is the worksheet row where I write the next set of query data.

 ■ NextRank contains the next sales ranking for a given book.

 ■ NextLeft contains the number of units that Amazon has left in stock, if that figure is
reported on the book’s Amazon page.

 A variable such as NextRow , if declared as type Integer, can take on only integer values with a maxi-
mum positive value of 32767. I don’t expect to use more than that number of rows in my application.
A variable such as NextRank (which stores the book ranking) can easily have a value greater than
32767, and so I declare it as Long. Long is a “long integer,” takes integer values only, and has a maxi-
mum positive value of more than two billion. That’s plenty large enough to store an Amazon book
ranking.

N
O

T
E

 Application.ScreenUpdating = False
 Application.Calculation = xlCalculationManual

 I don’t like to be distracted by the screen if I happen to be looking at it when the code
changes the active worksheet. So I turn off screen updating and the Excel window stays put
until the code has finished running, or until a statement turning screen updating back on is
executed (you set its value to True instead of False).

 Also, I don’t want formulas recalculating as the queries write new data to the worksheets;
I let them recalculate after the queries have finished running. So, I set Excel’s calculation
property to manual—later on I reset it to automatic.

 RefreshSheets “Stats”
 RefreshSheets “BAXL Kindle”

 Now I call the RefreshSheets subroutine with the name of the query sheet as the argu-
ment. I call it once for each query sheet. As noted earlier, I actually call this subroutine
eight times but I don’t want to subject you to all eight calls here—what happens is largely
the same in each call. The RefreshSheets subroutine is shown and described following this
main GetNewData subroutine at the end of the current section on the VBA code.

 NextRow = ThisWorkbook.Sheets(“Summary”).Cells(Rows.Count, 1).End(xlUp).Row
➥+ 1

 The code needs to find the next available row on the Summary sheet so that it can write the
new data from the queries to that sheet without overwriting existing records. Here’s how it
does that.

21The VBA Code

1

 If you’re using an Excel worksheet directly, one of the ways to move around is with Ctrl
+ arrow , where arrow means up or down arrow, right or left arrow. If the active cell is in a
column of data, for example, you can find the last contiguous non-empty cell with Ctrl +
Down Arrow. If you’re at the bottom of a column, something such as A65536, and that cell
is empty, you can find the lowermost non-blank cell with Ctrl + Up Arrow.

 Using VBA, the way to emulate that keyboard action is with the End property, which
belongs to a cell object (really a range object because a cell is a special instance of a range).
So, Cells(Rows.Count,1).End(xlUp) tells VBA to go to the final row in Column A and act
as though you had pressed Ctrl + Up Arrow. That takes VBA to the lowermost non-empty
cell, assuming as I do that the cell defined by the final row of Column A is itself empty.

 Then all I have to do is get the row where the non-empty cell is found, add 1 to the row
number, and I have the row number that I need to write into next. The result is assigned to
the variable NextRow.

 I do have to tell VBA which cell to regard as the active cell, and I do that by citing the
Summary worksheet, and directing VBA’s attention to that worksheet’s final row, first
column. I start things out with ThisWorkbook just in case I have more than one work-
book open and some other workbook is active at the time that the code starts to run. The
 ThisWorkbook object specifies the workbook that contains the code that is running.

 ThisWorkbook.Sheets(“Summary”).Cells(NextRow, 1) = Now

 Having found the next row to write in, I put the current date and time into the Summary
worksheet, in the first column of that row.

 With ThisWorkbook.Sheets(“Summary”)

 The With statement initiates a block of code in which objects that are preceded by a dot,
such as .Cells(NextRow,2) , are deemed by VBA to belong to the object named in the With
block—here, that’s the worksheet named Summary.

 NextRank = GetRank(“Stats”, “ in”)

 The GetRank procedure is called with the name of the query sheet named Stats , and the
string “ in” , which helps GetRank locate the sales ranking that has been retrieved by the
query for the statistics book.

 The GetRank procedure, which is actually a function written in VBA, is discussed later in
this section. The value returned by that function, which is the sales rank of the book in
question, is assigned to the variable NextRank .

 .Cells(NextRow, 2) = NextRank

 Then the value just assigned to NextRank is written to the cell at the intersection of the
 NextRow -th row and column 2. (Column 2 is specific to and reserved for sales rankings
of the statistics book. When queries on other books are run later in the code, the value
assigned at that point to NextRank is written to a different column.) Because of the earlier
 With statement, the cell in the NextRow -th row and the second column is taken to belong to
the worksheet named Summary in the workbook that contains the running code.

 NextLeft = GetUnitsLeft(“Stats”)

1

Chapter 1 Building a Collector22

 Now the code gets into some functionality that I have abandoned because it’s a field that
isn’t updated with any frequency by Amazon—not, at least, for the books I’m interested
in tracking. When Amazon’s inventory of a book gets down to a certain level, often called
the reorder point, the book’s web page gets a text string along the lines of “Only 5 left in
stock—order soon (more on the way).”

 It occurred to me that by quantifying the number of sales between the dates when this
message disappeared, and then reappeared, I might be able to calculate the number of cop-
ies Amazon ordered from the publisher. So, for a while I tracked that string, but then it
became clear that for some reason Amazon was not putting that message up for the books
I was most interested in. Furthermore, the message probably has no relevance to a book’s
Kindle edition. So I dropped the code, but I have restored it here in case you are interested
in seeing how to deal with a message or other web data that might or might not be on a
web page at the time you query it.

 I get the figure by invoking another function in my code, GetUnitsLeft , which, like
 GetRank , takes the name of the book’s query sheet as an argument. The GetUnitsLeft func-
tion is also discussed below. It returns a value to the NextLeft variable.

 If NextLeft <> -1 Then
 .Cells(NextRow, 20) = NextLeft
 End If

 If information about the number of units left in stock is missing, NextLeft has been set
equal to -1 and the code goes on to the next task. But if NextLeft has some value other than
-1, that value is written to the cell in NextRow -th row and the twentieth column. Again, col-
umn 20 is reserved for units-on-hand information about the statistics book.

 The next two statements get the sales rank for the book whose query sheet is named
“BAXL Kindle” and write the sales rank to the NextRow -th row, third column on the
Summary sheet:

 NextRank = GetRank(“BAXL Kindle”, “ Paid in”)
 .Cells(NextRow, 3) = NextRank

 Notice that the second argument to the GetRank function is now “ Paid in” instead of
 “ in” . The reason is that this is a Kindle book, and Amazon follows the sales rank with
 “ Paid in” rather than simply “ in” . The string passed to the GetRank function is used to
help strip out the actual ranking from its surrounding verbiage; you find out how when we
get to that function.

 In the prior section titled “Identifying Sales,” I discussed how some worksheet formulas can
be used to decide if a sale of a book occurred by comparing two consecutive rankings of the
same book. Now the VBA code selects, copies, and pastes those formulas into the next row
down. The newly pasted formulas then recalculate based on the differences between the
most recent and the now-current rankings. Begin by activating the Summary worksheet:

 .Activate

23The VBA Code

1

 Select the cells that contain the formulas to copy. They are found in the prior row—that is,
in the row that precedes NextRow , where we are now writing the current query data. Select
the cells in that row from the tenth column to the seventeenth:

 .Range(.Cells(NextRow - 1, 10), .Cells(NextRow - 1, 17)).Select

 Autofill the selection one row down. The addresses used by the formulas automatically
adjust so that they point to the newly current row:

 Selection.AutoFill Destination:=.Range(.Cells(NextRow - 1, 10), _
 .Cells(NextRow, 17)), Type:=xlFillDefault

 Notice that the destination of the autofill includes the row NextRow -1 as well as NextRow .
It’s a minor peculiarity of the Autofill method that the destination range must include the
source range. In this case, the source range is the row NextRow -1 (columns 10 through 17)
and that range is to be autofilled into the row NextRow (columns 10 through 17). But that
destination range as specified in the VBA statement must include the source range.

 .Rows(NextRow + 1).Select
 Selection.Insert Shift:=xlDown
 .Cells(NextRow, 1).Select

 The prior three statements insert a blank row following the NextRow row—that is, the row
that the code has just populated with sales rankings and sales formulas. The reason is that
there is a table of analyses (discussed later in this chapter) that are found a few rows below
the rankings. It’s helpful to push that table down a row when a new row has been populated
with rankings.

 End With

 Terminate the With block that deems any object beginning with a dot (such as .Cells) to
belong to the Summary worksheet in ThisWorkbook .

 Application.Calculation = xlCalculationAutomatic

 Turn automatic calculation back on.

 ThisWorkbook.Save

 Save the workbook.

 Application.ScreenUpdating = True

 Turn screen updates back on.

 DoItAgain

 Run the three-statement DoItAgain subroutine, discussed earlier, that causes the GetNewData
subroutine to run again an hour from now.

 End Sub

 End the GetNewData subroutine.

1

Chapter 1 Building a Collector24

 The GetRank Function
 Here’s the function named GetRank . Notice that it has two arguments, SheetName and
 TrailingString . The values are passed to the function by the statement that calls it. For
example:

 NextRank = GetRank(“Stats”, “ in”)

 where “Stats” is the worksheet name and “ in” is a string of characters from the web page
that follows—that is, trails—the actual ranking.

 Function GetRank(SheetName As String, TrailingString As String) As Long

 The function returns a value to the statement that called it. That value is often of a certain
type: integer, a text string, a decimal number, and so on. To accommodate that, the func-
tion itself is declared to be of a certain type. Here, that type is Long . In VBA, Long means
an integer value that might be much larger than the maximum value for a regular integer,
which tops out at 32,767. There are many more books than that in Amazon’s inventory, and
this function is intended to return a book’s ranking. Therefore, to accommodate the pos-
sibility that the rank is greater than 32,767, I declare the function as type Long , which can
return a value greater than 2 billion—more than large enough.

 Dim FoundString As String
 Dim StartPos As Integer, StopPos As Integer

 Three variables are declared. FoundString holds the value of the sales rank. It’s declared as
a string because when the code strips it out of the surrounding text, it’s a string. Later it’s
converted to a Long integer.

 StartPos and StopPos determine the starting and stopping positions of the sales rank within
the string. For example, this string:

 Amazon Best Sellers Rank: #64,788 in Books

 has its first numeric representation in character number 28 of the string, so StartPos is
assigned the value 28.

 On Error GoTo EarlyOut

 This code is designed to run 24/7, so I can’t expect myself to nurse it along if it runs into an
error that it can’t recover from. The On Error statement tells VBA that if it encounters an
error such as a letter right in the middle of what is supposed to be a numeric sales ranking,
it shouldn’t terminate processing. Instead, transfer control to a point named EarlyOut . That
way, processing can continue. Even if it happens at 2:00 a.m., I can check it out at 9:00
a.m. and fix whatever happened, and I won’t necessarily have lost data from the intervening
seven hours.

 The next five statements are responsible for finding the cell in the worksheet that contains
the sales ranking, stripping the numeric ranking out of that cell, and assigning the result to
the GetRank function.

 First, find the cell that contains the string “sellers Rank:” . The rank we’re looking for
comes directly after that string.

25The VBA Code

1

 Cells.Find(What:=”sellers Rank:”, LookIn:= _
 xlFormulas, LookAt:=xlPart, SearchOrder:=xlByRows, _
 SearchDirection:= xlNext, MatchCase:=False).Activate

 The Find method is used to locate the string. Most of the arguments, such as LookIn and
 LookAt , are there to keep the settings in place for the Find dialog box in Excel’s user inter-
face. I don’t much care about forcing a Case match, so long as I get the string I’m looking
for. Finally, I use the Activate method at the end to make the found cell active.

 FoundString = ActiveCell

 For convenience in subsequent handling, I set the string variable FoundString to the con-
tents of the cell where “sellers Rank:” is found.

 StartPos = InStr(FoundString, “ #”) + 2

 I use VBA’s InStr function to locate the space and the pound sign (#) in the contents of the
active cell. I want to start the string that contains the sales rank numbers immediately after
the space and pound sign, so I add 2 to the position where that substring is found. The
result is stored in StartPos .

 StopPos = InStr(FoundString, TrailingString)

 Then I look inside FoundString again, this time to find the trailing string—the characters
that Amazon supplies right after the sales ranking. In the case of tangible books, the rank-
ing is followed by “ in” . In the case of Kindle books, the ranking is followed by “ Paid
in” —or at least that’s the case in December 2011. So the value of TrailingString is passed
to the GetRank function, along with the name of the query sheet. If I’m querying for a tan-
gible book, I pass “ in” and if I’m querying for a Kindle book, I pass “ Paid in” .

 GetRank = 1 * Mid(FoundString, StartPos, StopPos - StartPos)

 Finally, the code gets the value of the sales ranking using VBA’s Mid function, which returns
a string that is inside another string. In this case, Mid is instructed to look in FoundString ,
beginning at StartPos , and to return (StopPos – StartPos) characters. Those characters
are the ranking, but because they came from a string they are still a string. Therefore I
multiply the result by 1 to coerce the string to a numeric value, and assign it to GetRank .

 One thing you should always do in a function that you write yourself is to assign a value to the function
before the function terminates. This is not an absolute requirement—you won’t get a compile error if
you fail to do so—but it’s important nevertheless and particularly so if you’re writing a function that
the user can enter on the worksheet.

N
O

T
E

 The prior statement assigns the value of the sales rank to the function GetRank itself. When
the function terminates and control returns to the statement that called the function,
 GetRank itself equals the value that it calculated. And in the statement that called the func-
tion, which is NextRank = GetRank(“BAXL”, “ in”) , the variable NextRank is assigned the
value of the GetRank function.

 On Error GoTo 0

1

Chapter 1 Building a Collector26

 This second On Error statement returns the default status. Telling VBA to “go to 0” in the
event of an error causes VBA to terminate with a run-time error if it hits another error.
When this function cedes control back to the calling statement, the prior On Error state-
ment is no longer in effect and so this On Error GoTo 0 statement could be omitted, but I
wanted you to know about it.

 Exit Function

 In the normal course of events, the function terminates at the Exit Function statement and
control returns to the statement that called the function. But if something goes wrong, the
 Exit Function statement is bypassed and some minor housekeeping takes place first.

 Here’s the label I mentioned earlier. Control transfers here if something goes wrong in the
portion of the function that locates the sales ranking and converts it to a Long integer:

 EarlyOut:
 GetRank = 0

 The value returned by the function is set to zero. That’s the value that is written to the
Summary sheet as the sales rank. When I see that, I know that something went wrong.
Perhaps Amazon’s code had removed the old ranking from its page and was getting ready to
put the new ranking in place at the moment that this code executed its query.

 End Function

 After a value, even an illogical one such as a sales ranking of zero, is assigned to the func-
tion, its task is completed and control returns to the calling statement.

 The GetUnitsLeft Function
 Here’s the function mentioned earlier that determines how many units of a particular book
are left.

 Function GetUnitsLeft(SheetName As String) As Long

 The name of the query sheet is passed as SheetName to the function. The function returns a
value of the Long integer type.

 Dim FoundString As String

 As in the GetRank function, FoundString will contain the value in the cell we’re looking for.

 Dim StartPos As Integer, StopPos As Integer

 StartPos and StopPos have the same purposes that they have in GetRank : to bracket the
value you want to return to the main procedure.

 GetUnitsLeft = -1

 Start out by assigning a default value to the function.

 Sheets(SheetName).Activate

 Activate the query sheet.

 On Error GoTo Nodata

27The VBA Code

1

 Establish an error handler: go to the Nodata label in the event of a runtime error.

 Cells.Find(What:=”left in stock”, LookIn:= xlFormulas, _
 LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:= _
 xlNext, MatchCase:=False).Activate

 Execute the Find method. In this case, where you are looking for the number of units in
stock, there is a particular, invariant string value that locates the cell we’re after: “left in
stock” . Therefore, you don’t need to pass a different string to the procedure as an argu-
ment, depending on which book we’re querying.

 FoundString = ActiveCell

 The contents of the cell that Find found are assigned to the FoundString variable.

 StartPos = InStr(FoundString, “Only “) + 5

 The InStr function returns the position in the searched string where “Only “ starts .
Therefore, add the five characters in “Only “ to the result of InStr to locate the position
where the number left in stock begins.

 StopPos = InStr(FoundString, “ left in”)

 StopPos locates the position where “ left in” begins.

 GetUnitsLeft = 1 * Mid(FoundString, StartPos, StopPos - StartPos)

 Finally, look in FoundString starting at StartPos and use the Mid function to strip out as
many characters as the difference between StopPos and StartPos . Multiply by 1 to convert
the result from a text string to a number, and assign the result to the function.

 Exit Function

 The Exit statement returns control to the calling statement. In case an error occurred,
though, control has already passed to the Nodata label.

 Nodata:

 More often than not the reorder point for a product has not been reached, and so an error
usually occurs. When it does, control comes here and you simply end the function. Recall
that you began by assigning the function the value of -1, so if the string you’re looking for
could not be found then the function retains the value of -1 and passes that value back to
the calling statement.

 End Function

 The RefreshSheets Subroutine
 This subroutine runs once for each query sheet. It’s called by the main GetNewData
subroutine.

 Sub RefreshSheets(SheetName As String)

 The name of the query sheet is passed as an argument.

 With ThisWorkbook.Sheets(SheetName)

1

Chapter 1 Building a Collector28

 A With block is initiated so that subsequent objects, properties, and methods that begin with
a dot are taken to belong to the sheet named SheetName in ThisWorkbook .

 .Activate

 The current query sheet is activated so that its query can be run.

 .Cells(1, 1).Select

 Select cell A1. Earlier I recommended that you cause the queries to return their results
beginning in cell A1. If you adopt that recommendation, you know that the query results
include that cell A1 and that if you select it you’re able to refresh the query. (It’s necessary
that a cell in the query results range be active for the refresh to take place.)

 Selection.QueryTable.Refresh BackgroundQuery:=False

 Refresh the query. Set BackgroundQuery to False so that the code does not continue while
the refresh is taking place.

 End With
 End Sub

 Terminate the With block and end the subroutine.

 The Analysis Sheets
 I use several worksheets and chart sheets to analyze what’s going on with the sales of my
books. For an analysis that looks at the data over time, a pivot table (and pivot chart) is
a nearly perfect solution. It collapses the hourly figures that I get from my web queries
into more manageable time slices—I find that summarizing by day strikes a good balance
between the overwhelming amount of data in an hourly analysis and the lack of detail in a
monthly or even weekly analysis. Of course, when your baseline extends over several hun-
dred days, it’s time to start thinking about weeks or months as your unit of analysis.

 Figure 1.10 shows one of the pivot tables that I rely on to synthesize the data on sales
rankings.

 Figure 1.10
 When you connect this
pivot table to a pivot
chart, you can start mak-
ing real sense of the data.

29The Analysis Sheets

1

 As powerful as pivot tables are—and I believe that pivot tables are the most powerful and
flexible tool for data synthesis and analysis available in Excel—they can’t tell when you have
changed the underlying data, and (without help) they can’t tell that their underlying data
range has added another row.

 In contrast, something as simple as the SUM() function can update itself when the underly-
ing values change. If you have entered this formula

 =SUM(A1:A5)

 in some cell, the value it returns changes immediately if you change any of the values in
A1:A5. That’s not true of a pivot table that’s based on those cells or any other cell. You have
to do something special to refresh the table when the underlying data changes.

 But even SUM() won’t change its own argument. If you now put a new value in A6, SUM()
doesn’t change itself from SUM(A1:A5) to SUM(A1:A6).

 The way I prefer to handle that is by means of dynamic range names . You might already
know that you can assign a name to a worksheet range and use that name instead of a
range address. If you have given A1:A5 the name Addends , you can use this instead of
SUM(A1:A5):

 =SUM(Addends)

 I show you how to name a range shortly. First, you should know that if you define a range
properly, you can get it to change its own dimensions when you add a new row or column
to it. (Tables, new in Excel 2007, do that automatically, and you should probably investigate
their capabilities. I still prefer dynamic range names because of a possibly irrational belief
that I can control them better.)

 Defining a Dynamic Range Name
 Begin by selecting the worksheet that contains the range that you want to name. This step
is not strictly necessary, but I usually find it helpful. Then follow these steps:

 1. Click the Ribbon’s Formulas tab.

 2. Click the Define Name button in the Defined Names group. The New Name dialog
box shown in Figure 1.11 appears.

 Figure 1.11
 You can use a formula
instead of an address in
the Refers To box.

1

Chapter 1 Building a Collector30

 3. Enter the name you want to establish in the Name box.

 4. In this case, leave the Scope with the default value of Workbook.

 5. I base the pivot table on the data in my Summary sheet, shown in Figure 1.7 . With the
Summary sheet’s layout as shown there, type the following formula in the Refers To
box:

 =OFFSET(Summary!A2,0,0,COUNTA(Summary!$B:$B),3)

 6. Click OK.

 Here’s a quick explanation of the formula. The OFFSET() function returns a range of cells
that are offset from an anchor cell. Here, the anchor cell is defined as A2 on the Summary
sheet. Notice in Figure 1.7 that cell A2 is where the label “When” is entered, and more
labels follow it in row 2, columns B through I. I want to include those labels in the defined
range because they’re needed for the pivot table.

 The two zeros that follow A2 in the OFFSET() function tell Excel how many rows and
how many columns away from A2 the resulting range should begin. In this case, because
both values are zero, the resulting range is offset by zero rows and zero columns: that is, the
range begins at cell A2.

 The fourth argument to the OFFSET() function, COUNTA(Summary!$B:$B), tells Excel
how many rows to include in the offset range. The COUNTA() function tells Excel to
count the number of values in (here) column B on the Summary worksheet. So when the
VBA code runs and adds a new value in column B, the COUNTA function counts an addi-
tional value and redefines the number of rows in the range. That’s how adding a new row at
the bottom of the range causes the definition of the range to increase by one row.

 I use COUNTA() instead of COUNT() because I want to include the text value in cell B2. Using COUNT()
would ignore that text value; COUNTA() pays attention to both numeric and alphanumeric values. N

O
T

E

 The final argument to the OFFSET() function tells Excel how many columns to include in
the result range. Here I want to include three columns: one for the date, one for the Stats
book rankings, and one for the BAXL book rankings.

 It’s called a dynamic range name because the dimensions of the range can change depending
on the number of records or fields, or both, that are added to or removed from the range.

 Using the Dynamic Range Name
 With the dynamic range name defined, you can use it when you create a pivot table. Here’s
how to do that:

 1. Begin by activating a blank worksheet and then click the Ribbon’s Insert tab.

 2. Click Pivot Table in the Tables group. The dialog box shown in Figure 1.12 appears.

31The Analysis Sheets

1

 3. Type the name you supplied in Step 3 of the prior numbered list into the Table/Range
box. This causes Excel to use that range as the data source for the pivot table.

 4. Click OK. The PivotTable Field List appears.

 5. Drag the When field into the Row Labels box.

 6. Drag the StatsR field into the � Values box.

 7. Drag the BAXLR field into the � Values box.

 8. Dismiss the PivotTable Field List by clicking its Close box. The pivot table now
appears as shown in Figure 1.13 .

 Figure 1.12
 Use the dynamic range
name you defined in the
Table/Range box.

 Figure 1.13
 You still need to group
on date and to show
the average instead of
the sum.

 9. Right-click in the date column of the pivot table and choose Group from the shortcut
menu.

 10. Grouping by Month is the default selection. Click it to deselect it, and click Day to
select it instead. Click OK.

 11. The pivot table might seem to disappear from the visible worksheet. That can happen
when the grouping operation causes the pivot table to occupy many fewer rows. Just

1

Chapter 1 Building a Collector32

scroll up to it and then right-click in the column for the first book’s rankings. Choose
Value Field Settings from the shortcut menu.

 12. Change the summary type from Sum to Average and click OK.

 13. Right-click in the column for the second book’s rankings, choose Value Field Settings,
and change the summary type from Sum to Average. Click OK.

 The pivot table should now appear as shown in Figure 1.14 .

 Figure 1.14
 You can also use the Value
Field Settings to select
a display format for the
summary values in the
pivot table.

 Figure 1.15
 You usually need to do
some tinkering with the
pivot chart before it starts
to show you what you
need to know.

 A pivot table such as the one in Figure 1.14 isn’t very informative by itself. There are too
many data points to make any useful inferences from it. Fortunately, it’s easy to create a
pivot chart from a pivot table. Just select any cell in the pivot table, click the Ribbon’s Insert
tab, and choose (say) a Line chart from the Charts group.

 You get a chart embedded in the active worksheet, and you can usually tell more about
your data, at least on a macro level, from the chart than directly from the pivot table (see
 Figure 1.15).

33The Analysis Sheets

1

 One of the useful aspects of pivot charts is that they don’t need any special handling to keep
up with the underlying pivot table. When the pivot table’s data changes, or gets more rows,
the pivot chart updates automatically.

 You do need a way to force a refresh of the pivot table. There are many ways to handle that.
Some are mildly complicated, such as writing a special Worksheet Activate event handler
using VBA. That event handler would force a refresh any time you activate the worksheet
that contains the pivot table. Probably the simplest way is to right-click any cell in the pivot
table and to choose Refresh from the shortcut menu.

 Among the tweaks I like to apply to a newly created pivot chart are the following:

 ■ Right-click an embedded chart, click Move in the shortcut menu, and choose to move
the chart to a new sheet.

 ■ Right-click a data series in the chart and choose to format it. Reduce the width of the
lines and change any obnoxious color to a more acceptable one—black, for example.

 ■ Add a trendline. Right-click a data series and choose Add Trendline from the shortcut
menu. In line charts such as the one in Figure 1.15 , linear trendlines and moving aver-
age trendlines are often very informative. Tinker with the length of a moving aver-
age trendline until you get something that smooths out the rough in the series but
preserves its basic movement. Chapter 3 , “Forecasting with Moving Averages,” and
 Chapter 4 , “Forecasting a Time Series: Smoothing,” provide guidance on selecting the
length of a moving average.

This page intentionally left blank This page intentionally left blank

I N D E X

 A

 accessing
 Data Analysis add-in, 54 - 56
 Solver, 99

 ACFs (autocorrelation
functions), 139 - 141

 ARIMA workbook, 147 - 148
 adjusting autocorrelation

formula, 139 - 140
 alpha, 84 , 88 - 89

 Holt’s linear exponential
smoothing, 118 - 119

 selecting, 96 - 108
 analysis sheets (collector),

 28 - 33
 dynamic range name,

defining, 29 - 30
 analytics, 7 , 36
 analyzing composite variable

for multiple regression,
 48 - 50

 ANOVA (Analysis of
Variance), 61 - 62

 antilogs, 182 - 183
 applications, R, 193 - 198
 applying dynamic range

name to pivot table, 30 - 33

 AR process, identifying,
244 - 248

 ARIMA (AutoRegressive
Integrated Moving
Average), 241 - 244

 diagnostic and forecasting
stages, 264 - 265

 differencing, 249 - 251
 estimation stage, 257 - 264
 exponential smoothing,

 261 - 263
 identification stage, 244 - 256

 AR process, identifying,
 244 - 248

 MA process, identifying,
 248 - 249

 seasonal models,
identifying, 255 - 256

 standard errors in
correlograms, 253 - 254

 notation, 242 - 244
 in R, 259 - 260
 white noise process,

 254 - 255
 ARIMA workbook, 147 - 148 ,

 252 - 253
 array-entering formulas,

 44 - 45

 assumptions in regression
analysis

 distribution of forecast
errors, 54

 means of forecast errors, 54
 variability of forecast errors,

 50 - 53
 autocorrelation, 124

 formula, adjusting, 139 - 140
 lag 1 autocorrelation, 134
 versus trends, 137 - 139

 autoregression, 36 , 124 - 125 ,
 133 - 148

 ACFs, 140 - 141
 PACFs, 142 - 146

 B

 backcasting, 120
 Bartlett’s test of

homogeneity of variance,
 52 - 53

 baselines, horizontal, 108
 beta coefficient, 180
 BINOMDIST() function,

 152
 Bollinger Bands, 81

Index calculating284

 C

 calculating
 log likelihood, 203 - 205
 logits, 180 - 182
 Pearson correlation

coefficient, 38 - 41
 regression coefficient, 42 - 43

 causation versus correlation,
 41 - 42

 Central Limit Theorem,
 149 - 153

 characteristics of trended
time series, 108 - 111

 charting relationship
between variables, 37 - 38

 charts
 pivot tables, 28 - 29
 scatter charts, 275

 CHISQ.DIST.RT() function,
 156 - 157

 CHISQ.TEST() function,
 158

 chi-square, 153 - 155
 in models comparison, 206
 versus z-tests, 155 - 158

 collector
 query sheets, importing

data, 11 - 12
 variables, identifying, 8
 VBA code

 DoItAgain subroutine,
 19

 GetNewData subroutine,
 20 - 23

 GetRank() function,
 24 - 26

 GetUnitsLeft() function,
 26 - 27

 RefreshSheets
subroutine, 27 - 28

 workbook structure
 analysis sheets, 28 - 33
 formulas, 15 - 18
 query sheets, 9 - 13
 summary sheets, 13 - 15

 comparing
 Excel and R, 193 - 198
 moving averages with least

squares, 74 - 75
 principal components

analysis and factor analysis,
 236 - 239

 complexity, reducing,
212 - 213

 components versus
factors, 213

 confidence levels, 57 - 58
 CORREL() function, 40
 correlation

 versus causation, 41 - 42
 tendencies, 35 - 36

 correlation analysis, 36
 negative correlation, 40

 correlation matrices, inverse
of, 223 - 225

 correlograms, 148
 standard errors, 253 - 254

 creating composite variable
for multiple regression,
 45 - 48

 criteria for judging moving
averages, 73 - 75

 least squares, 74
 mean absolute deviation, 73

 curvilinear regression, 124

 D

 damping factor, 91 - 92
 data, importing into

collector, 11 - 12
 Data Analysis add-in

 accessing, 54 - 56
 Exponential Smoothing

tool, 89 - 96
 dialog box, 90 - 92
 output, 92 - 95

 installing, 56
 Moving Average tool, 76 - 81

 dialog box, 76 , 78 - 79
 standard error,

interpreting, 79 - 81
 Regression tool, 54 - 63

 dialog box controls,
 57 - 59

 output, 59 - 63
 defining dynamic range name

(analysis sheets), 29 - 30
 degrees of freedom, 205 - 206
 diagnostic and forecasting

stages (ARIMA), 264 - 265
 dialog box

 Exponential Smoothing
tool, 90 - 92

 Moving Average tool, 76 ,
 78 - 79

 Regression tool, 57 - 59
 differencing, 111 - 115

 in ARIMA analysis, 249 - 251
 distribution of forecast

errors, 54
 DoItAgain subroutine, 19
 downloading R, 193

How can we make this index more useful? Email us at indexes@quepublishing.com

285functions

 dynamic range name
 applying to pivot table,

 30 - 33
 defining, 29 - 30

 E

 eigenvalues, 229 - 231
 eigenvectors, 231 - 232

 factor score coefficients,
 233 - 236

 estimating slope for
Holt’s linear exponential
smoothing, 117

 estimation stage (ARIMA),
 257 - 264

 example of linear regression,
 125 - 128

 Excel
 comparing with R, 193 - 198
 lists, 39
 principal components

add-in, 216 - 236
 results of analysis,

219 - 222
 Regression tool, 54 - 63
 Solver, 97

 accessing, 99
 finding, 173 - 174
 reasons for using, 99 - 100
 requirements for

exponential smoothing,
 104 - 107

 tables, 39
 Varimax factor rotation,

 267 - 276
 scatter charts, 275

 structure of principal
components and
factors, 276 - 282

 exponential smoothing,
 84 - 86

 alpha, 84 , 88 - 89
 ARIMA, 261 - 263
 first differencing, 111 - 115
 formula, 84 - 86
 Holt’s method, 115 - 121

 alpha and gamma,
selecting, 118 - 119

 backcasting, 120
 manual smoothing,

120 - 121
 reasons for using, 86 - 89
 smoothing constant,

selecting, 96 - 108
 Exponential Smoothing tool,

 89 - 96
 dialog box, 90 - 92
 output, 92 - 95

 extracting principal
components, 271 - 275

 F

 F-test, 200 - 201
 factor analysis, comparing

with principal components
analysis, 236 - 239

 factor loadings, 233
 factor rotation, 267 - 276

 rationale for rotating
factors, 268 - 271

 factor score coefficients,
 233 - 236

 factors versus components,
 213

 F.DIST.RT() function, 200
 features of correlation

matrix’s inverse, 223 - 225
 finding Solver, 173 - 174
 first differencing, 111 - 115
 forecasting

 autoregression, 133 - 148
 multiple regression, 45 - 50

 composite variable,
analyzing, 48 - 50

 composite variable,
creating, 45 - 48

 naive forecasting, 109 - 110
 noise, 66 - 68
 regression, 42 - 45 , 123 - 133

 autoregression, 124 - 125
 LINEST() function,

 128 - 133
 signal, 66 - 68

 formulas
 array-entering, 44 - 45
 autocorrelation, adjusting,

 139 - 140
 for collector, 15 - 18
 exponential smoothing,

 84 - 86
 logits, 183 - 184

 functions
 BINOMDIST(), 152
 CHISQ.DIST.RT(),

156 - 157
 CHISQ.TEST(), 158
 CORREL(), 40
 F.DIST.RT(), 200
 GetRank(), 24 - 26
 GetUnitsLeft(), 26 - 27
 INDEX(), 223

Index funcctions286

 LINEST(), 43 - 44 , 128 - 133
 PEARSON(), 40
 SUM(), 29
 TREND(), 47 - 48 , 159

 G

 gamma, selecting for
Holt’s linear exponential
smoothing, 118 - 119

 GetNewData subroutine,
 20 - 23

 GetRank() function, 24 - 26
 GetUnitsLeft() function,

 26 - 27

 H

 Holt’s linear exponential
smoothing

 alpha, selecting, 118 - 119
 backcasting, 120
 manual smoothing, 120 - 121
 slope, estimating, 117

 homogeneity of variance,
 52 - 53

 homoscedasticity, 50 ,
158 - 161

 horizontal baseline, 108

 I

 identification stage (ARIMA
analysis), 244 - 256

 seasonal models, identifying,
 255 - 256

 white noise process,
254 - 255

 identifying
 sales for summary sheets, 14
 variables for collector, 8

 identity matrices, 222 - 223
 importing data into collector,

 11 - 12
 INDEX() function, 223
 installing Data Analysis

add-in, 56

 J-K-L

 judging moving averages,
criteria, 73 - 75

lag 1 autocorrelation, 134
 least squares, 74
 likelihood, 174 - 175

 log likelihood, 176 - 179
 measuring with logarithms,

 176 - 179
 linear exponential

smoothing, 115 - 121
 linear regression, 137 - 139

 example of, 125 - 128
 LINEST() function,

 128 - 133
 LINEST() function, 43 - 44 ,

 128 - 133
 lists, 39
 loadings, 233
 log likelihood, 176 - 179

 calculating, 203 - 205
 log odds, 166 - 168
 logarithms, measuring

likelihood, 176 - 179

 logistic regression, 36
 antilogs, 182 - 183
 beta coefficient, 180
 Central Limit Theorem,

 149 - 153
 chi-square, 153 - 155
 dichotomies, 158 - 162
 homoscedasticity, 158 - 161
 likelihood, 174 - 175
 log odds, 166 - 168
 logits

 calculating, 180 - 182
 formula, 183 - 184

 models comparison,
201 - 210

 chi-square, 206
 constraints, 205 - 206
 degrees of freedom,

205 - 206
 log likelihood,

calculating, 203 - 205
 performing in R, 194 - 198
 probabilities, versus odds,

 163 - 164
 purchase behavior,

predicting, 170 - 193
 residuals, distribution

of, 161
 z-tests, 150 - 153

 logits
 calculating, 180 - 182
 formula, 183 - 184

 lost periods in moving
averages, 68

How can we make this index more useful? Email us at indexes@quepublishing.com

287principal components add-in,

 M

 manual smoothing, 120 - 121
 matrices, 222 - 223

 eigenvalues, 229 - 231
 loadings, 233
 singular, 227 - 228

 matrix inverses, 222 - 223 ,
 225 - 227

 maximizing variance,
214 - 215

 mean absolute deviation, 73
 means of forecast errors, 54
 measuring likelihood with

logarithms, 176 - 179
 models comparison, 198 - 210

 differences, testing between
models, 200 - 201

 in logistic regression,
201 - 210

 chi-square, 206
 constraints, 205 - 206
 degrees of freedom,

205 - 206
 log likelihood,

calculating, 203 - 205
 pseudo R squared, 210
 results, calculating from

different models, 199 - 200
 Wald statistic, 209 - 210

 Moving Average tool, 76 - 81
 dialog box, 76 , 78 - 79
 standard errors,

interpreting, 79 - 81
 moving averages, 65 - 73

 ARIMA, 241 - 244
 diagnostic and

forecasting stages,
264 - 265

 estimation stage, 257 - 264

 identification stage,
244 - 256

 notation, 242 - 244
 in R, 259 - 260

 Bollinger Bands, 81
 criteria for judging, 73 - 75

 least squares, 74
 mean absolute

deviation, 73
 lost periods, 68
 smoothing, 68 - 70
 unweighted, 70 - 73
 weighted, 70 - 73
 weighted moving averages,

exponential smoothing,
 84 - 86

 multiple regression, 45 - 50 ,
 132 - 133

 composite variable
 analyzing, 48 - 50
 creating, 45 - 48

 models comparison,
198 - 210

 differences, testing
between models,
200 - 201

 pseudo R squared, 210
 results, calculating from

different models,
199 - 200

 Wald statistic, 209 - 210

 N

 naive forecasting, 109 - 110
 negative correlation, 40
 noise, 66 - 68
 non-linear regression, 124
 notation, ARIMA, 242 - 244

 O

 oblique rotation of
factors, 239

 odds
 log odds, 166 - 168
 versus probabilities, 163 - 164

 output
 Exponential Smoothing

tool, 92 - 95
 Regression tool, 59 - 63

 P

 PACFs (partial
autocorrelation functions),
 142 - 146

 ARIMA workbook, 147 - 148
 parsimony, 198
 Pearson, Karl, 38
 Pearson correlation

coefficient
 calculating, 38 - 41
 negative correlation, 40

 PEARSON() function, 40
 performing logistic

regression in R, 194 - 198
 pivot tables, 28 - 29

 dynamic range name,
applying, 30 - 33

 predicting dichotomous
variables

 restrictions, 161 - 162
 predicting purchase

behavior, logistic regression
example, 170 - 193

 principal components add-in,
 216 - 236

Index principal components analysis,288

 principal components
analysis, 211 - 216

 comparing with factor
analysis, 236 - 239

 complexity, reducing,
212 - 213

 eigenvalues, 229 - 231
 eigenvectors, 231 - 232
 extracting principal

components, 271 - 275
 factor loadings, 233
 relationship between

variables, 213 - 214
 rotation of axes, 238 - 239
 variance, maximizing,

214 - 215
 probabilities versus odds,

 163 - 164
 probability plots, 59
 pseudo R squared, 210
 purchase behavior,

predicting, 170 - 193

 Q

 query sheets for collector,
 9 - 13

 ARIMA capability,
comparing to Excel,
259 - 260

 comparing with Excel,
193 - 198

 downloading, 193
 logistic analysis, performing,

 194 - 198

 R

 R Square, 60 - 61
 ranking sales, 14 - 15
 reducing

 complexity, 212 - 213
 RefreshSheets subroutine,

 27 - 28
 regression, 42 - 45 , 123 - 133.

 See also regression analysis
 autoregression, 124 - 125 ,

 133 - 148
 ACFs, 140 - 141
 PACFs, 142 - 146

 linear regression, example
of, 125 - 128

 LINEST() function,
128 - 133

 log odds, 166 - 168
 multiple regression, 45 - 50
 residuals, distribution of,

 161
 regression analysis, 36

 assumptions, 50 - 54
 distribution of forecast

errors, 54
 means of forecast errors,

 54
 variability of forecast

errors, 50 - 53
 dichotomies, 158 - 162
 homoscedasticity, 158 - 161
 multiple regression, models

comparison, 198 - 210
 probabilities, 163 - 164

 regression coefficient,
calculating, 42 - 43

 Regression tool, 54 - 63
 dialog box controls, 57 - 59
 output, 59 - 63

 relationship between
variables, 213 - 214

 charting, 37 - 38
 Pearson correlation

coefficient, calculating,
 38 - 41

 requirements, using Solver
for exponential smoothing,
 104 - 107

 residuals, 59
 in logistic regression,

distribution of, 161
 rotating factors, rationale

for, 268 - 271
 rotation of axes, principal

components analysis,
238 - 239

 running Solver, 102 - 105

 S

 sales, ranking, 14 - 15
 scatter charts, 275
 seasonal models, identifying,

 255 - 256
 selecting

 alpha for Holt’s linear
exponential smoothing,
 118 - 119

 smoothing constant, 96 - 108
 shared variance, 215
 signal, 66 - 68
 singular matrices, 227 - 228

 eigenvalues, 229 - 231
 slope, estimating for

Holt’s linear exponential
smoothing, 117

How can we make this index more useful? Email us at indexes@quepublishing.com

289white noise process (ARIMA)

 SMCs (squared multiple
correlations), 238

 smoothing
 exponential smoothing,

 84 - 86
 alpha, 84 , 88 - 89
 ARIMA, 261 - 263
 first differencing,

111 - 115
 formula, 84 - 86
 reasons for using, 86 - 89

 versus tracking, 68 - 70
 smoothing constant,

selecting, 96 - 108
 Solver, 97

 accessing, 99
 exponential smoothing,

requirements, 104 - 107
 finding, 173 - 174
 reasons for using, 99 - 100
 running, 102 - 105

 Spearman, Charles, 212
 standard error of

estimate, 61
 SUM() function, 29
 summary sheets

 for collector, 13 - 15
 sales, identifying, 14

 T

 tables, 39
 tendencies, 35 - 36
 testing for uncorrelated

variables, 228 - 229
 time series (trended),

characteristics of, 108 - 111
 tracking versus smoothing,

 68 - 70

 TREND() function,
47 - 48 , 159

 trended time series,
characteristics of, 108 - 111

 trends versus
autocorrelation, 137 - 139

 U-V

 uncorrelated variables,
testing for, 228 - 229

 unweighted moving averages,
 70 - 73

 variability of forecast errors,
 50 - 53

 Bartlett’s test of
homogeneity of variance,
 52 - 53

 variables
 communality, 238
 identifying for collector, 8
 principal components

analysis, 211 - 216
 relationship between

 charting, 37 - 38
 Pearson correlation

coefficient, calculating,
 38 - 41

 relationship between
measurable variables,
 213 - 214

 uncorrelated, testing for,
 228 - 229

 variance, maximizing,
214 - 215

 variance
 maximizing, 214 - 215
 shared variance, 215

 Varimax factor rotation, 239 ,
 267 - 276

 extracting principal
components, 271 - 275

 factors, structure of,
 276 - 282

 principal components,
structure of, 276 - 282

 rotating factors, rationale
for, 268 - 271

 VBA code for collector
 DoItAgain subroutine, 19
 GetNewData subroutine,

 20 - 23
 GetRank() function, 24 - 26
 GetUnitsLeft() function,

 26 - 27
 RefreshSheets subroutine,

 27 - 28
 version of Excel, effect on

web queries, 10 - 11

 W

 Wald statistic, 209 - 210
 weighted moving averages,

 70 - 73
 exponential smoothing,

 84 - 86
 alpha, 84 , 88 - 89
 first differencing,

 111 - 115
 Holt’s method, 115 - 121
 reasons for using, 86 - 89
 smoothing constant,

selecting, 96 - 108
 white noise process

(ARIMA), 254 - 255

Index workbook structure (collector)290

 workbook structure
(collector)

 analysis sheets, 28 - 33
 dynamic range name,

defining, 29 - 30
 formulas, 15 - 18
 query sheets, 9 - 13
 summary sheets, 13 - 15

 sales, identifying, 14

 X–Y–Z

 z-tests, 150 - 153
 versus chi-square, 155 - 158

	Table of Contents
	Introduction
	1 Building a Collector
	Planning an Approach
	A Meaningful Variable
	Identifying Sales

	Planning the Workbook Structure
	Query Sheets
	Summary Sheets
	Snapshot Formulas
	More Complicated Breakdowns

	The VBA Code
	The DoItAgain Subroutine
	The GetNewData Subroutine
	The GetRank Function
	The GetUnitsLeft Function
	The RefreshSheets Subroutine

	The Analysis Sheets
	Defining a Dynamic Range Name
	Using the Dynamic Range Name

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K-L
	M
	N
	O
	P
	Q
	R
	S
	T
	U-V
	W
	X–Y–Z

