
For experienced Exchange
Server administrators

Inside OUT

Inside OUT

OUT
Inside

Foreword by Rajesh Jha
Corporate Vice President, Exchange
Server Group, Microsoft Corporation

About the Author
Tony Redmond is a Microsoft Most Valu-
able Professional (MVP) and one of the
leading voices in the Exchange Server
community. He has two decades of expe-
rience with enterprise mail, focusing on
Exchange Server since version 4.0. As an
industry consultant, he guides customers
through Exchange Server deployment
and management, and he’s written 10
books.

Conquer Mailbox administration—from
the inside out!
Focusing on the Mailbox server role, dive into Exchange Server
2013—and really put your enterprise messaging to work! This
supremely organized reference packs hundreds of timesaving
solutions, troubleshooting tips, and workarounds for managing
mailboxes and high availability. Discover how the experts manage
core operations and support tasks—and challenge yourself to
new levels of mastery.

• Prepare for installation or upgrade

• Master role-based access control (RBAC) fundamentals

• Create, manage, move, and archive mailboxes

• Implement email address policies

• Configure and manage distribution groups

• Understand Store components and functionality

• Deliver high availability through database availability groups
 (DAGs)

• Manage compliance, retention, mailbox search, and data loss
 prevention

• Use the Exchange Management Shell and cmdlets

• Administer public folder architecture

M
icrosoft Exchange Server 2013

M
ailbox and H

igh Availability

Microsoft Exchange Server
2013 Mailbox and High
Availability

ISBN: 978-0-7356-7858-3

microsoft.com/mspress

Messaging/Microsoft Exchange Server

U.S.A. $49.99
Canada $52.99

[Recommended]

The ultimate, in-depth reference
Hundreds of timesaving solutions
Supremely organized, packed
with expert advice

Microsoft Exchange
Server 2013: Mailbox
and High Availability
Tony Redmond Award-winning author + Microsoft MVPCelebrating 30 years!

Redmond

Also look for
Microsoft Exchange Server 2013 Inside Out:
Connectivity, Clients, and UM
9780735678378

spine = 1.3”

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 by Tony Redmond

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2013948703
ISBN: 978-0-7356-7858-3

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty
/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Anne Hamilton
Developmental Editor: Karen Szall
Project Editor: Karen Szall
Editorial Production: nSight, Inc.
Technical Reviewer: Paul Robichaux; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Copyeditor: Kerin Forsyth
Indexer: Lucie Haskins
Cover: Twist Creative • Seattle

 iii

Contents at a Glance

Chapter 1
Introducing Microsoft Exchange Server 2013 . . 1

Chapter 2
Installing Exchange 2013 43

Chapter 3
The Exchange Management Shell 83

Chapter 4
Role-based access control 131

Chapter 5
Mailbox management . 169

Chapter 6
More about the Exchange Administration
Center . 267

Chapter 7
Addressing Exchange . 333

Chapter 8
The Exchange 2013 Store 387

Chapter 9
The Database Availability Group 457

Chapter 10
Moving mailboxes . 567

Chapter 11
Compliance management 641

Chapter 12
Public folders and site mailboxes 765

 v

Table of Contents

 Introduction .xvii
Acknowledgments . xviii
Errata & book support . xviii
We want to hear from you . xix
Stay in touch . xix

Chapter 1 Introducing Microsoft Exchange Server 2013 . 1
Understanding development priorities .2
The influence of The Service .5

Exchange Online and Exchange development .7
Transition into the cloud .9

Exchange 2013 architecture. 10
The motivation to upgrade . 11

Evolving from earlier versions of Exchange . 12
Waiting for updates . 13
Fundamental questions before you upgrade. 15

Selecting the right Windows Server for Exchange 2013. 22
Using virtualization . 24
Preparing for Exchange 2013. 26

A word about transport . 27
The test plan . 28
Testing for operational processes . 29
Testing for programming and customizations. 30
Updating earlier versions of Exchange . 31
Deploying earlier versions of Exchange servers alongside Exchange 2013 32

Exchange 2013 editions . 32
Active Directory . 34

Using the strong link between Exchange and Active Directory 34
ADSIEdit . 36

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

vi Table of Contents

Useful utilities . 37
MFCMAPI . 38
Exchange Web Services Editor . 40

Installing Exchange 2013 . 41

Chapter 2 Installing Exchange 2013 . 43
Approaching the installation . 43
Types of Active Directory deployment that support Exchange. 45
Preparing Active Directory for Exchange . 47
Creating the Exchange 2013 organization . 49
Deploying an Exchange 2013 server . 50

Installing UCMA. 53
Running Setup . 53
Setup logs. 56
Uninstalling Exchange . 58
Repairing Exchange . 61
Recovering a failed server . 61

Versions, cumulative updates, and service packs. 63
Cumulative updates . 64
Version numbers . 67
Object versions . 69
Reporting licenses. 70

Security groups and accounts Exchange creates . 73
Namespace planning. 77

Self-signed certificates . 77
Using the Exchange 2013 CAS to handle connections. 79
The case for protocol-specific namespaces . 80

Contemplating management. 81

Chapter 3 The Exchange Management Shell . 83
How Exchange uses Windows PowerShell. 83
Using remote Windows PowerShell . 86

Connecting to remote PowerShell . 88
Limiting user functionality. 91

EMS basics . 92
Command editing . 95
Handling information EMS returns . 98
Selective output . 98
Using common and user-defined variables . 101
Using PowerShell ISE with Exchange . 103
Identities . 105
Piping . 109
OPATH filters . 110
Server-side and client-side filters . 110
Transcripts . 114
Bulk updates . 114
Calling scripts. 117

 Table of Contents vii

Execution policies . 118
Profiles . 119

Active Directory for PowerShell . 120
Setting the right scope for objects in a multi-domain forest 122

Exploring useful EMS examples. 123
Looking for large folders . 124
Outputting a CSV file . 125
Creating a report in HTML . 127

Verbose PowerShell . 129
Controlling access to Exchange. 129

Chapter 4 Role-based access control . 131
RBAC basics . 132
Roles . 136
Role groups . 139
Scopes . 141
Working with RBAC . 143

Creating a new role group. 145
Maintaining role group membership . 149

Role group management . 151
Role assignment . 152

Using role assignment policy to limit access . 153
Creating roles for specific tasks . 155
Specific scopes for role groups . 157
Database scoping . 158
Special roles . 159
Unscoped roles . 160
Which role groups do I belong to? . 162

Assignment policies. 163
Implementing a split permissions model. 166
Figuring out RBAC . 167
On to management . 168

Chapter 5 Mailbox management . 169
Seeking perfection halts progress . 170

Starting EAC. 173
How EAC accesses Exchange data . 176
Changing EAC columns . 177
Naming conventions . 178

Managing Recipients. 180
Recipient filtering . 180
Exporting EAC information to CSV files . 181
Some mysterious mailboxes . 182

The need for mailboxes . 183
Naming mailboxes . 185
Creating new mailboxes . 187

Completing mailboxes . 193

viii Table of Contents

Bulk mailbox creation. 195
Creating new room and resource mailboxes . 195
Languages . 196
Default folders . 200
Manipulating mailbox settings . 202
Automating mailbox settings . 205
What’s in a mailbox?. 207
Ready-to-go custom attributes . 207

Mailbox resources provisioning management agent . 209
Setting mailbox quotas . 213
Removing or disabling mailboxes . 218
Reconnecting mailboxes. 220
Discovery mailboxes . 224

Creating additional discovery mailboxes . 224
Health mailboxes . 226
Setting mailbox permissions . 229

Mailbox delegation. 229
Managing Full Access permission . 232
Mailbox auto-mapping through Autodiscover . 235
Opening another user’s mailbox with Outlook Web App . 237
Sending messages on behalf of other users. 237
Outlook delegate access . 239

Shared mailboxes . 240
Recalling messages . 241
Moderated recipients . 243

Moderated groups . 244
Processing moderation requests . 247
Moderated mailboxes . 249

Mail-enabled contacts . 250
Mail users . 252
Resource mailboxes . 254

Defining custom properties for resource mailboxes. 255
Providing policy direction to the Resource Booking Attendant. 256
Processing meeting requests according to policy . 261
Equipment mailboxes . 265

Enough about mailboxes . 266

Chapter 6 More about the Exchange Administration Center 267
Groups . 267

Managing groups . 269
Creating new groups . 270
Group owners . 275
Group expansion. 277
Protected groups . 278
Viewing group members . 281
Security groups . 284
Tracking group usage. 285

 Table of Contents ix

Allowing users to manage groups . 286
Room lists . 298

Dynamic distribution groups . 300
OPATH queries. 300
Creating new dynamic distribution groups . 302
Validating query results . 305
Creating dynamic groups with EMS. 306
Using custom filters . 308

Sharing . 313
Certificate management . 313
Mail flow and rules . 318
Delivery reports . 320

Administrator searches for delivery reports. 322
Using EMS to search delivery reports . 327

Running EAC without an Exchange mailbox . 329
Setting diagnostics for Exchange servers . 330
But what will you manage? . 332

Chapter 7 Addressing Exchange . 333
Email address policies . 333

Email policy priority . 334
Creating a new email address policy . 337
Focusing on certain recipients by using filters. 341
Creating email address policies with custom filters . 343

Address lists . 345
Address book policies . 348

ABPs and groups . 350
Creating and implementing an ABP . 351

The Offline Address Book. 357
The OAB and Outlook . 359
How Exchange 2013 generates the Offline Address Book . 362
Creating and using customized OABs . 367

Hierarchical address book . 371
MailTips and group metrics . 373

Client interaction. 376
Configuring MailTips . 377
User experience. 378
Custom MailTips . 380
Multilingual custom MailTips . 381
OAB support for MailTips . 381

The display or Details Templates Editor . 382
The next step . 386

Chapter 8 The Exchange 2013 Store . 387
Long live JET! . 388
Maximum database size . 389

Sizing mailboxes . 391

x Table of Contents

Dealing with I/O . 392
Maintaining contiguity. 397
The database schema. 398
Exchange 2013 I/O improvements. 400

Workers, controller, and memory . 402
Managed Availability and the Managed Store . 407
Database management. 407

Creating new mailbox databases . 410
Updating mailbox databases after installation . 414
Backups and permanent removal . 416
Removing a database. 417

Transaction logs . 419
Log sets . 419
Transaction log checksum . 427
Transaction log I/O . 427
The question of circular logging . 429
Reserved logs. 431

Background maintenance. 432
Database checksums . 433
Database defragmentation . 435
Database compaction . 436
Page zeroing . 436
Content maintenance tasks. 436

Corrupt item detection and isolation. 437
Protection against high latency . 442
Protection against excessive database or log growth . 443
Debugging swelling databases. 444
Online repair cmdlets . 445

Rebuilding a database. 448
Using ESEUTIL . 450

Database usage statistics . 451
Mailbox assistants . 454
And now for something completely different . 455

Chapter 9 The Database Availability Group . 457
Changes in high availability in Exchange 2013. 457
Database portability . 459

Database Availability Group basics . 461
The dependency on Windows clustering . 463

Migrating an Exchange 2010 DAG . 464
Active Manager . 465

Automatic database transitions . 467
Managed Availability and high availability. 469
Best copy and server selection . 472
ACLL: Attempt copy last logs . 478

Transaction log replay: The foundation for DAG replication . 479
Transaction log compression . 483

 Table of Contents xi

Block mode replication . 484
Transaction log truncation . 486
Incremental resynchronization . 487
Seeding a database. 489

Changes in message submission within a DAG . 489
Day-to-day DAG management and operations . 489

Building the DAG. 494
Pre-staging the Cluster Name Object . 497
The role of the FSW . 499
DAG task logging . 502
Crimson events . 502
Managing DAG properties . 504
DAG networks . 506
Cleaning up before creating database copies . 510
Using circular logging inside a DAG . 510
Adding new database copies to a DAG. 514
Monitoring database copies . 517
Reseeding a database copy. 523
Adding database copies with EMS. 525
Using a lagged database copy . 525
Activating a mailbox database copy . 533
Rebalancing database copies . 534
Performing a server switchover . 536
AutoDatabaseMountDial and potential issues moving databases. 539
Activation blocks. 542
Moving database locations within a DAG. 544
Removing database copies . 546
Removing servers from a DAG . 548
Handling storage failures. 549

Datacenter Activation Coordination. 551
Approaching DAG designs . 552

How Exchange 2013 changes the resilience equation . 558
Building a DAG with Exchange Standard edition . 560

Server maintenance. 562
Stressed servers . 565
On to protecting data . 566

Chapter 10 Moving mailboxes . 567
The Mailbox Replication service . 567
Moving mailboxes . 568

Asynchronous moving . 571
The Migration service . 572
Mailbox Replication service processing . 575

MRS and system resources . 579
Preventing loss of data. 580

Creating and managing migration batches with EAC . 581
Using EMS with migration batches . 592

xii Table of Contents

Reporting mailbox moves . 595
Getting more information about a move . 597
Accessing move report histories . 599

Managing individual mailbox moves . 605
Assigning move priority. 607
Moves and mailbox provisioning . 607
Handling move request errors . 607
Checking and altering move request status. 609
Clearing move requests . 610

Migration endpoints . 611
Enabling MRSProxy . 612
Planning mailbox moves. 614

Suspending mailbox moves. 615
Ensuring high availability . 619
MRS configuration file. 621
Mailbox import and export . 623

Gaining permission through RBAC to execute mailbox import and export 624
Planning the import of PST data . 626
Importing and exporting mailbox data with EAC . 629
Importing and exporting mailbox data with EMS. 632

Alerts . 638
Time to comply. 640

Chapter 11 Compliance management . 641
The joy of legal discovery. 642
Archive mailboxes . 645

Enabling archives. 647
The default archive and retention policy . 652
Using an archive mailbox. 655
Disabling an archive mailbox . 656

Messaging records management . 657
Types of retention tags . 657
System tags . 662
Designing a retention policy. 663
Managed Folder Assistant and retention policies. 665
Naming retention tags. 666
Creating retention tags . 668
Creating a retention policy . 673
Applying a retention policy to mailboxes. 677
Modifying a retention policy . 681
Customizing retention policies for specific mailboxes . 681
User interaction with retention policies . 684
Setting a retention policy on a folder . 685
Removing tags from policies. 687
Removing a retention policy. 688
Upgrading from managed folders. 688

 Table of Contents xiii

How the Managed Folder Assistant implements retention policies 689
Behind the scenes with the MFA . 691
Retention date calculation. 693

Preserving information . 696
Putting a mailbox on retention hold . 698
Putting a mailbox on litigation hold . 699
Searching mailbox content . 701
In-place holds . 703
Creating a new search . 708
Retrieving discovered content . 716
Examining search results . 720
Resource throttling for searches. 724
How in-place holds work . 726
Using groups with searches. 728
Removing a search . 730
Executing searches with EMS . 731
What Exchange can search . 733
Search syntaxes . 736

The value of the Recoverable Items structure . 737
The function of the Recoverable Items structure . 737
Improvements in Exchange 2013 . 739
Single-item recovery . 743
Knowing what’s in Recoverable Items . 745
Managing quotas for Recoverable Items . 746

Auditing administrator actions . 748
The audit mailbox . 749
How administrator auditing happens . 750

Auditing mailbox access . 754
Enabling mailboxes for auditing. 757
Accessing mailbox audit data . 759

Other compliance features. 763

Chapter 12 Public folders and site mailboxes . 765
Public folders . 765

New concepts . 766
Creating public folder mailboxes . 767
How many public folder mailboxes are needed? . 770
Controlling the root . 774
Creating public folders. 776
Mail-enabling public folders . 779
Moving public folders . 783
Redirecting content . 785
Removing a public folder . 786
Mobile access. 786
Organizational forms library . 787

Migration to modern public folders . 787

Site mailboxes. 791
How site mailboxes work . 792
The life cycle of site mailboxes . 800
Site mailbox provisioning policy. 803

Summarizing public folders and site mailboxes . 804
Moving on. 805

Index . 807

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

 xv

Foreword for Exchange 2013 Inside Out books
Those seeking an in-depth tour of Exchange Server 2013 couldn’t ask for better guides
than Tony Redmond and Paul Robichaux. Tony and Paul have a relationship with the
Exchange team that goes back two decades, to the days of Exchange 4.0. Few people have
as much practical knowledge about Exchange, and even fewer have the teaching skills to
match. You are in good hands.

Over the past few years, we have seen significant changes in the way people communicate;
a growing number of devices, an explosion of information, increasingly complex compli-
ance requirements, and a multigenerational workforce. This world of communication chal-
lenges has been accompanied by a shift toward cloud services. As we designed Exchange
2013, the Exchange team worked hard to build a product and service that address these
challenges. As you read these books, you’ll get an up-close look at the outcome of our
efforts.

Microsoft Exchange Server 2013 Inside Out: Mailbox and High Availability covers founda-
tional topics such as the Exchange Store, role-based access control (RBAC), our simplified
approach to high availability, and the new public folder architecture. It also covers our
investments in eDiscovery and in-place hold. As you read, you’ll see how Exchange 2013
helps you achieve world-class reliability and provides a way to comply with internal and
regulatory compliance requirements without the need for third-party products.

Microsoft Exchange Server 2013 Inside Out: Connectivity, Clients, and UM explores the
technologies that give users anywhere access to their email, calendar, and contacts across
multiple devices. It also explains how to protect your email environment from spam, viruses,
and other threats and describes how Exchange 2013 can connect with Office 365 so you
can take advantage of the power of the cloud.

From our new building-block architecture to data loss prevention, there’s a lot to explore in
the newest version of Exchange. I hope that as you deploy and use Exchange 2013, you’ll
agree that this is an exciting and innovative release.

Enjoy!

Rajesh Jha
Corporate Vice President - Exchange
Microsoft Corporation

 xvii

Introduction
This book is for experienced Exchange administrators who want to get inside the soul of
Exchange Server 2013, the latest version of the Microsoft enterprise messaging server first
released in October 2012 and updated on a frequent basis since. You might learn how to
work with Exchange 2013 by reading this book, but I sincerely doubt that this will happen
simply because I have written it with experience in mind.

The book does not cover every possible topic relating to Exchange 2013. In fact, it focuses
primarily on the Mailbox server role. Let me explain why. After completing Microsoft
Exchange Server 2010 Inside Out (Microsoft Press, 2010), it became very clear that attempt-
ing to cover all of a complex product such as Exchange in any depth in just one book was
a fool’s errand. There are too many details to master, too much work to do, too much
information that can only be skimmed over to keep to a reasonable page count. The result
would probably be a book that weighs 2 kilos, spanning 1,400 pages that takes 2 years to
write. All in all, an unacceptable situation in both commercial and practical terms.

Paul Robichaux and I ran a number of Exchange 2010 Maestro seminars in the 2010–2011
period. Despite the infamous cockroach sandwich affair, the events were good fun, and
we enjoyed discussing the technology in some depth, even if we tended to ramble on at
times. Brian Desmond, an Active Directory MVP who did an excellent job of lab master and
 stand-in speaker when required, helped us. Because we worked well together and because
Paul has an excellent record of writing both books and articles, it seemed like a good idea
to consider a joint approach for Microsoft Exchange Server 2013 Inside Out. We arrived at
the basic idea quickly—we would split coverage into the two server roles. I’d write about
the Mailbox role and Paul took on client access, including all the various clients Exchange
supports, and unified messaging, which, strictly speaking, is part of an Exchange 2013
Mailbox server. However, Paul is an acknowledged expert in this space, and it would have
made no sense to have me write about a subject of which Paul is the master.

Because Exchange 2013 is an evolution of Exchange 2010, we decided to use Microsoft
Exchange Server 2010 Inside Out as the base for the new book. An evolution it might be,
but an extensive level of change at the detail level exists in Exchange 2013. The upshot is
that I’m not sure how much of that book remains in the current text—maybe 20 percent.
One thing I am glad of is that we did not rush to press after Exchange 2013 first appeared.
Given the amount of change that has occurred in updates from Microsoft since, a book that
describes the release to manufacturing (RTM) version of Exchange 2013 would have been
obsolete very soon after publication. We hope that these volumes will last longer.

xviii Introduction

I hope that you enjoy this book and that you’ll read it alongside Paul’s Microsoft Exchange
Server 2013 Inside Out: Clients, Connectivity, and UM. The two books really do go together.
Paul has scrutinized every word in this book and I have done the same for his. We therefore
share the blame for any error you might find.

Acknowledgments
I owe enormous thanks to the many people who agreed to look over chapters or por-
tions of the book. Each has deep expertise in specific areas and all contributed greatly
to eradicating errors and increasing clarity. These folks include Sanjay Ramaswamy,
Jürgen Hasslauer, David Espinoza, William Rall, Todd Luttinen, Tim McMichael, Vineetha
Kalvakunta, Fred Monteiro da Cruz Filho, Kanika Ramji, Lokesh Bhoobalan, Astrid McClean,
Alfons Staerk, Kern Hardman, Andrew Friedman, Abram Jackson, and Scott Schnoll. Even if
they didn’t realize it, many of the Exchange MVPs played their part in improving the book
by prompting me to look into topics that I had forgotten to cover. I should also acknowl-
edge the huge contribution made by my editor, Karen Szall. We fought many times about
page counts, content, and too many other topics to list here but always kept the project
moving.

I apologize sincerely if I have omitted to mention anyone who has contributed to making
the text of the book as accurate and as informative as possible.

Errata & book support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/ExIOv1/errata

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

 Introduction xix

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in touch
Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress.

 83

CHAPTER 3

The Exchange Management Shell

Windows PowerShell is an extensible automation engine consisting of a com-
mand-line shell and a scripting language. Exchange Server 2007 was the first
major Microsoft application to support Windows PowerShell in a comprehensive

manner. Although not every administrator welcomed the opportunity to learn a new script-
ing language, the overall impact was extremely positive. The role of Windows PowerShell
continues to expand across Microsoft products, and it now extends into the newest
 Microsoft offerings, including the deployment and management of applications on the
Azure cloud computing platform.

Windows PowerShell is built on top of the Microsoft .NET Framework and is implemented
in the form of cmdlets, specialized .NET classes that contain the code to implement a par-
ticular operation such as the creation of a new mailbox or the enumeration of the processes
that are currently active on a server. Applications implement Windows PowerShell support
by providing sets of application-specific cmdlets that collectively represent the functionality
required to support the application, or they can be used to access different data stores such
as the file system or system registry. Cmdlets can be run separately or combined by piping
the output generated by one cmdlet to become the input of the next. Cmdlets can also
be combined into scripts (with a .ps1 file extension) to provide more comprehensive pro-
cessing and logic or included in executables when the need exists to launch a standalone
application. Many scripts are available on different Internet sites to assist with Exchange
management.

How Exchange uses Windows PowerShell
From an Exchange perspective, Windows PowerShell provides a way to perform tasks
quickly and simply in a variety of manners, from one-off interventions to process one or
more Exchange objects to complex scripts to perform tasks such as mailbox provisioning.
Most administrators cut their teeth on PowerShell by using the Exchange Management
Shell (EMS) to do simple things, such as using Get-Mailbox to report on a mailbox’s

How Exchange uses Windows PowerShell 83

Using remote Windows PowerShell 86

EMS basics . 92

Active Directory for PowerShell . 120

Exploring useful EMS examples . 123

Verbose PowerShell . 129

Controlling access to Exchange . 129

Chapter 3

84 Chapter 3 The Exchange Management Shell

properties and Set-Mailbox or Set-CASMailbox to set a property, before moving on to the
more esoteric commands to manipulate connectors or control the ability of devices to
connect through ActiveSync and so on. The saying is that almost anything is possible with
Windows PowerShell, and this is certainly true when you dedicate enough energy and time
to mastering the language, not to mention the time necessary to scan the Internet for use-
ful examples of scripts that can be adapted to meet your needs.

Prior to Exchange Server 2007, business logic was scattered in components throughout the
product. The management console did things—even simple things like setting a property
on a server—by using different code and logic than in the setup program, and the applica-
tion programming interfaces (APIs) included in the product usually provided a third way
to approach a problem. The result was a total lack of consistency, duplication of code, and
a tremendous opportunity to create bugs in multiple places. In addition, administrators
could not automate common tasks to meet the needs of their organization; essentially, if an
Exchange engineer didn’t code something into the product, it couldn’t be done.

Figure 3-1 illustrates the central role Windows PowerShell now plays in the Exchange archi-
tecture and shows how it provides a central place to encapsulate business logic that under-
pins the Exchange setup program, the Exchange Administration Center (EAC), the mailbox
options that users can update through Outlook Web App, and the Exchange Management
Shell (EMS).

Figure 3-1 Windows PowerShell at the heart of Exchange

Ch
ap

te
r 3

 How Exchange uses Windows PowerShell 85

The way Exchange uses Windows PowerShell to implement business functionality is prob-
ably the most extensive of any Microsoft application. As explored throughout this book, the
options presented by EAC to work with mailboxes, connectors, servers, and other objects
invariably result in a call to one or more PowerShell cmdlets that actually do the work. The
functionality presented to administrators, specialist users (those who perform a subset
of administrative tasks such as maintaining user details), and normal users is all based on
PowerShell.

The exact scope and range of the functionality presented to any individual user is deter-
mined by the permissions granted to him through role-based access control (RBAC). RBAC
is designed to function across a range of environments, from a single-server organization
to an organization composed of a mixture of on-premises and hosted servers. The need
to accommodate such a wide range of environments is also why Microsoft has moved
from local PowerShell (by which all commands are executed on a local server) to remote
PowerShell (by which commands are redirected through Internet Information Services [IIS]
for execution on a target server). The details of just how remote PowerShell and RBAC work
together in EMS are covered shortly.

Simplifying the implementation of new functionality
The administrative interfaces in Exchange all lead to the same place and execute the
same business logic . Apart from removing redundant and overlapping code, having a
single place to implement business logic enables the Exchange engineers to concen-
trate on implementing new functionality rather than re-implementing features specifi-
cally for use by EAC, EMS, or the setup program . The approach enables Exchange to
deliver a more consistent administrative environment and a comprehensive method to
automate tasks to deal with mailboxes, databases, connectors, and all the other compo-
nents that collectively make up an Exchange organization .

At the time of writing, Exchange 2013 RTM CU2 includes 965 cmdlets that are added to the
standard set of Windows PowerShell cmdlets, including cmdlets to work with the system
registry, file system, variables (including environmental variables), and so on that are avail-
able in an EMS session. Depending on the RBAC role groups of which your account is a
member, the number of cmdlets available to you might vary.

Collectively, the set of EMS cmdlets manages the objects and the properties of the objects
that form Exchange. Objects include mailboxes, servers, transport rules, connectors, and so
on. You can determine the exact number of cmdlets Exchange owns by using the following
command (this command doesn’t work with Exchange Online):

Get-ExCommand | Measure-Object | Select Count

Chapter 3

86 Chapter 3 The Exchange Management Shell

INSIDE OUT Finding the cmdlets available to you

As you learn in the discussion about RBAC in Chapter 4, “Role-based access control,” an
EMS session allows you access only to the cmdlets and parameters that are defined in
the roles included in the role groups of which your account is a member . Accounts that
are highly permissioned, such as those belonging to the Organization Management
role group, can use many more cmdlets than those that belong to a less-permissioned
role group, such as Help Desk or Recipient Management . You can use this command to
generate a full list of all the Exchange 2013 cmdlets your account can access:

Get-ExCommand > C:\Temp\ExCommands.txt

By comparison, Exchange 2007 includes 394 cmdlets, Exchange 2010, 584; and the RTM
version of Exchange 2013, 958. The hundreds of new cmdlets included in Exchange 2013
and subsequently augmented through cumulative updates reflect the new functionality
in the product such as the introduction of site mailboxes and data loss protection policies,
along with the expansion of existing functionality such as the changes to compliance.

PowerShell use and syntax are fundamental skills for Exchange administrators to master.
In fact, many Exchange administrators prefer EMS to EAC because of the additional flex-
ibility that EMS provides. This chapter lays out the basics of Windows PowerShell and sets
the stage for the examples of PowerShell found in other chapters. To begin, review how the
Exchange management tools actually connect to PowerShell.

Using remote Windows PowerShell
Exchange 2010 began the necessary transformation from a model that assumed an admin-
istrator would always have some form of physical access to a server to the point at which
remote management has become the norm. Remote PowerShell provides the fundamental
building block for connectivity to remote systems. The combination of remote PowerShell
and RBAC enables administrators to manage objects residing on a server in a remote data-
center as easily as managing objects on a local server.

Note
You can think of Windows PowerShell as implemented in Exchange Server 2007 as
“local PowerShell” because cmdlets are executed in a local process . The only element of
remote access in Exchange 2007 is when you pass the –Server parameter to identify a
server against which to execute a command . Even so, if data are needed from a remote
server, such as fetching a set of mailbox objects, it is retrieved across the network and
processed locally .

Ch
ap

te
r 3

 Using remote Windows PowerShell 87

Exchange 2010 and Exchange 2013 support the remote execution of commands in a secure
manner, using HTTPS and a Kerberos-based encryption mechanism that is easily manage-
able through firewalls (assuming that port 80 is open). Remote PowerShell is now used for
all EMS sessions. Even if you are logged on to an Exchange server and want to use EMS to
change a property of that server, EMS still creates a remote session on the local server to
do the work. The same applies for EAC because Exchange creates a remote session when
you log on to connect to a server in the local Active Directory site to retrieve information
about the organization and then display it in the console. In effect, remote PowerShell has
replaced local PowerShell for all server roles except edge servers. The sole exception is for
commands used during setup, which continue to execute locally. Remote PowerShell sepa-
rates business logic into code that runs on the client and code that runs on the Exchange
server. The logic for replacing local PowerShell with the remote model is simple. Just as the
change in Exchange 2007 forced all messages to flow through the transport system so that
a common place existed to apply features such as transport rules, remote PowerShell forces
all aspects of Exchange administration to flow through RBAC so that tight control can be
achieved over the actions an administrator—or, indeed, a user—is allowed to perform.

An RBAC role group defines the set of administrative actions a user is allowed to perform
inside Exchange and can be resolved into a set of PowerShell cmdlets the user is allowed
to use within her PowerShell session. After it is created, a PowerShell session is populated
with cmdlets by reference to the RBAC role groups of which the user is a member so that it
will only ever include the cmdlets that have been assigned to an administrator through her
membership in role groups. Thus, the fact that an administrator is not a member of a par-
ticular role group is reflected in that any PowerShell session she initiates will never be able
to call the cmdlets associated with the management group. Consider the case of an admin-
istrator who is a member of the Organization Management role group, typically believed
to be the all-powerful role for Exchange management. Even though membership in the
Organization Management role group grants a user access to the vast majority of Exchange
cmdlets, out of the box, it does not grant access to the set that controls movement of data
into and out of mailboxes. To protect user data, the Mailbox Import-Export role has to
be explicitly assigned to any user who wants to perform these tasks, even those who are
already members of the Organization Management role group.

The need to support massively scalable, multitenant platforms such as Office 365 was a
major influence on the Exchange move to remote PowerShell. Providing a secure and con-
trollable mechanism to permit administrators to execute privileged commands to control
the subset of objects they own inside an infrastructure that is controlled and managed
by someone else is always a difficult task, especially when all the data have to pass across
the Internet. When you use PowerShell to create a session with Exchange Online, the ses-
sion is by default remote because you cannot connect to the servers running in Microsoft
datacenters in any other way. After it accepts the credentials you provide in the connection
request, PowerShell loads in the cmdlets you are allowed to use through membership in

Chapter 3

88 Chapter 3 The Exchange Management Shell

RBAC role groups. The fact that Exchange Online restricts the number of cmdlets available
to administrators when compared to on-premises deployments is immaterial. Exactly the
same mechanism populates your PowerShell session with cmdlets whether you connect to
an on-premises deployment or to a cloud-based service.

CAUTION!
Until Microsoft removes the functionality, it is possible to use local PowerShell with
the Exchange 2013 snap-in to perform management operations on a server . However,
Microsoft is not testing local PowerShell with Exchange anymore, and it is possible
that problems will appear in local PowerShell that will never be resolved . In addition,
running local PowerShell means that you bypass the controls otherwise imposed by
RBAC . Given the engineering and strategic focus on remote PowerShell, it makes sense
for everyone to make the transition now and embrace this platform as the future of
command-line Exchange management .

Connecting to remote PowerShell
To understand how remote PowerShell and RBAC work together, examine how an admin-
istrator might create a new mailbox on a remote server. In this example, the administra-
tor works on a help desk and has been assigned a role that enables him to create new
mailboxes and update the properties of existing mailboxes. Further, assume that the user’s
account is enabled to use remote PowerShell. In many cases, people in specialist roles such
as help desk personnel use EAC to perform tasks, but an experienced Exchange administra-
tor might prefer to use a command-line interface because of its power and flexibility, espe-
cially when processing multiple objects, when compared to EAC.

Figure 3-2 lays out the various components remote PowerShell uses from the local
PowerShell host on a workstation or server across the network to IIS and the PowerShell
application running there. The other components are the PowerShell engine and the com-
plete set of cmdlets available to Exchange 2013, the Exchange authorization library that
handles the interpretation of roles in terms of the cmdlets that each RBAC role can use,
and the Active Directory driver that reads data from Active Directory. For the purpose
of this discussion, assume that the account has been assigned a role such as Recipient
Management and is enabled for remote PowerShell. If you are unsure about the account’s
status, you can enable it to use remote PowerShell as follows:

Set-User –Identity AccountName –RemotePowerShellEnabled $True

All PowerShell sessions flow through IIS because even a local connection goes through
localhost. All Exchange 2013 servers support IIS and the PowerShell virtual directory, or

Ch
ap

te
r 3

 Using remote Windows PowerShell 89

vdir; all are members of the Exchange Trusted Subsystem security group and therefore can
manipulate any object in the organization.

If you run EMS on a workstation or server on which the Exchange management compo-
nents are installed, EMS creates a remote session automatically as part of its initialization
process. If you run PowerShell on a workstation that doesn’t have the Exchange manage-
ment components installed, you must specify the name of the server with which you want
to work. This is done by using the New-PSSession cmdlet, passing the name of the server
to which to connect in the https://fqdn/PowerShell/ form. This cmdlet creates a secure,
authenticated connection to IIS running on the target server and begins a session there by
checking the role held by the account that initiates the connection.

Figure 3-2 Remote PowerShell architecture

When you run EMS on a server on which the Exchange 2013 management components
are installed, the EMS initialization script creates an environment by executing the code
in the RemoteExchange.ps1 script (in the Exchange binaries folder), which first attempts
to create a remote session with the local host. If successful, it then identifies your account
to Exchange, uses RBAC to determine the cmdlet set you are allowed to use, and so on.

Chapter 3

90 Chapter 3 The Exchange Management Shell

The RemoteExchange.ps1 script is quite complex because it has to handle the initiation
of sessions in different circumstances, so it’s easier to look at the code that connects a
new session with Exchange Online to see how the basic requirements to create a remote
PowerShell session are met. The following code defines the Connect-ExchangeOnline func-
tion, which is suitable for inclusion in your PowerShell profile (a document that initializes a
session with common commands and settings that you might want to use during the ses-
sion). In fact, this is how I connect to Exchange Online when I want to manage my tenant
domain. Three commands are executed:

 ● Get-Credential gathers the name of the account with which to connect and its
password.

 ● New-PSSession establishes the remote PowerShell session with Exchange Online.

 ● Import-PSSession imports the Exchange commands from the Exchange Online ses-
sion into your current session.

function Connect-ExchangeOnline
{
 $LiveCred = Get-Credential
 $global:Session365 = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri https://ps.outlook.com/powershell/ -Credential $LiveCred
-Authentication Basic -AllowRedirection
 Import-PSSession $global:Session365
}

How the initialization script finds a server
When a user creates a remote PowerShell session on an Exchange server, the initializa-
tion script attempts to connect him to the same server . If the attempt to establish a
connection with the local server fails, the initialization script then enumerates the full
set of Exchange servers in the local site and attempts to make a connection to one
of the servers chosen at random . If this attempt fails, the script moves on to the next
server and continues until a successful connection is established or all available serv-
ers have been attempted and have failed . The initialization script works in the same
way when executed on a workstation that has the Exchange management components
installed on it, except that the initialization begins by randomly selecting one of the
servers from the site .

IIS uses the RBAC mechanism to check the user’s role and associated permissions through
the Exchange Authorization Library. The Exchange Authorization Library (or ADDriver) con-
nects to Active Directory to use it as the definitive source of information about accounts
and supplements these data with its knowledge about the Exchange-specific roles that

Ch
ap

te
r 3

 Using remote Windows PowerShell 91

administrators have assigned to users. During a PowerShell session, ADDriver connects
to a domain controller in the local site to fetch data from Active Directory and keeps this
connection throughout the session (referred to as DC affinity). Many PowerShell cmdlets
support the DomainController parameter to enable you to connect to a specific domain
controller (specifying the fully qualified domain name [FQDN]) if the need arises.

Because this user works with mailboxes as defined by the Recipient Management role
group, the set of cmdlets he can use includes commands with easily identified purposes
such as New-Mailbox, Set-Mailbox, Get-Mailbox, and so on.

Tip
Permissions granted through RBAC are evaluated during session initialization . If you are
assigned a new role, you have to create a new session with EMS or EAC before you can
access the cmdlets made available through the newly assigned role .

Users are not normally aware that they are restricted in terms of available cmdlets unless
they attempt to use one to which they do not have access. The point is that they shouldn’t
care that they can’t use hundreds of cmdlets, many of which do obscure things such as set-
ting properties on messaging connectors or performing one-off operations such as creating
a new Database Availability Group (DAG) or mailbox database. Instead, RBAC makes sure
that users can access only the cmdlets they need to perform their jobs.

Limiting user functionality
When a new PowerShell session is created, you see no evidence that your role has forced
RBAC to restrict the cmdlet set or the parameters you can use with cmdlets because the ini-
tialization of a session progresses just as it would for a fully privileged user. However, after
you start to execute cmdlets, you quickly realize that you can’t do as much as you’d like. For
instance, if you log on with a restricted user account and attempt to use the Get-Mailbox
cmdlet to fetch a list of mailboxes, all you’ll see is your own mailbox. This is logical because
your role allows you to see details of your own mailbox but not others’. In the same way, if
you then attempt to use the Set-Mailbox cmdlet to update a property that only administra-
tors can access, you won’t be able to use even tab completion to reveal a restricted prop-
erty. However, unless the default role assignment policy has been amended to block access
to basic user options, you can use the Set-Mailbox cmdlet to update properties that are
generally exposed for user update through Outlook Web App options, so (assuming JSmith
is the alias for your mailbox) you’ll be able to do things such as this:

Set-Mailbox -Identity JSmith –MailTip 'Hello World'

Chapter 3

92 Chapter 3 The Exchange Management Shell

or this:

Set-Mailbox –Identity JSmith –Languages 'EN-US', 'EN-IE'

INSIDE OUT You can do some things; you can’t do others

Somewhat strangely, you’ll also be able to execute Get-MailboxStatistics to report the
number of items in your mailbox but not Get-MailboxFolderStatistics to report on the
folders and the items that each contains . This is all controlled by RBAC, the roles that
your account holds, and the scope for the roles in terms of the cmdlets and parameters
defined in each role. From this discussion, you should now understand how critical
RBAC is to remote PowerShell and, by extension, to every aspect of the Exchange 2013
management toolset .

EMS basics
Exchange 2013 RTM CU2 includes 965 cmdlets, but you’re not likely to use the vast major-
ity of these simply because many are designed for one-time use. For example, after you
configure a receive connector, you probably will not revisit the Set-ReceiveConnector
cmdlet very often after the connector is working. However, you’ll use cmdlets such as Get-
Mailbox daily. Some examples (in no particular order) of frequently used Exchange cmdlets
are the following:

 ● Get-ExchangeServer Return a list of Exchange servers in the organization.

 ● Disable-Mailbox Disable a user’s mailbox.

 ● Add-DistributionGroupMember Add a new member to a distribution group.

 ● Set-Mailbox Set a property of a user’s mailbox.

 ● Get-MailboxDatabase Retrieve properties of a mailbox database.

 ● Get-MailboxStatistics Return statistics about user mailboxes such as the total item
count, quota used, and so on.

Note the consistent syntax of verb (Get, Set, Move, Remove, or Disable) and noun (Mailbox,
User, and so on). Along with commands that operate on objects, you find commands that
help you work with data, such as Where-Object, Sort-Object, and Group-Object. Where-
Object, Sort-Object, and Group-Object are commonly shortened by using their aliases of

Ch
ap

te
r 3

 EMS basics 93

Where, Sort, and Group. You can type Help followed by a cmdlet name at any time to get
help on the syntax of the command.

Tip
When you start to write scripts, consider spelling out cmdlet names completely and
avoiding the use of aliases . This is important because you can never know in what envi-
ronment a script will be run and therefore cannot assume that an alias will be defined
and available for use in your code .

The Exchange developers have provided very accessible help for the EMS cmdlets. Apart
from using the Help cmdlet, there are other ways of seeking help. RBAC controls limit help
content so that a user sees help only for the set of cmdlets available to the roles that user
holds. You can do the following:

 ● Use the Get-Command cmdlet to list the cmdlets you can use with different objects.
The set of cmdlets will be limited to whatever is permitted by the RBAC roles held by
your account. For example, Get-Command *contact* lists all the cmdlets available to
work with contacts (shown in the following example). You can also use the shortened
alias of gcm for Get-Command.

CommandType Name Definition
----------- ---- ----------
Function Disable-MailContact ...
Function Enable-MailContact ...
Function Get-Contact ...
Function Get-MailContact ...
Function New-MailContact ...
Function Remove-MailContact ...
Function Set-Contact ...
Function Set-MailContact ...

 ● Use the /detailed switch to get more detailed help about a cmdlet. For example: Get-
Help Get-CASMailbox –Detailed.

 ● Use the /full switch to have EMS return every bit of information it knows about a
cmdlet. For example, Get-Help Get-DistributionGroup –Full.

 ● Use the /examples switch to see whatever examples of a cmdlet in use EMS help
includes. For example, Get-Help Get-MailboxServer –Examples.

Chapter 3

94 Chapter 3 The Exchange Management Shell

 ● Use the /parameter switch to get information about a selected parameter for a cmd-
let. For example, Get-Help Get-Mailbox –Parameter Server. This switch supports wild-
cards, so you can do something like Get-Help Set-Mailbox –Parameter *Quota*.

INSIDE OUT Getting to know the cmdlets

You will probably begin by using the /full switch to retrieve all available help for a
cmdlet to get to know what each cmdlet does . After you learn more about the cmdlet,
you can move on to the default view as you become more accustomed to working with
EMS. Remember that the Exchange help file contains information about all the EMS
cmdlets. The advantage of using the help file (which is always present on a server) is
that you can use the help file’s index to search for specific entries.

Most of the time, you will probably work with commands by invoking EMS interactively and
then typing whatever individual commands or scripts are necessary to perform a task. The
user interface of EMS is based on the Win32 console with the addition of features such as
customizable tab completion for commands. After you become accustomed to working with
EMS, things flow smoothly, and work is easy. It is then usually faster to start EMS and issue
the necessary code to change a property on a mailbox or a server than to start EAC and
navigate to the right place to make the change through the graphical user interface (GUI).

Tip
Working through EMS is especially valuable if you have to perform management
operations across an extended network link when waiting for the GUI to display can
be painful . If you have a programmatic mind, you can also call EMS cmdlets through
C# code, which is how Microsoft invokes them in EAC and other places throughout
Exchange, such as to set up servers and databases in the setup program . (The blog Glen
Scales writes at http://gsexdev.blogspot.com/ provides many good examples of how
to call EMS cmdlets from code .) In the past, the different groups that contributed to
Exchange had to build their own programming interfaces, whereas now everyone uses
PowerShell .

You can see that EMS focuses on performing tasks rather than taking the more object-
focused approach implemented in the GUI, something that reflects a desire to accom-
modate administrators who think about how to do things rather than how to work with
objects. After all, it is human nature to think in terms of the task of moving a mailbox to a
different server rather than thinking about how to manipulate the properties of a mailbox
object to reflect its new location.

http://gsexdev.blogspot.com/

Ch
ap

te
r 3

 EMS basics 95

Cmdlets accept structured pipelined input from one another in a common manner to allow
them to process data in a consistent manner, no matter which cmdlet provides the data.
Programmers therefore do not have to reformat data for input to specific cmdlets, so the
task of assembling different cmdlets into a script to do a job is much easier. Microsoft built
PowerShell around the concept of objects, so objects are accepted as input, and the output
is in the form of objects that you can then pipe to other cmdlets. Even if the output from a
cmdlet looks like plaintext, what you see is one or more objects that you can manipulate in
a much more powerful manner than you can ever work with text output. The implementa-
tion is elegant.

Command editing
It should be apparent that you could do a lot of typing to enter commands into PowerShell,
make the inevitable mistakes, correct them, and try again. To make the task a little easier,
PowerShell supports the same kind of command-line editing as the Win32 console (CMD)
does. Some of the more important keys you can use are described in Table 3-1.

TABLE 3-1 Command editing keystrokes for PowerShell

Keyboard
command

Effect

F2 Creates a new command based on your last command. A pop-up
screen appears in which to enter a character. PowerShell then cre-
ates a new command, using the last entered command up to the
character you specify. For example, if the last command is Get-
MailboxStatistics –Identity TRedmond, and you enter F2 followed by
c, PowerShell inserts “Get-MailboxStatistics”. You can then complete
the command as you like.

F4 Deletes characters in the current command up to a specified
position. For example, if the cursor is located at the “M” of Get-
MailboxStatistics, and you enter F4 followed by x, PowerShell deletes
“Mailbo” and the result is “Get-xStatistics”. Although this example
wouldn’t result in a useful command, F4 is useful when you need to
edit many parameters in a complex command.

F7 Opens a list of the last 50 commands used in the current session to
enable you to select a command for reuse.

F8 Moves backward through the command history.
Tab Requests PowerShell to complete a command based on what you’ve

typed.
Left/Right arrows Moves the cursor left and right through the current command line.
Up/Down arrows Moves up and down through the history of previous commands.
Delete Deletes the character under the cursor.
Insert Toggles between character insert and character overwrite mode.
Backspace Deletes the character before the cursor.

Chapter 3

96 Chapter 3 The Exchange Management Shell

Most of these keys are straightforward. The two most interesting keys are F7 and Tab. F7
opens a list of the last 50 commands you have run in the current session (Figure 3-3) so
that you can both see what you’ve done in the immediate past and select one of the com-
mands to re-execute. You can type a couple of characters into the F7 list, and EMS will
look for the first matching command, or you can use the Up and Down arrows to navigate
through the command history. At times, it’s more convenient to use Up and Down arrows
because you can retrieve more commands and edit a command before executing it. (F7
selects the command and executes it immediately.)

Figure 3-3 Using F7 to recall EMS commands

INSIDE OUT An easy way to type a command

Tab completion is a wonderful feature that Windows PowerShell inherited from CMD .
You can partially enter a command and then press Tab to have PowerShell fill in the rest
of the cmdlet name followed by its parameters . For example, type:

Get-Dist

This isn’t the name of a valid cmdlet, but it is the root of several cmdlets, so when you
press Tab, PowerShell completes the first valid cmdlet that matches and inserts:

Get-DistributionGroup

If you press Tab again, PowerShell moves to the next cmdlet that matches and inserts:

Get-DistributionGroupMember

If you press Tab again, PowerShell returns to Get-DistributionGroup because there are
only two valid matches . PowerShell also supports completion for parameters . If you
insert a dash to indicate a parameter value after Get-DistributionGroup and press Tab,

Ch
ap

te
r 3

 EMS basics 97

PowerShell starts with the first parameter and continues through all valid parameters.
If you press Tab too many times and pass the parameter you want to use, you can
press Shift+Tab to go back through the parameter list . If you add some characters to
help PowerShell identify the parameter, it attempts to complete using that value . For
example:

PowerShell completes Get-DistributionGroup –Ma into the command
Get-DistributionGroup –ManagedBy.

Even better, tab completion is context-sensitive, so it understands the structure of
the object you are navigating . For example, if you want to move through the system
registry, tab completion understands the hive structure, so you can type a location in
the registry and then use the Tab key to move through the available choices from that
point . For example, type:

CD HKLM:\Software\Microsoft\Exchange

Now press Tab, and PowerShell leads you through all the registry locations Exchange
uses .

Windows PowerShell supports both named and positional parameters. Identifiers are a
good example of a positional parameter. For example, if you enter Get-Mailbox Tony,
PowerShell assumes that Tony is the value for the –Identity parameter.

Finally, PowerShell completes variables and even the properties of variables (such as their
length) in a way similar to how the Microsoft Visual Studio IntelliSense feature works. If you
type the incomplete name of a variable and press Tab, PowerShell completes it from the
list of known variables. For example, if you fill a variable with details of a mailbox as in the
following:

$Mailbox = Get-Mailbox –Identity Redmond

and then type $Ma and press Tab, PowerShell completes it and returns $Mailbox. This is a
useful feature if you forget the names of variables you’ve defined. To see how properties
are completed, type:

$Mailbox.Di

Pressing Tab now will request PowerShell to go through the list of properties beginning
with Di. For a mailbox, the list is DistinguishedName and DisplayName.

Chapter 3

98 Chapter 3 The Exchange Management Shell

Handling information EMS returns
Any cmdlet such as Get-EventLog that retrieves some information about an object will
output a default set of properties about the object (or references to an object). Sometimes
those properties are not exactly the ones you want to examine, so you will inevitably use
the Format-List and Format-Table cmdlets to expand the set of properties a command
returns. For example, if you use the Get-Mailbox cmdlet to view the properties of a mailbox,
the information returned isn’t interesting:

Get-Mailbox –Identity TRedmond

Name Alias ServerName ProhibitSendQuota
---- ----- ---------- -----------------
Tony Redmond TRedmond ExServer1 unlimited

However, if you pipe the output to Format-List, you see much more information—far too
much to review comfortably on screen—so it’s better to pipe the output to a text file and
compare it at your leisure.

The Get-Mailbox cmdlet does not return every property you can set on a user object
because EMS differentiates between general Active Directory properties for a user object
and those that are specific to Exchange. For example, Get-Mailbox does not list the
Office property for a user because every user object in Active Directory has this property
regardless of whether it is mail-enabled. Thus, if you want to retrieve or update the Office
property, you have to use the Get-User and Set-User cmdlets, respectively. The same differ-
entiation exists for groups and contacts when the Get-Group/Set-Group and Get-Contact
/Set-Contact cmdlets are available.

Selective output

It is easy to list every property, but when you have limited screen space, you need to be
more selective about the properties you want to output, and that’s why it’s often a good
idea to use the Select-Object cmdlet to select the data you need before you pipe to
Format-Table. In this case, you use the Select alias for Select-Object just because this cmdlet
is used so often and it is nice to use shorthand.

Get-Mailbox –Identity Pelton | Select Name, PrimarySmtpAddress, Database

Name PrimarySmtpAddress Database
---- ------------------ --------
David Pelton David.Pelton@contoso.com ExServe1\DB1

Ch
ap

te
r 3

 EMS basics 99

PowerShell output can obscure data because it contains too many spaces. For example:

Get-ExchangeServer

Name Site ServerRole Edition AdminDisplayVersion
---- ---- ---------- ------- -------------------
EXSERVER1 contoso.com/Conf.... Mailbox,... Enterprise Version 15.0 (Bu...
EXSERVER2 contoso.com/Conf.... Mailbox Enterprise Version 15.0 (Bu...

To force PowerShell to remove spaces and display more useful data, pipe the output to the
Format-Table cmdlet and use the –AutoSize parameter to fit the output columns into the
available space:

Get-ExchangeServer | Format-Table -AutoSize

Name Site ServerRole Edition AdminDisplayVersion
---- ---- ---------- ------- -------------------
EXSERVER1 contoso.com/Configuration/Sites/Default-First-Site-Name
 Mailbox, ClientAccess Enterprise Version 1...
EXSERVER2 contoso.com/Configuration/Sites/Default-First-Site-Name
 Mailbox, ClientAccess Enterprise Version 1...

Another way of extracting and then working with data is to direct the output of a com-
mand into a variable, in which case you have a complete picture of the object’s properties
in the variable. For example, this command loads all the available information about the
ExServer2 server into the $Server variable:

$Server = Get-ExchangeServer –Identity 'ExServer2' -Status

You can extract additional information about the server to use by including the name of
the property in which you’re interested. (Specifying the –Status parameter requests Get-
ExchangeServer to provide some additional information about the current domain con-
troller and global catalog the server is using.) You can also use a variable as an array and
populate the array with a call to a command.

In this example, you populate a $Mailboxes array with a call to Get-Mailbox, using a filter
to extract details of all the mailboxes stored in a particular database. This output is a good
example of how cmdlets can generate individual objects or an array of objects with each
object being individually accessible within the array.

$Mailboxes = Get-Mailbox –Database DB2

Chapter 3

100 Chapter 3 The Exchange Management Shell

When it is populated, you can then navigate through the array as follows:

$Mailboxes[0]
$Mailboxes[1]
$Mailboxes[2] etc etc etc.

You can reference specific properties of the objects by using the “.” operator.

$Mailbox[2].Name
$Mailbox[53].PrimarySmtpAddress

INSIDE OUT Finding what you want when there’s a lot of output

The output from a cmdlet such as Get-Mailbox can easily result in a lot of data that are
hard to read to find the piece of information in which you are really interested. One
technique that helps is to pipe the output to the Out-String cmdlet and then use the
FindStr cmdlet to search the output for a particular term . For example, here’s how to
use the two cmdlets to search the output from Get-Mailbox to find a particular term. In
this instance, EMS lists any occurrence of the word “Tony” if it exists in the list of mail-
box names Get-Mailbox returns:

Get-Mailbox | Out-String | FindStr "Tony"

By default, EMS truncates the output of multivalue properties after 16 values. For example:

Get-Mailbox –Identity 'Pelton, David' | Format-List Name, EmailAddresses

Name : Pelton, David
EmailAddresses : {smtp:dp12@contoso.com, smtp:dp11@contoso.com, smtp:dp10@
contoso.com, smtp:dp9@contoso.com, smtp:dp8@contoso.com, smtp:dp7@contoso.com,
smtp:dp6@contoso.com, smtp:dp4@contoso.com, smtp:dp5@contoso.com, smtp:dp3@
contoso.com, smtp:dp2@contoso.com, smtp:dp1@contoso.com...}

Truncation can hide some valuable data. In the preceding example, many of the email
addresses are defined for a mailbox, but the default Simple Mail Transfer Protocol (SMTP)
address is not shown. If this limitation becomes a concern, you can force EMS to output
more values for a property by amending a $FormatEnumerationLimit variable. This variable
is defined in the EMS initialization script (\bin\Exchange.ps1), and the default value of 16 is
usually more than sufficient for normal purposes. If you want to see more variables, you can
set the variable to a different limit or set it to -1 to instruct EMS that it can enumerate as
many values as are available for any property. For example:

$FormatEnumerationLimit = -1
Get-Mailbox –Identity 'Pelton, David' | Format-List Name, EmailAddresses

Ch
ap

te
r 3

 EMS basics 101

Name : Pelton, David
EmailAddresses : {smtp:dp12@contoso.com, smtp:dp11@contoso.com, smtp:dp10@
contoso.com, smtp:dp9@contoso.com, smtp:dp8@contoso.com, smtp:dp7@contoso.com,
smtp:dp6@contoso.com, smtp:dp4@contoso.com, smtp:dp5@contoso.com, smtp:dp3@
contoso.com, smtp:dp2@contoso.com, smtp:dp1@contoso.com, smtp:dp@contoso.com,
smtp:dp16@contoso.com, smtp:dp15@contoso.com, smtp:dp14@contoso.com, smtp:dp13@
contoso.com, smtp:Pelton@contoso.com, SMTP:David.Pelton@contoso.com}

Using common and user-defined variables
PowerShell includes a number of variables you will use a lot. $True and $False are variables
you can pass to shell commands and scripts to check for true and false conditions. Usually,
$True is equivalent to setting a check box for an option in EMC, and $False is equivalent to
clearing a check box. If you prefer numeric values, you can replace $True and $False with
1 (one) and 0 (zero), respectively. Other global variables you commonly meet as you work
with PowerShell include $Null (no value), $home, which returns the user’s home folder, and
$pwd, which returns the current working folder. Important Exchange variables include the
following:

 ● $ExBin Points to the directory in which Exchange binaries and other important files
are kept. On an Exchange 2013 server, this variable normally resolves to disk:
\Program Files\Microsoft\Exchange Server\V15\bin.

 ● $ExScripts Points to the directory in which important Exchange .ps1 scripts are
kept. On an Exchange 2013 server, this variable resolves to disk: \Program Files
\Microsoft\Exchange Server\V15\Scripts.

 ● $ExInstall Points to the root directory for Exchange. On an Exchange 2013 server,
this variable resolves to disk: \Program Files\Microsoft\Exchange Server\V15.

You can use these variables to access files in these directories. For example, to see a list of
scripts Exchange provides, type Dir $ExScripts.

Checking that a value is $True or $False is a common occurrence. For positive condi-
tions, you can shorten the check by just passing the property against which to check, and
PowerShell will assume that you want to check whether it is true. For example, assume that
you want to find out which mailboxes are enabled to use Outlook Web App. You can use
this command and, as you can see, there is no mention of $True, but it works:

Get-CASMailbox | Where-Object {$_.OWAEnabled} | Select Name

Note the use of $_ in the last command. $_ is a very important variable because it points to
the current object in the pipeline. Scripting languages on other platforms such as UNIX and
Linux also support pipelines, which compose complex commands by allowing the output of

Chapter 3

102 Chapter 3 The Exchange Management Shell

one command to be passed as the input to another. The | operator indicates that a pipeline
is in place. Data are passed as fully formed objects rather than as a text stream. This enables
PowerShell to operate on the full structure of data that are pipelined, including the attri-
butes and types that define the objects piped from one cmdlet to another.

For example, if you create a filter to look for people in a certain department because you
want to update the name of the department, you might do this:

Get-User | Where-Object {$_.Department –eq 'Legal'} | Set-User –Department 'Law'

The Department property is prefixed with $_ to indicate that you want to check this prop-
erty for every object the call to Get-User passes through the pipeline. You actually use $_. as
the prefix because it includes the “.” operator to specify that you want to access a property.
If you just passed $_ the comparison would not work because PowerShell would compare
“Legal” against the complete object.

User-defined variables can be integer, decimal, or string—you decide by passing a value to
the variable you want to use. For example:

$Tony = 'Tony Redmond'
$Figure = 15.16

This creates a string variable, and the second variable holds a decimal value. Variables are
case-insensitive and case-preserving. Using the preceding example, you can refer to $Tony
as $TONY or $tony or even $ToNY, and PowerShell will refer to the same variable. Variables
are local unless you declare them to be global by prefixing them with Global, as in:

$Global:Tony = 'Tony Redmond'

When a variable is global, you can reference it interactively and in scripts you can call from
anywhere.

A word of caution about PowerShell and quotation marks
Be careful how you use quotation marks in PowerShell because although it might
appear that double and single quotation marks are interchangeable, there is a subtle
difference that might catch you out . Single quotation marks represent a literal string,
one that PowerShell will use exactly as you provide it . Double quotation marks mean
that PowerShell should examine the string and resolve any variable it finds inside
through a process called variable expansion . Consider this example:

$n = Date
$n1 = 'Right now, it is $n'

Right now it is $n

Ch
ap

te
r 3

 EMS basics 103

$n2 = "Right now, it is $n"
$n2

Right now, it is Tue Jan 16 17:59:54 2013

Can you see the difference a little quotation mark makes? Best practice is to use single
quotation marks whenever you are sure that you want a string variable to stay exactly
as you have typed it and to use double quotation marks elsewhere . Be careful about
using editors that insert smart quotation marks because PowerShell cannot deal with
them; it is best to use a simple text editor whenever you create or edit a script . You can-
not mix and match the different types of quotation marks to enclose a variable because
PowerShell will refuse to accept the command . You will not do any great harm if you
use double quotation marks instead of single quotation marks, but it is best to use
single quotation marks as the default .

Tip
Do not include hyphens when you name variables because PowerShell interprets the
hyphens as parameters . In other words, $ServerName is a good name for a variable, but
$Server-Name is not .

Like any good scripting language, PowerShell supports conditional checking with IF and
ELSEIF that you will mostly use in scripts. It’s easy to generate code that goes through
a certain number of iterations with constructs such as 1..100 | ForEach-Object
<command…>. You will see examples of these constructs as you see more sophisticated
PowerShell code in later chapters.

Using PowerShell ISE with Exchange
If you don’t like the bare-bones nature of EMS, you might prefer to use ISE, the PowerShell
Integrated Scripting Environment. ISE is installed on Windows 2008 R2 SP1 and Windows
2012 servers to provide a GUI for PowerShell that allows users to write, test, and
debug scripts. PowerShell ISE is also installed by default on Windows 7 and Windows 8
workstations.

ISE supports multiline editing, tab completion, syntax coloring (or highlighting of different
parts of commands), context-sensitive help, and keyboard shortcuts. Because of its debug
features, ISE is a good way to write complex scripts for use with Exchange 2013. All the
code included in this book can be worked on through ISE.

Chapter 3

104 Chapter 3 The Exchange Management Shell

When you start ISE, it has no knowledge of Exchange or how to create the kind of remote
session with an Exchange server in the way EMS does when it starts. Some work is therefore
necessary to integrate ISE with Exchange. The easiest way to do this is to insert some code
in the PowerShell profile so that ISE learns enough about Exchange when it initializes to
access Exchange when you need it to.

The code you need to use with ISE is very similar to the code you met earlier when discuss-
ing the basics of creating a remote PowerShell session. Start ISE and type Notepad $Profile
to edit your PowerShell profile, and then insert the following code (amending the reference
to contoso.com to reflect your own environment):

$PSISE.CurrentPowerShellTab.AddOnsMenu.SubMenus.Add(
 "Connect to Exchange", {
 $user = Get-Credential
 $Server = Read-Host "Connect to what Exchange server "
 $connectpoint = $Server + ".contoso.com/PowerShell/"
 $ExSession= New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri
$connectpoint -Credential $user
 Import-PSSession $ExSession
 },
 "Control+Alt+1"
)

The code defines a new menu choice called Connect to Exchange that appears on the ISE
Add-ins menu. The option can also be invoked with the Control/Alt/1 key combination. In
either case, when invoked, the code prompts for user credentials and the server to which
to connect and then initiates a new remote PowerShell session with the selected Exchange
server. After the connection is established, you can work as with EMS except that extra
information and facilities are available to you, such as a context-sensitive list of cmdlets that
appears when you start typing a cmdlet name (Figure 3-4).

Ch
ap

te
r 3

 EMS basics 105

Figure 3-4 Working with Exchange 2013 through the PowerShell ISE

Identities
You might have noticed the –Identity parameter in some of the cmdlets you have explored
so far. In many cases, a call to an Exchange cmdlet results in a set of objects being returned
(for example, all the mailboxes on a server). In these instances, you might need to identify
a specific object within the chosen set with which to work. (Think of a pointer to an item in
an array.) For example, if you issue the Get-ExchangeServer cmdlet, you retrieve a list of all
the Exchange servers in the organization. If you want to work with one server, you have to
tell EMS which server you want to select by passing its identity. For example, to work with
just the server named ExServer1:

Get-ExchangeServer –Identity 'ExServer1'

Apart from its obvious use to identify the object with which you want to work, –Identity has
a special meaning within PowerShell because it is a positional parameter. You can specify
the parameter’s value without specifying the parameter’s name, so the example previously
used is just as valid if you use:

Get-ExchangeServer 'ExServer1'

Chapter 3

106 Chapter 3 The Exchange Management Shell

INSIDE OUT Best practice to include the –Identity parameter

Although you might find it faster to omit the –Identity parameter when you’re work-
ing interactively with EMS, it is best practice always to include the –Identity parameter
when you write code for reusable scripts because this ensures that there is no possibil-
ity that another administrator or programmer will mistake the value passed for the
identity for anything else .

If you want, you can retrieve a list of objects and store them in a variable and retrieve the
values as you wish. The variable holds the objects as an array. For example, to populate a
variable with a set of mailboxes hosted by a server:

$Mbx= Get-Mailbox –Server 'ExServer1'

To retrieve the different objects in the array, pass the number of the object with which you
want to work, starting from zero. For example, to fetch the first mailbox in the array:

$Mbx[0]

You can be more specific and ask for one of the object’s properties. For example, to get the
identity of the first mailbox in the array:

$Mbx[0].Identity

IsDeleted : False
Rdn : CN=Eoin P. Redmond
Parent : contoso.com/Exchange Mailboxes
Depth : 3
DistinguishedName : CN=Eoin P. Redmond,OU=Exchange Mailboxes,DC=contoso,DC=com
IsRelativeDn : False
DomainId : contoso.com
ObjectGuid : 0bcd15b3-c418-43be-b678-2658614f732b
Name : Eoin P. Redmond

You might be surprised by the amount of information returned here for the mailbox’s
identity (it’s all defined in the schema), but it contains all the ways you can navigate to this
object through its relative distinguished name (shown here as the rdn property), distin-
guished name, globally unique identifier (GUID), and name. Normally, you’ll just use the
name of a mailbox to find it, but you can use the other methods, and Exchange will find the
mailbox. There is no requirement to parse out a specific piece of the identity you want to

Ch
ap

te
r 3

 EMS basics 107

use or to trim values; PowerShell does it all for you. For example, you can use an identity to
discover the groups to which a user belongs. Here’s the code:

$U = (Get-User –Identity TRedmond).Identity; Get-Group | Where-Object {$_.Members –eq
$U}

The Get-User cmdlet loads the user’s identity into a variable, and then the Get-Group and
the Where-Object cmdlets scan all groups to discover any that include the user in their
membership. Scanning the membership list of groups to discover string matches is never
going to be as quick (and will get slower as the number of groups in the forest grows)
because a string compare will never get close to the backward pointers that consoles such
as Active Directory Users and Computers or EMC use to display group membership in terms
of speed of access, so don’t be surprised. Scanning for group membership in this way takes
some time to complete.

If you don’t like user-friendly forms such as email addresses or mailbox names, Exchange
also allows you to use GUIDs as identifiers. Because they are obscure and long, GUIDs are
difficult to type, but you can still use them. One slightly complicating factor is that you
must know which GUID to use where. You might want the GUID that points to a user’s mail-
box, the GUID pointing to her Active Directory account, or even the one pointing to her
archive mailbox. For example, this command displays all GUIDs registered for a mailbox:

Get-Mailbox –Identity 'Tony Redmond' | Format-List *Guid*

ExchangeGuid : c2c4a3b5-c1a6-5a17-971d-8549123a78d0
ArchiveGuid : 00000000-0000-0000-0000-000000000000
DisabledArchiveGuid : 00000000-0000-0000-0000-000000000000
Guid : 288617d1-4592-4211-bb20-26ab755458c8

The ExchangeGuid property points to the user’s mailbox. This is a tremendously important
property because the GUID pointing to a mailbox can be guaranteed to be unique across
an Exchange organization, which is why the Store uses this value to locate a user’s mailbox.
It’s also why Outlook users see the ExchangeGuid of their mailbox instead of the server
name when viewing the server name property shown when viewing the server settings of
an Exchange 2013 mailbox (Figure 3-5).

Chapter 3

108 Chapter 3 The Exchange Management Shell

Figure 3-5 How Outlook displays the ExchangeGuid

It is confusing, but if you run Get-MailboxStatistics to retrieve summary details of the
contents of a mailbox, EMS returns a MailboxGuid property. This is the same value as the
ExchangeGuid when reported by Get-Mailbox. Why Microsoft felt that two names were
required for the same GUID is beyond me.

The Guid property identifies the user’s Active Directory account and thus provides the
essential link between a mailbox and an account. In this case, the ArchiveGuid is shown as
all zeros, so no archive mailbox is associated with this mailbox. The DisabledArchiveGuid
value is also all zeros. This GUID is used only when a user has been assigned an archive
mailbox that was subsequently disabled for some reason. Exchange maintains the GUID so
the archive can be reconnected to the mailbox up to the point at which it is permanently
removed from a database after the expiry of the deleted mailboxes’ retention period.

Now that you know what the GUIDs are, you could use them to reference a mailbox. For
example:

$GUID = (Get-Mailbox –Identity 'Tony Redmond').Guid
Get-User | Where {$_.Guid –eq $GUID} | Format-Table Name

The great thing about identities is that you sometimes don’t need to use them. This situa-
tion occurs when you pipe information from one cmdlet for processing by another because
the shell understands that it needs to operate on the current object that has been fetched

Ch
ap

te
r 3

 EMS basics 109

through the pipe. For example, this command pipes a list of mailbox identities passed in
strings to the Set-Mailbox cmdlet:

"TRedmond", "JSmith", "JDoe" | Set-Mailbox –Office "Dublin"

Piping
You’ll pipe output from one cmdlet to another frequently as you work with Exchange data.
The important thing to remember is that PowerShell outputs fully formed objects that can
be manipulated when fed as input to other cmdlets through the pipeline. This wouldn’t be
possible if PowerShell output text strings. For example, assume that you want to change the
value of the Office property for a set of users who have moved to a new building. It would
be tedious if you had to fetch the identity of each user individually, determine each identity,
and then pass the value to make the change to each user’s properties. A simple pipe works
because PowerShell knows that it can use the stream of data from one command to identify
the objects it has to process with another. Here’s how you might update the Office property
for a complete set of users without any mention of an identity. You’ll see that the two cmd-
lets that do the work are separated by the pipe character, “|”. This is the character that tells
PowerShell to pipe the output from the first cmdlet to become the input to the second.

Get-User –Filter {Office –eq 'Building A'} | Set-User –Office "Building B"

Too many objects
By default, EMS returns up to 1,000 objects in response to cmdlets . (The value in
Exchange 2007 is 5,000 .) Therefore, if you run a cmdlet such as Get-Mailbox, Exchange
will return up to 1,000 mailboxes if they are available . If you work in a small Exchange
organization that supports fewer than 1,000 mailboxes, you don’t need to worry too
much about the number of objects you have to deal with because PowerShell will likely
return relatively few objects, and things usually progress quickly . However, it’s a differ-
ent situation in large organizations, in which you have to pay attention to the filters
you specify to retrieve data or override the default limit for returned objects by speci-
fying the ResultSize parameter for cmdlets . For example, to let EMS return as many
mailboxes as it can find, you could use a command like this:

Get-Mailbox –ResultSize Unlimited

This command will work, but it will be very slow because EMS has to read every mail-
box in the organization . Think about how long this might take to execute in an organi-
zation that supports more than 300,000 mailboxes . In these situations it’s always better
to specify a filter to restrict the number of objects EMS looks for and returns.

Chapter 3

110 Chapter 3 The Exchange Management Shell

OPATH filters
OPATH is the basic syntax used for PowerShell queries. It is similar in concept to but uses
different syntax from Lightweight Directory Access Protocol (LDAP) queries. Dynamic distri-
bution groups (see Chapter 6, “Groups and other objects”) also use OPATH queries to locate
objects in Active Directory when the transport system builds addressee lists to deliver mes-
sage addresses to these groups.

Some base guidelines about the syntax OPATH queries are as follows:

 ● OPATH requires a hyphen before –and, –or, and –not operators.

 ● Comparison operators include –eq (equal), –ne (not equal), –lt (less than), –gt (greater
than), –like (like), –ilike, and –notlike. –Like and –notlike are wildcard string compares.
–iLike and –inotlike are case-insensitive.

 ● Filters should be expressed within braces; for example, {Office –eq ‘London’}.

You’ll see many more examples of OPATH queries in the remainder of this book.

Server-side and client-side filters
Windows PowerShell supports server-side and client-side filters. There’s a big difference in
performance between the two types of filters, especially when you have to process more
than a hundred objects. Client-side filters are the default. Any code that uses the Where
cmdlet executes a client-side filter. Client-side filters request data from a server and then
perform the filtering on the client. This is an effective approach if you only have 10 or
15 objects to process, but it obviously doesn’t scale too well as the number of objects
increases.

Server-side filters have better scalability because the request for data forces the server to
return a filtered data set to the client. Because Exchange servers often have to deal with
tens of thousands of objects, a number of the Exchange cmdlets support server-side filters.
If a cmdlet supports the –Filter parameter, it supports server-side filters. Usually, these are
cmdlets that deal with objects that output large numbers, such as mail-enabled recipients
or message queues. All the precanned filters generated for dynamic distribution groups,
address lists, and email address policies use server-side filters.

As an example of server-side and client-side filtering in action, two methods are available to
find all the mailboxes with “James” in their name, as demonstrated in these commands:

Get-Mailbox –Filter {Name –like '*James*'} –ResultSize 5000
Get-Mailbox –ResultSize 5000 | Where {$_.Name –like '*James*'}

Ch
ap

te
r 3

 EMS basics 111

On the surface, these two pieces of code seem reasonably similar, but they are very dif-
ferent in reality. The first difference is that the first code example uses a server-side filter,
and the second uses a client-side filter. The second difference is that the two filter types
can generate very different results because of the way the filters operate. If you omit the
– ResultSize parameter, the same query is generated: Find all the mailboxes with a name
that contains “James.” (The ResultSize parameter in the first example limits the total number
of objects returned to 5,000.) However, if you time both queries, the server-side filter invari-
ably executes faster than the client-side filter, largely because fewer data are transferred
between server and client. To understand why the filters generate different results, you
have to appreciate how the filters work:

 ● The server-side filter returns the first 5,000 mailboxes it finds that include “James” in
the mailbox name.

 ● The client-side filter fetches data for the first 5,000 mailboxes and then applies the
filter to find the mailboxes that include “James” in the mailbox name. However, the
filter applies only to the set the client fetched and might not find all the mailboxes
you actually want to discover.

Even though you ask the server-side filter to do more work (working with any reasonably
sized set of mailboxes, the server-side filter will have to process significantly more data
to find the first 5,000 mailboxes that match), it still executes faster. For example, when I
executed similar commands within a very large Exchange organization (170,000 mailboxes),
the server-side filter completed processing in 43 seconds, whereas the client-side filter
completed in 81 seconds. The rule here is that the effect of server-side filtering gets better
as the number of objects increases.

INSIDE OUT PowerShell and memory limits

Another aspect to consider is that PowerShell cannot fetch and cache data on disk tem-
porarily the way a database might . This is not an issue if you want to process only a few
objects, but it can lead to memory issues if you attempt to process tens of thousands
of mailboxes at one time, especially if you use client-side filters and want to pipe the
output to another command. In this case, you ask PowerShell to find all the objects
that match the specified filter, store the data in memory, process the data, and pipe the
matching objects to the second command . Experience shows that these operations can
cause PowerShell to complain that it is running out of memory . This is likely to be one
of the growing pains through which all software goes and, apart from using loops to
process data, no good solution to the memory exhaustion problem is available today .

Chapter 3

112 Chapter 3 The Exchange Management Shell

Sometimes people make the mistake of assuming that client-side filters are faster because
server-side filters provide the data in one motion after the server processes all the data.
You therefore wait for a while without seeing anything and then see all the filtered records
at one time. By comparison, client-side filters fetch and filter data continuously, so you see
output as the command finds each matching record. However, the important indicator of
performance is how long each type of filter takes to complete, and server-side filters are
always faster.

The commands you are most likely to use with server-side filters are as follows:

 ● Get-User Retrieve basic Active Directory properties for any user account, including
mail-enabled accounts.

 ● Get-Mailbox Retrieve Exchange-specific properties for mailboxes.

 ● Get-DistributionGroup Retrieve Exchange-specific properties for mail-enabled
groups.

Each of the commands you can use to work with user accounts, groups, and mailboxes sup-
ports a different set of filterable properties. To discover which properties are available for
filtering, you can use PowerShell to query the properties of a returned object. For example:

Get-Mailbox -Identity Redmond | Get-Member | Where-Object {$_.MemberType –eq
'Property'} | Sort-Object Name | Format-Table Name

This set of commands calls a command to return some information about an object. It then
pipes the information returned by the first command to the Get-Member cmdlet, which
extracts information about the properties. You sort the properties by name and output
them in table format. Here’s an excerpt from the output:

Name

AcceptMessagesOnlyFrom
AcceptMessagesOnlyFromDLMembers
AddressListMembership
Alias
AntispamBypassEnabled
CustomAttribute1
CustomAttribute10
...
WindowsEmailAddress

This method works for the Get-Mailbox, Get-CASMailbox, Get-User, Get-Recipient, Get-
DistributionGroup, and Get-DynamicDistributionGroup cmdlets. You can use any of the
values reported in a –Filter statement. For instance, the call you just made to Get-Mailbox

Ch
ap

te
r 3

 EMS basics 113

reports that the custom attributes are available, so to find all mailboxes that have a value in
the CustomAttribute10 property, you can generate a command like this:

Get-Mailbox –Filter {CustomAttribute10 –ne $Null}

If you look at the filterable properties reported by the Get-DynamicDistributionGroup
cmdlet, you can see that the ManagedBy property is available for this dynamic distribution
group, whereas it is not for mailboxes. Hence, you can execute a filter like this:

Get-DynamicDistributionGroup –Filter {ManagedBy –ne $Null}

When you create a filter, it is best to be as specific as possible. You can state several condi-
tions within a filter. An example of a server-side filter that returns all the mailboxes in the
Dublin office where the user name contains “Tony” is shown next. The Get-User cmdlet also
works with this filter, but Get-Mailbox executes a tad faster because the server does not
have to process accounts that are not mail-enabled.

Get-Mailbox –Filter {Office –eq 'Dublin' –and Name –like '*Tony*'}

After you have mastered server-side filtering, you will use it all the time to work with sets
of users. For example, assume that you want to give a new mailbox quota to members of a
certain department but no one else.

Get-User –Filter {Department –Eq 'Advanced Technology'} | Set-Mailbox
 – UseDatabaseQuotaDefaults:$False
–IssueWarningQuota 5000MB –ProhibitSendQuota 5050MB –ProhibitSendReceiveQuota 5075MB

INSIDE OUT WhatIf and Confirm

Before you execute any command to perform a bulk update of objects, you can run the
command with the /whatIf switch added to force EMS to show you which objects will
be altered . After you are sure that the correct set of objects will be updated, you can
run the command without /whatIf, and EMS will perform the changes. The /confirm
switch is also useful in terms of stopping administrators before they do something
they should not. If you include the Confirm parameter, EMS prompts the administrator
with “Are you sure that you want to perform this action” and waits for a “Y” or “Yes”
response (or “A” for “all” if multiple objects are involved) before continuing . Act in
haste, repent in leisure .

Chapter 3

114 Chapter 3 The Exchange Management Shell

Transcripts
If you encounter a problem executing some EMS commands and need to produce some
debug information to give to your support team or Microsoft, you can do this by generat-
ing a transcript. A transcript captures details of all commands executed in a session and is
useful in terms of capturing the steps necessary to solve a problem or documenting steps
to expose an issue that you want to report to Microsoft. You can combine this by adding
the –Verbose parameter to most commands to gather a lot of information about what
you’ve tried to do and what happened when you tried it. Use the Start-Transcript cmdlet to
force EMS to capture debug information. For example:

Start-Transcript c:\Temp\Transcript.txt

All commands and output will be captured until you stop the transcript by using the Stop-
Transcript cmdlet. At this point, you can examine the output with any text editor, and you’ll
see something like the output shown in the following example.

Windows PowerShell Transcript Start
Start time: 20130313093116
Username : CONTOSO\Administrator
Machine : ExServer1 (Microsoft Windows NT 6.2.9200.0)

PS C:\temp> $env:path
C:\Windows\system32\WindowsPowerShell\v1.0\;C:\Windows\system32;C:\Windows;C:
\Windows\System32\
Wbem;C:\Windows\System32
\WindowsPowerShell\v1.0\;C:\Windows\idmu\common;C:\Program Files\System Center
Operations Manager 2007\;C:\Program Files\Microsoft\Exchange Server\V14
\bin;c:\temp

Bulk updates
Those faced with the task of bulk updates (either to create a lot of new mailboxes or other
objects or to modify many existing objects) before the advent of PowerShell support for
Exchange had quite a lot of work ahead of them because Exchange offered no good way to
perform the work. You could create comma-separated value (CSV) or other load files and
use utilities such as CSVDE or LDIFDE to process data in the files against Active Directory, or
you could write your own code to use CDOEXM or ADSI to update Active Directory. Either
approach involved a lot of detailed work and made it quite easy to make a mistake. Using
a console to make the necessary changes was boring and an invitation to make a mistake.
The cause of Exchange’s problems with bulk changes was the lack of a programmable way
to automate common management operations, a situation that changed with the arrival
of EMS.

Ch
ap

te
r 3

 EMS basics 115

You can combine the Get-User and Set-Mailbox cmdlets effectively to solve many problems.
Here is an example in which you need to update the send quota property on every mail-
box for a set of users whose business group has decided to fund additional storage. You
can identify these users by their department, which always starts with “Advanced Tech” but
sometimes varies into spellings such as “Advanced Technology” and “Advanced Technology
Group.” Conceptually, the problem is easy to solve:

1. Look for all users who have a department name beginning with “Advanced Tech.”

2. Update the send quota property for each user.

You could use the Find option in Active Directory Users and Computers to build a suitable
filter to establish the set of users, but then you have to open each user’s mailbox that Active
Directory Users and Computers locates to update his quota through the GUI, which could
become boring after several accounts. You could also export a CSV-formatted list of users
to a text file, manipulate the file to find the desired users, and then process that list through
CSVDE to make the changes, but you have to search for all matching users across the com-
plete directory first. That is a lot of work to do.

The process is easier in EMS. First, you use the Get-User cmdlet with a suitable filter to
establish the collection of mailboxes you want to change. The following command returns
all users who have a department name that begins with “Advanced Tech” and then updates
the ProhibitSendQuota property to the desired amount (say, 20 GB). Because you have a
collection of user objects established, you can use the Set-Mailbox cmdlet to perform the
update. Note that some of these users might not be mail-enabled, but error handling is
another day’s work.

Get-User | Where {$_.Department –like '*Advanced Tech*'} | Set-Mailbox
– ProhibitSendQuota 20GB –UseDatabaseQuotaDefaults $False

Mergers, acquisitions, and internal reorganizations pose all sorts of problems for email
administrators. EMS will not solve the big problems, but it can automate many of the mun-
dane tasks that are necessary. For example, department names tend to change during these
events. EMS makes it easy to find all users who belong to a specific department and update
their properties to reflect the new organizational naming conventions. If only executing
organizational change were as easy as this one-line command, which transfers everyone
who works for the Old Designs department over to the Cutting Edge Design department,
things would be much easier:

Get-User | Where {$_.Department –eq 'Old Designs'} | Set-User –Department 'Cutting
Edge Design'

Note the use of $_.Department; this indicates a value fetched from the current pipeline
object. In this case, it is the department property of the current user object that Get-User

Chapter 3

116 Chapter 3 The Exchange Management Shell

fetched. To verify that you have updated all the users you wanted to (and maybe provide a
report to human resources or management), you can use code like this:

Get-User | Where {$_.Department –eq 'Cutting Edge Design'} | Select Name,
Department | Sort-Object Name | Format-Table > c:\temp\Cutting-Edge.tmp

A variation on this theme is to output the data to a CSV file to make the data easier to work
with in Microsoft Excel, Microsoft Access, or another tool that can read CSV data.

Get-User | Where {$_.Department –eq 'Cutting Edge Design'} | Select Name, Department
| Sort Name | Export-CSV c:\temp\Cutting-Edge.CSV

Things are even easier if you just need to change everyone’s company name after your
company is acquired.

Get-User | Set-User –Company 'New Company'

You can even do such things as alter only the users whose mailbox belongs to a particular
database:

Get-Mailbox –Database 'VIP Mailboxes' | Set-User –company 'Big Bucks'
–Department 'Executives'

Tip
All the examples discussed so far depend on you being able to identify some property
you can use as the basis for a filter. But what about when you do not have a common
property value to check for? In this case, you can build a simple list of mailbox names
(or any other format the –Identity parameter will accept, such as a Universal Principal
Name [UPN]), use the Get-Content cmdlet to read the names one by one, and pipe
these values to whatever other command you need to use . For example, here is how
you can use that trick to enable ActiveSync access for a set of users . In this example, the
Get-Content cmdlet reads lines containing the identities of the mailboxes you want to
change from a text file and pipes them as input to the Set-CASMailbox cmdlet:

Get-Content c:\temp\Users.txt | Set-CASMailbox –ActiveSyncEnabled $True

Another example of when EMS excels is when you want to apply a common setting across
all servers in your organization. For example, assume that you want to apply a new deleted
item retention limit of 150 days (perhaps mandated by the legal department) to all servers:

Get-MailboxDatabase | Set-MailboxDatabase –DeletedItemRetention 150.00:00:00

These simple examples demonstrate the value of having a scripting language that supports
automation of common management tasks.

Ch
ap

te
r 3

 EMS basics 117

Calling scripts
After you have written a script, you have to decide where to keep it. You could put the new
script in the directory that stores the Exchange binaries, but this is a bad idea for many
reasons, not least because your script could be overwritten by the installation of a future
Exchange service pack, a roll-up update, or even a completely new version.

INSIDE OUT A wise practice

It is wise to maintain a clear separation between the code for which you are respon-
sible and the code Microsoft distributes with Exchange . Therefore, you should create a
directory to hold all the scripts you use to work with Exchange . You can then call your
scripts safely in the knowledge that they will be available .

The basic rule of calling a script is that if the script is in the working directory (the directory
you are currently in), you prefix the name with “.\”

C:>.\Get-All-Users.ps1

If you’re not in the right directory, you can move to where you want to be by using the cd
command:

C:> cd c:\Scripts\

Alternatively, you can supply the full path to where the script is located:

C:>c:\Scripts\Get-All-Users.ps1

If there are spaces in the directory names, then you need to enclose the path in single or
double quotation marks:

C: '\Program Files\Microsoft\Exchange Server\V15\Scripts\CollectOverMetrics.ps1'

Even better, you can amend the path PowerShell uses by looking for scripts and adding
your directory to it. For example, running this command adds the C:\MyScripts directory to
the path:

$env:path = $env:path + ";c:\MyScripts'

After a script is in a directory that’s included in the path, you can invoke it by just typing its
name.

Chapter 3

118 Chapter 3 The Exchange Management Shell

Execution policies
EMS is powerful, and just a few cmdlets can have a tremendous effect on many objects
throughout Exchange. You might have thought about how to control the ability of users to
execute EMS commands.

RBAC provides the first line of protection. As you recall, users are permitted access only
to the set of cmdlets and parameters available to the roles each user holds. Even though
trusted users are assigned the roles they need to do their work, you still don’t want them to
execute scripts they download from the Internet or obtain elsewhere.

A second line of defense is therefore provided by Execution Policies, which define the con-
ditions under which Windows PowerShell loads files for execution. There are four policies:
Restricted, AllSigned, RemoteSigned, and Unrestricted. You configure the execution policy
used for a server by using the Set-ExecutionPolicy cmdlet. The default is RemoteSigned,
which you can verify by using the Get-ExecutionPolicy cmdlet. In this mode, EMS permits
the execution of any script created locally and any script downloaded from the Internet,
provided the script includes a digital signature. All the scripts that come with Exchange are
signed for this purpose (see Table 3-2). The caveat is that any script you attempt to run can
contain only Exchange cmdlets that are supported by the role the user holds who invokes
the script. Table 3-2 lists the alternate modes together with the potential trade-off in secu-
rity that you might have to make for each mode.

TABLE 3-2 Windows PowerShell execution policies

Execution Policy mode Meaning
Restricted No scripts can be run, even if they are signed by a trusted

publisher.
AllSigned Scripts must be digitally signed by a trusted partner before EMS

will run them.
RemoteSigned EMS will run any script created locally. Scripts that originate out-

side the system (such as those downloaded from the Internet)
cannot be run.

Unrestricted EMS will run any script. This mode should be used for test envi-
ronments only.

If you attempt to run an unsigned script that doesn’t comply with policy, Windows
PowerShell signals that it cannot load the script. Scripts are signed with the Set-
AuthenticodeSignature cmdlet, but you need to get a valid certificate first. The certificate
can be one you generate yourself or one you buy from a commercial vendor such as
VeriSign.

See http://technet.microsoft.com/en-us/library/bb125017.aspx for further details of how to
generate and apply certificates to sign scripts.

Ch
ap

te
r 3

 EMS basics 119

CAUTION!
Obviously, running an Exchange server with an unrestricted execution policy is a bad
idea . In fact, you should avoid any deviation from the default policy unless you have
an excellent reason to change . For example, you might decide that you want to run
scripts you find on the Internet. This might be acceptable if you run the scripts on a
test system only, but it’s a much better idea to take the time to go through the code
to understand exactly what it does before you think of deploying to a production
system . Remember that if you edit a script to create a new version on your computer,
that version of the script is now considered local and can be run without changing the
execution policy . Opening a downloaded script and saving it can lead to unintended
consequences, so be sure that you only save a script that you didn’t write when you
absolutely intend to create a new version .

If you deem it necessary to change the policy, use the Set-ExecutionPolicy command to
update the default execution policy on an Exchange 2013 server . For example:

Set-ExecutionPolicy –ExecutionPolicy Unrestricted

The change to the execution policy is effective immediately . Be sure to test any change
you want to make before you enable the change in production because it might break
scripts on which you or applications depend. Execution policy is a server-specific set-
ting . However, its setting is recorded in the system registry, and it is possible to use
Group Policy to apply the same setting to every server within the organization . To do
this, configure Group Policy to set the value of ExecutionPolicy to the desired execution
mode . The key is located under:

HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft\PowerShell

Note that because the setting for the execution policy is held in the system registry,
Windows will deny any attempt to update the value unless your account has the privi-
lege to change the system registry .

Profiles
When you start EMS, PowerShell runs a script called Bin\RemoteExchange.ps1 to initialize
EMS by loading the Exchange snap-in and defining a set of variables that EMS uses, such as
the default scope for Active Directory queries. The script also prints some welcome infor-
mation for EMS.

If you use EMS frequently, consider creating a profile EMS can load when it initializes a
new session. If it finds a profile, PowerShell executes the commands in it before it runs

Chapter 3

120 Chapter 3 The Exchange Management Shell

Exchange ps1 to create the EMS session. This order ensures that you can’t interfere with the
creation of the EMS session.

I like profiles because they remind me of the convoluted logon command procedures I
used to create for OpenVMS. Typical examples of commands included in profiles are the
following:

 ● Define some aliases (shorthand for commands). For example, you could use Set-Alias
gmbx Get-Mailbox to use gmbx any time you want to run the Get-Mailbox cmdlet.

 ● Add one or more directories containing scripts to the path, as discussed earlier.

 ● Position your session in a specific directory in which you prefer to work.

PowerShell defines a global variable called $Profile to hold the location of your profile.
The exact location varies across different versions of Windows. The profile doesn’t exist by
default, and you might have to create it before you can edit it to add some commands.
First, see whether a profile is available for the account you use:

Test-Path $Profile

If the response is $True, you know that a profile exists. If not, you have to create it with:

New-Item –Path $Profile –Type File –Force

After you have a profile, you can edit it as follows:

Notepad $Profile

Here’s a simple profile that you could begin with:

$env:path = $env:path + ";c:\Scripts"
'You are now entering PowerShell: ' + $env:Username
$StartTime = (Get-Date)
Write-Host "Session starting at $StartTime"
Set-Location c:\temp

After you finish updating the profile, save the file and restart EMS to see whether your
changes are effective. There are endless possibilities for inventive code to run within a
profile.

Active Directory for PowerShell
Active Directory is a huge dependency for Exchange, and it makes a lot of sense to be
able to manage Active Directory through PowerShell. This was not always possible, but
on Windows Server 2008 R2 SP1 servers, all you need to do is load the Active Directory
Module for PowerShell that’s installed under Administrative Tools. Assuming that the Active

Ch
ap

te
r 3

 Active Directory for PowerShell 121

Directory module is available on a server or client, you can load it into any PowerShell ses-
sion by using the following command:

PS C:\> Import-Module ActiveDirectory

The Active Directory module is loaded automatically into EMS on Windows 2012 servers, so
you can execute commands against Active Directory data immediately. To get a list of the
Active Directory cmdlets, type:

PS C:\> Get-Help *-AD*

In terms of navigation through the directory structure, Active Directory is represented to
PowerShell like files on a hard drive that is referenced as the AD: drive. If your system is
joined to a domain, you can then navigate Active Directory. For example, here’s how to cre-
ate a new organizational unit (OU) called Marketing after navigating to the desired location
in Active Directory. You can see the same in Figure 3-6.

PS C:\> CD AD:
PS AD:\> CD "DC=contoso,DC=com"
PS AD:\DC=contoso, DC=com> MD "OU=Marketing"

Figure 3-6 Creating a new OU in Active Directory

To compare how much easier it is to access Active Directory data by using the new module,
the command to retrieve a list of domain controllers is:

PS C:\> Get-ADDomainController | Format-Table Name, OperatingSystem

Name Operatingsystem
---- ---------------
CONTOSO-DC07 Windows Server 2012 Standard

Chapter 3

122 Chapter 3 The Exchange Management Shell

CONTOSO-DC01 Windows Server 2012 Standard
CONTOSO-DC02 Windows Server 2008 R2 Enterprise

Another useful example is when you want to scan for inactive Active Directory accounts so
that you can clean up the directory. In this command, you scan for any account that has not
been logged on to in the past 120 days and report the account name and the date the user
last logged on.

Search-ADAccount –UsersOnly –AccountInActive –TimeSpan 120 | Format-Table Name,
LastLogonDate

You could then disable these accounts by piping the discovered list to the Disable-
ADAccount cmdlet. However, this is a dangerous thing to do in an Exchange environment
because so many accounts are never logged on to because they are used for purposes such
as room and discovery mailboxes.

Another one-liner that is extremely useful on test systems searches for all Active Directory
accounts that have an email address and sets the accounts so that the passwords never
expire. This gets rid of a lot of annoying prompts you might otherwise encounter because
passwords expire!

Get-ADUser –Filter {EmailAddress –Like "*@contoso.com"} | Set-ADUser
–PasswordNeverExpires $True

See http://technet.microsoft.com/en-us/library/dd378937(v=ws.10).aspx for informa-
tion about how to perform Active Directory management by using PowerShell for
Windows 2008 R2 .

Setting the right scope for objects in a multi-domain forest
When you start EMS, Exchange sets the default scope for queries performed against Active
Directory to the domain to which the server belongs. This is fine if you operate a single-
domain forest, but it is definitely not if you have to manage objects in a multi-domain
forest because it means that any query you perform will return only objects from the local
domain. To control the scope for Active Directory objects, use the Set-ADServerSettings
cmdlet. Set the ViewEntireForest parameter to be $True (to see the entire forest) or $False
(to see just the objects owned by the default domain). The logical place to do this is in your
personal PowerShell profile. For example:

Set-ADServerSettings -ViewEntireForest $True

You can also use this command to point to a particular domain controller to retrieve Active
Directory data. For example:

Set-ADServerSettings –PreferredServer 'DC1.contoso.com'

Ch
ap

te
r 3

 Exploring useful EMS examples 123

If you do not want to set your scope to the entire forest, a partial workaround is to specify
a global catalog server in the remote domain to use for the query. Another way of forcing
EMS to operate on a forest-wide basis is to specify the –IgnoreDefaultScope parameter for
cmdlets such as Get-Mailbox. This parameter tells EMS to ignore the default recipient scope
setting for EAC (typically the domain into which a server is installed) and use the entire
forest instead. For example, if you wanted to set up a batch of mailboxes to move from an
Exchange 2007 server to Exchange 2013 that used accounts in multiple domains, you could
use a command like this:

Get-Mailbox –Server 'Exchange2007' –ResultSize Unlimited –IgnoreDefaultScope |
New-MoveRequest -TargetDatabase 'Mailbox Database 1002' –BatchName 'Move Group from
Exchange 2007'

The natural question at this point is whether changing the scope for Active Directory que-
ries will affect how you work with EMS. The answer is yes because when you set a forest-
wide scope, EMS fetches data from across the forest rather than from the local domain.
Unless you use parameters to focus on particular groups of objects, such as specifying that
you want to work with the mailboxes from one server, you will probably have to wait longer
for a response. This is because you will ask EMS to process cmdlets that deal with servers,
mailboxes, databases, or other objects across a complete forest rather than with just one
domain, but in most cases, the wait is worthwhile because you see the complete picture
and do not run the risk of missing something.

Exploring useful EMS examples
A scan of the Internet results in many interesting EMS code snippets that can be usefully
employed by an Exchange administrator. This section discusses some good examples. The
idea is not to present complete solutions. Rather, I hope to inspire you to experiment with
EMS to see just how much value you can get from a few lines of reasonably straightforward
code. After all, if you can do a lot of work in a couple of lines that take just a few minutes
to type in and get running, think of how much you can do if you really set your mind to
exploiting EMS!

Before reviewing the examples of EMS in use, I have two specific pieces of advice for the
aspiring EMS aficionado. Because this book is emphatically not designed to be a reference
guide for EMS, if you think that you will become heavily involved with EMS, purchase a
copy of Microsoft Exchange 2013 PowerShell Cookbook, Second edition (Packt Publishing,
2013). The book is packed full of guidance, tips, and programming examples that are
extremely useful for both on-premises and Exchange Online administrators.

Second, many of the Exchange MVPs provide an extremely valuable service to the
Exchange community by publishing what become de facto standards for how to write a
script to solve certain problems. You should download these scripts and use them as a

Chapter 3

124 Chapter 3 The Exchange Management Shell

starting point for understanding just how to approach writing industrial-strength EMS
code. I would also bookmark their websites and keep up to date with their activities so that
you can learn from their future work. At the risk of offending others, among my favorite
sites are:

 ● Pat Richard (http://www.ehloworld.com/) Features a great script (Send-
NewUserWelcome.ps1) that shows how to build a welcome message to new
Exchange users on a scheduled basis.

 ● Andy Grogan (http://www.telnetport25.com) Look at his script for automating
the setup of an Exchange lab environment.

 ● Mike Crowley (http://mikecrowley.wordpress.com/) Contains a nice script to
report on the proxy addresses assigned to email users.

 ● Steve Goodman (http://www.stevieg.org/) Shows an extremely useful Exchange
environment report, a comprehensive overview of lots of information about your
Exchange organization; output in HTML format.

 ● Paul Cunningham (http://exchangeserverpro.com/) Offers the best mailbox
report script around (Get-MailboxReport.ps1). Paul also maintains a nice server health
monitoring script that generates and sends an HTML format message to administra-
tors on a regular basis.

These scripts can be downloaded from these sites; the code is fully revealed and is easily
adapted to meet any particular needs that exist in your environment. New sites that fea-
ture great tips appear all the time, and I’m sure you will accumulate your own list of go-to
people you consult when you meet a problem. In the meantime, look at some examples to
get started with EMS.

Looking for large folders
The first example shows how to discover users who might be suffering from performance
problems because they have very large folders in their mailboxes. The number of items that
is considered bad has grown over time in line with the updates Microsoft has made to tune
the database schema. With Exchange 2000 or Exchange 2003, the danger mark is around
5,000 items. The threshold increases to 20,000 with Exchange 2007 and leaps to 100,000
for Exchange 2010 onward. The client used is also important because Outlook 2010 and
Outlook 2013 are better at dealing with large folders than Outlook 2007 is. Having more
than 20,000 items in a folder is evidence of solid pack-rat behavior by anyone, and it marks
a folder that probably will never be cleaned out simply because it takes too much effort to
explore the contents and decide what should be kept and what should be deleted. Assume

Ch
ap

te
r 3

 Exploring useful EMS examples 125

that you want to flag potential issues to users who have more than 5,000 items in a folder.
You can use code like this:

Get-Mailbox –Server ExServer2 | Get-MailboxFolderStatistics | Where {$_.ItemsInFolder
–GT 5000} | Sort ItemsInFolder –Descending | Format-Table Identity, ItemsInFolder
–AutoSize

Identity ItemsInFolder
--------- -----------------
contoso.com/Exchange Users/Redmond, Eoin\I 5271
contoso.com/Exchange Users/Ruth, Andy\Inbox 5265
contoso.com/Exchange Users/Andrews, Ben\Inbox 5263
contoso.com/Exchange Users/Pelton, David\Inbox 5230
contoso.com/Exchange Users/Simpson, David\Inbox 5218
contoso.com/Exchange Users/Redmond, Tony\Sent Items 5215

Of course, it would be impolite to send a note to these users to remind them that good fil-
ing practices lead to clean mailboxes, but you can still think about it!

This code does the following:

 ● Calls Get-Mailbox to generate a list of all mailboxes located on databases hosted by a
server. It is possible to process all mailboxes in an organization by changing the code
to Get-Mailbox –ResultSize Unlimited, but such a command will take a long time to
process in any organization with more than a couple of thousand mailboxes (though
you could use a server-side filter when appropriate).

 ● Calls Get-MailboxFolderStatistics to extract a count of items in each folder.

 ● Filters any folder with more than 5,000 items.

 ● Sorts the filtered folders by descending order.

 ● Outputs the information.

If you run this command against an Exchange 2010 or Exchange 2013 server, even details
of the folders in the dumpster (for example, Deletions) will be shown that are not reported
by an Exchange 2007 server.

Outputting a CSV file
Many examples of outputting CSV files from Exchange data use the Export-CSV cmdlet. For
instance, here’s a two-line script that looks for any mailbox that has an ActiveSync partner-
ship created, which indicates that the user has connected a mobile device to the mailbox
by using ActiveSync. An expression is included to force a call to the Get-ActiveSyncDevice

Chapter 3

126 Chapter 3 The Exchange Management Shell

cmdlet to retrieve the count of devices associated with each user. This kind of information is
useful when understanding how many people actually connect mobile devices to Exchange!

$Mbx = Get-CASMailbox –Filter {HasActiveSyncDevicePartnership –eq $True} |
Get-Mailbox
$Mbx | Select DisplayName, UserPrincipalName, @{Name="Devices";Expression=
{(Get-ActiveSyncDevice –Mailbox $_.Identity).Count)} | Export-CSV
"c:\temp\ActiveSync.csv" –NoTypeInformation

Export-CSV is great because it takes care of all the formatting issues required to create a
valid CSV file that will be recognized by applications such as Excel. However, there are other
ways to generate CSV data. This script creates a CSV file you can use to analyze mailbox
usage (Figure 3-7). A check in the code limits processing to the mailboxes found in a spe-
cific database and ignores anything but user mailboxes. (Objects such as room or arbitra-
tion mailboxes are ignored.) This script could take quite a while to finish if there are more
than a few hundred mailboxes in the selected database, so be sure to test it on perhaps a
smaller group before you launch it to process larger collections.

$Outputfile = "C:\temp\Mailboxes.csv"
Out-File -FilePath $OutputFile -InputObject "UserPrincipalName, Items, Mailbox Size"
-Encoding UTF8
$mbx = Get-Mailbox –Database DB2
Foreach ($M in $Mbx)
 {

 if ($M.RecipientTypeDetails -eq "UserMailbox")
 {

 # Fetch information about the mailbox
 $UserMailbox = Get-Mailboxstatistics -Identity $($M.Identity)

 $UserPrincipalName = $M.UserPrincipalName
 $ItemSizeString = $UserMailbox.TotalItemSize.ToString()
 $MailboxSize = "{0:N2}" -f ($ItemSizeString.SubString(($ItemSizeString.
IndexOf("(") + 1),($itemSizeString.IndexOf(" bytes") - ($ItemSizeString.IndexOf("(")
+ 1))).Replace(",","")/1024/1024)
 $ItemCount = $UserMailbox.ItemCount

 #Prepare the user details in CSV format for writing to file and append line
 $UserDetails = $UserPrincipalName + "," + $ItemCount + "," + $MailboxSize
 Out-File -FilePath $OutputFile -InputObject $UserDetails -Encoding UTF8 -append
 }
 }

This script generates fairly basic data about mailboxes, and if you scan the Internet, you can
find many other approaches to the problem of mailbox reporting, some of which are much
better than others. With anything to do with mailboxes, the key is speed because code that
is quite good at processing one or two mailboxes might not be smart when confronted with

Ch
ap

te
r 3

 Exploring useful EMS examples 127

a few thousand. It’s also a good idea to consider what information needs to be output and
make sure that the data reported is formatted in a way that is most useful to the reader.

Figure 3-7 User mailbox CSV data

Creating a report in HTML
PowerShell is flexible in terms of processing output. Generated reports can show manage-
ment and others the kind of work that servers do. The typical reports EMS generates are
plaintext. You can also generate HTML reports by piping objects through the ConvertTo-
HTML cmdlet. (The Out-HTML cmdlet at http://poshcode.org/1612 is also useful for gen-
erating HTML content.) This example explores how to generate a useful report that shows
mailboxes that have exceeded their storage quota. You could use a report like this to check
proactively for users who are experiencing problems with their quota and perhaps allocate
them some additional quota to enable them to resume working. The output is shown in
Figure 3-8.

Get-Mailbox –Database VIP | Get-MailboxStatistics | Sort TotalItemSize –Descending |
ConvertTo-HTML DisplayName, Database, ItemCount, TotalItemSize > C:\Temp\Mbxs.html

You can enhance the output further by formatting the HTML with a style sheet or adding
other information such as the date and time of the report. I leave that as an exercise for the
reader.

http://poshcode.org/1612

Chapter 3

128 Chapter 3 The Exchange Management Shell

Figure 3-8 Viewing the HTML version of the mailbox report

It’s worth noting that when you run the Get-MailboxStatistics cmdlet, you force EMS to
make a remote procedure call (RPC) to the Information Store to retrieve the latest data for
the mailboxes (individual, database, or server). The information is completely up to date
and reflects the exact state of the mailbox rather than cached data that could be a couple
of hours old. The Store caches information about mailbox quotas and updates the cache
every two hours to avoid the overhead of the I/O that it would otherwise need to generate
to check quotas every time a user attempts to send a message or to check that a mailbox
can accept a new message.

TROUBLESHOOTING
Users report that they’ve deleted messages but still exceed quota
Given the dynamic flow of messages in and out of mailboxes, it’s likely that a small dif-
ference exists between the cached data and the actual state . This sometimes causes
confusion when a user reports that she has exceeded quota and can’t send mail even
though she has deleted many messages, and she has to wait until the Store refreshes its
cache to determine the new mailbox size and respect the fact that she has reduced the
size under quota . If this becomes a problem and users complain that Exchange takes
too long before it allows them to resume email activity, you can amend the system
registry to force Exchange to refresh the cache more often with the caveat that more
frequent refreshes impose an extra overhead on the server . See http://technet.microsoft
.com/en-us/library/aa996988(EXCHG.80).aspx for details .

Ch
ap

te
r 3

 Controlling access to Exchange 129

Verbose PowerShell
Usually, EMS gets on with whatever you ask it to do and doesn’t give any indication of the
processing it performs in the background. You ask for a new mailbox to be created, and it’s
created, or some problem occurs that stops the command from executing. If the problem
originates with an error introduced by the user, such as an error in syntax or attempting
to do something that doesn’t make sense, such as creating a mailbox in a database that
doesn’t exist, you can just fix the problem and try again.

Sometimes you need to know exactly what EMS does to help track down a problem, per-
haps to provide information to Microsoft support to help them figure out what’s going on
in your Exchange deployment. You might just want to know what’s happening when you
execute a command. In either case, you can add the /verbose switch to a command to have
PowerShell generate details of exactly what it does as it proceeds. Figure 3-9 shows some
of the output when the New-MailboxDatabase cmdlet is used to create a new mailbox
database. You can see how EMS validates the context within which it is executing, including
checks to locate a global catalog server, validate RBAC authorization, and confirm that the
mailbox database doesn’t already exist.

Figure 3-9 Examining some verbose PowerShell output

Controlling access to Exchange
EMS is a great way to get work done with Exchange as long as you don’t mind grappling
with the command-line interface. If no control were exerted, you could do massive damage
to an Exchange organization with EMS, such as selecting all the mailboxes in a database
and removing them with a single line of code. Only the people who need to control the full
scope of the organization should be able to take such drastic action. Traditionally, control is

Chapter 3

130 Chapter 3 The Exchange Management Shell

given through permissions and privileges. Exchange takes a different approach and adopts
the RBAC model. All administrators need a solid grounding in RBAC and its implementation
in Exchange, and that’s the next subject of discussion.

 807

Index

Numbers and Symbols
$_ variable, 101–102
$_ . variable, 102
{ } (braces), 110
& (ampersand), 385
* (asterisk), 138, 481
- (hyphen), 103, 110
 . operator, 100
" (quotation marks), 102–103
_ (underscore), 26
| operator, 102, 109

A
ABPs (address book policies)

about, 348–350
creating and implementing, 351–357
groups and, 350

accepted domains, 340
–AcceptLargeDataLoss cmdlet parameter, 632
AcceptMessagesOnlyFrom property, 279–280
AcceptMessagesOnlyFromDLMembers property, 279–280
AcceptMessagesOnlyFromSendersOrMembers property,

279
access control, role-based . See RBAC (role-based access

control)
access control lists (ACLs), 131–132, 143, 282
ACID test, 419
ACLL (attempt copy last logs) process, 473, 478–479
ACLs (access control lists), 131–132, 143, 282
activating mailbox database copies, 533–534
activation blocks, 542–544
activation preference for databases, 477
ActivationPreference property, 521
Active Directory

about, 34–37
address book policies and, 350
ADSIEdit utility, 36–37, 59–60
deployment support, 45–47
ensuring full visibility, 364
Federated Services role, 313
forest functional mode, 26
preparing, 47–48

removing tags from, 687
storing information, 35–36
user accounts, 49
Windows PowerShell and, 120–123

Active Directory Domain Services (AD DS), 47–48
Active Directory Rights Management Services (AD RMS),

734
Active Directory Users and Computers

audit entries and, 754
changing group properties, 285
creating computer objects, 497
displaying group membership, 268
Find option, 115
moving groups, 289
USGs and, 141

Active Manager
about, 461, 465–467
ACLLs, 478–479
automatic database transitions, 467–469
best copy and server selection, 472–477
DAC and, 552
failover clustering and, 464
high availability and, 465–466, 469–472
Managed Availability and, 469–472, 536
scanning for failed copies, 458

ActiveCopy property, 521
ActiveDirectoryConnectivityConfigDCRestart responder,

470
ActiveSync, 29, 125–126
–ActiveSyncMailboxPolicy cmdlet parameter, 193
AD DS (Active Directory Domain Services), 47–48
AD RMS (Active Directory Rights Management Services),

734
Add-AdPermission cmdlet, 232, 794
Add-DatabaseAvailabilityGroupServer cmdlet, 494, 496
Add-DistributionGroupMember cmdlet, 92, 193, 296, 298
Add-MailboxDatabaseCopy cmdlet, 525, 527, 545
Add-MailboxPermission cmdlet, 202, 233–234, 236–237,

260
Add-PublicFolderClientPermission cmdlet, 787
Add-RoleGroupMember cmdlet, 150
Add-WindowsFeature cmdlet, 51, 53

AddNewRequestsTentatively property, 258
AddOrganizerToSubject property, 258
address book policies (ABPs)

about, 348–350
creating and implementing, 351–357
groups and, 350

address lists, 345–349
addressing messages

about, 333
address book policies, 348–357
address lists, 345–348
display templates, 382–386
email address policies, 333–345
hierarchical address books, 349, 371–373
MailTips and group metrics, 373–382
Offline Address Book, 357–371

ADDriver (Exchange Authorization Library), 90–91
Admin Audit Log agent, 750
AdminAuditLogs folder, 749
Administrator user account, 163
administrators

auditing actions of, 748–754
delivery reports, 321–327
page zeroing, 436
quorum voting, 494
running EAC without Exchange mailbox, 329–330
security and, 319–320
user accounts, 163

ADSIEdit utility
about, 36–37
arbitration mailboxes, 59
auditing and, 754
email address formats, 344
removing server objects, 60
viewing group properties, 374

Advanced Search Syntax (AQS), 736
AgeLimitForRetention property, 666, 670
AggregateCounts corruption type, 446
AggregatePFData .ps1 script, 788–789
alerts

EAC, 172–173
health mailboxes, 227
mail flow and rules, 318–319
moving mailboxes and, 638–639
self-signed certificates, 78

–Alias cmdlet parameter, 192, 253, 307
Alias property, 185
aliases, 93
All Contacts container, 345
All Groups container, 345
All Rooms container, 345
All Users container, 345
AllBookInPolicy property, 262–264
AllRequestInPolicy property, 262, 264
AllRequestOutofPolicy property, 262–263

AllSigned execution policy, 118
AlternateWitnessDirectory property, 505
AlternateWitnessServer property, 505
ambiguous name resolution (ANR), 365–366
ampersand (&), 385
ANR (ambiguous name resolution), 365–366
ANSI format, 623
APIPA (Automatic Private IP Addressing), 492
Application and Service Logs, 502
Application Event Log

diagnostic levels and, 332
ecTooManyMountedDatabases error, 544
excessive growth, 443
usage examples, 364, 433

Application Impersonation role, 159
AQS (Advanced Search Syntax), 736
arbitration mailboxes

about, 182
alerts and, 638–639
checking, 547
discovery mailboxes, 224
migration, 573
moving, 59–60
organization mailboxes, 362
suppressing, 312

ArbitrationMailbox property, 249
architecture, Exchange Server, 10–11
–Archive cmdlet parameter, 193, 446, 648, 652
archive mailboxes

about, 645–647, 655–656
checking space usage, 652
compliance management and, 644
DAG design, 557
default archive and retention policy, 652–655
development priorities, 4
disabling, 656–657
enabling, 647–650
limitations of, 647
managing properties, 651–652
server failure and, 649
troubleshooting, 656
updating properties, 652

–ArchiveDatabase cmdlet parameter, 648–649
ArchiveDomain property, 651
ArchiveRelease property, 651
ArchiveState property, 651
ArchiveStatus property, 651
arrow keys, 95
–AssociatedMessagesCopyOption cmdlet parameter, 633
asterisk (*), 138, 481
asynchronous moving, 571–572
AsyncOperationNotification system retention tag, 639
attachments, 398
attempt copy last logs (ACLL) process, 473, 478–479
attributes . See specific properties

808 AddNewRequestsTentatively property

audit mailbox, 749–750
AuditAdmin property, 758
AuditDelegate property, 758
auditing

administrator actions, 748–754
mailbox access, 239, 754–762

AuditLogAgeLimit property, 757–758
AuditOwner property, 758
authentication

certificates and, 314
cmdlets and, 89
Kerberos, 79
sending messages to groups, 280–281

auto-mapping mailboxes, 235–237
–AutoDatabaseMountDial cmdlet parameter, 478–479,

539–542
AutoDatabaseMountDial setting, 478–479, 539–542
–Autodiscover cmdlet parameter, 612
Autodiscover feature, 235–237
AutomateProcessing property, 257, 261
automatic database transitions, 467–469
Automatic Private IP Addressing (APIPA), 492
automatic reseeding of failed databases, 458
automating mailbox settings, 205–206
–AutoSize cmdlet parameter, 99
–AutoStart cmdlet parameter, 593
autosynchronization, 588
Azure File Server, 490

B
B+ tree defragmentation, 435
backend (Mailbox server role), 1, 314
background maintenance

about, 390, 432–433
content maintenance tasks, 432, 436–437
continuous, 482
database checksums, 432–435
database compaction, 432, 436
database defragmentation, 432, 435
page zeroing, 433, 436

Backspace key, 95
backups

database, 416–417
streaming, 29, 389
VSS, 458

bad-item limit, 584–587, 590, 608
–BadItemLimit cmdlet parameter, 637
BadItemLimit property, 593
BalanceDbsByActivationPreference mode, 535
BalanceDbsBySiteAndActivationPreference mode, 536
–BatchName cmdlet parameter, 575, 634
BCS (best copy selection), 472
BCSS (best copy and server selection), 472–477
Begin log record type, 425
best copy and server selection (BCSS), 472–477

best copy selection (BCS), 472
binary large objects (BLOBs), 401
Binpatch.oab file, 361
BLOBs (binary large objects), 401
block mode replication, 484–486
BookInPolicy property, 262–264
BPOS (Business Productivity Online Services), 6
braces, 110
bulk mailbox creation, 195
bulk updates, 114–116
business cases, building, 16
Business Productivity Online Services (BPOS), 6
–BypassDelegateChecking cmdlet parameter, 328
–ByPassNestedModerationEnabled cmdlet parameter, 245
–BypassSecurityGroupManagerCheck cmdlet parameter, 277

C
Calcheck (Calendar Checking Tool for Outlook), 445
Calendar Assistant, 259, 261, 454
Calendar Checking Tool for Outlook (Calcheck), 445
Calendar folder, 658, 695
Calendar Repair Assistant, 746
CalendarLoggingQuota property, 746
calendars, retention policies and, 677
CalendarVersionStoreDisabled property, 746
Calender Logging folder, 746
CALs (Client Access Licenses)

about, 33
applying retention policy to mailboxes, 678
archiving and, 644
mailbox management and, 184, 191
requirements, 27, 72–73

Can Opener screen, 55
canceling repair jobs, 447
capacity planning, 389–392
CAS (Client Access Server)

about, 1
address book policies, 349
architectural overview, 10–11
client interaction, 376–377
DAG and, 461
development problems, 7–8
MailTips and, 376–377
MRS and, 567
MRSProxy and, 612–613
namespace planning, 79–81
public folders and, 767
testing programming and customizations, 30–31
transport service, 27

case sensitivity, date/time formats, 199
CCR (cluster continuous replication), 29
cd command, 117
Central Help Desk security group, 323
CER file, 317

	 CER	file	 809

certificates
managing, 313–317
protocols and, 314
self-signed, 77–78, 314, 317
signed scripts, 118
SSL, 30
X.509, 26, 313

ChangedGroups.txt file, 376
ChangePermission right, 260
Checkbox control type, 385
CheckDatabaseRedundancy script, 522
checkpoint files, 408, 426–427
checksums

database, 432–435
transaction logs, 427

CI (Content Indexing) catalog, 554
circular logging

about, 429–431
DAG and, 510–514, 554
default state, 414
transaction log truncation, 486

clearing move requests, 610–611
Client Access Licenses (CALs)

about, 33
applying retention policy to mailboxes, 678
archiving and, 644
mailbox management and, 184, 191
requirements, 27, 72–73

Client Access Server (CAS)
about, 1
address book policies, 349
architectural overview, 10–11
client interaction, 376–377
DAG and, 461
development problems, 7–8
MailTips and, 376–377
MRS and, 567
MRSProxy and, 612–613
namespace planning, 79–81
public folders and, 767
testing programming and customizations, 30–31
transport service, 27

client-side filters, 110–113
client-side rules, 318
closed groups, 270
cloud service, 5, 9, 646
cluster continuous replication (CCR), 29
Cluster Name Object (CNO), 490, 496–499
cluster technology, 463–464, 492–493
cmdlets . See also specific cmdlets

about, 21, 83–86, 92–95
Active Directory module, 120–122
bulk updates, 114–116
command editing, 95–97
default view, 94

determining availability of, 86
execution policies, 118–119
filtering, 110–113
/full switch, 94
handling information returns, 98
HTML reports, 127–128
online repair, 445–448
output from, 100, 125–127
/parameter switch, 94
piping, 109
quarantined mailboxes, 439
RBAC restrictions, 154
remote Windows PowerShell and, 86–92
repair, 445–448
role assignment policies, 153–155, 163–166
roles and, 139
in scripts, 93, 117
selective output, 98–101
transcripts, 114
variables and, 101–103
/verbose switch, 129
/whatIf switch, 113

CNO (Cluster Name Object), 490, 496–499
Codeplex website, 38
columns, EAC, 177–178
comma-separated-value (CSV) files

analyzing, 68
CSVDE utility, 114
exporting EAC information to, 181–182
migration batches, 592
modern public folders and, 789
moving mailboxes, 582, 590
outputting, 125–127, 281–282

command editing, PowerShell, 95–97
Commit log record type, 425
compacting database, 432, 436
comparison operators, 110
Complete-MigrationBatch cmdlet, 594
compliance management

about, 641–642
archive mailboxes, 645–657
auditing administrator actions, 748–754
auditing mailbox access, 754–762
development priorities, 4
evolving needs of, 3
legal discovery actions, 642–645
messaging records management, 657–689
preserving information, 696–737
Recoverable Items structure, 737–747
testing operational processes, 29
upgrading considerations, 18

Compliance Management role group, 74
compression

attachments and, 398
LZ77, 506

810	 certificates

LZX, 361
mailbox database, 394, 397–398
transaction log, 483–484

Computer Administrator account, 329–330
concurrent searches, 733
conditional checking in scripts, 103
conditional parameters, 307–313
–ConditionalCompany cmdlet parameter, 307, 309
–ConditionalCustomAttribute cmdlet parameter, 307, 309
–ConditionalDepartment cmdlet parameter, 309
–ConditionalStateOrProvince cmdlet parameter, 307, 309
–ConfictResolutionOption cmdlet parameter, 632
configuration

Active Directory information, 35
MailTips, 377–378
MRS, 621–623
XML files, 51–52, 205–206

Configuration read scope, 142
Configuration write scope, 142
–ConfigurationOnly cmdlet parameter, 545–546
–Confirm cmdlet parameter, 113, 656
ConflictPercentageAllowed property, 260
Connect-ExchangeOnline function, 90
Connect-Mailbox cmdlet, 222–223
contacts, mail-enabled, 179, 250–251
Contacts folder, 658
content indexes, 701, 776
Content Indexing (CI) catalog, 554
content maintenance tasks, 432, 436–437
ContentIndexState property, 542
ContentMailbox property, 780
contiguous space, 392, 394–395, 397–398
continuous replication circular logging (CRCL), 511
controller process, 402–407
ConvertTo-HTML cmdlet, 127
cookie files, 376
copies, database . See database copies
Copy action, 756
CopyQueueLength property, 521
corrupt items

detection and isolation, 437–448
moving mailboxes, 569

corruption, logical, 526
Country property, 305
CrashCount system registry setting, 438
CRCL (continuous replication circular logging), 511
Create action, 756
–Credentials cmdlet parameter, 612
crimson channel, 475–476, 502–504
Crowley, Mike, 124
CSV (comma-separated-value) files

analyzing, 68
CSVDE utility, 114
exporting EAC information to, 181–182
migration batches, 592

modern public folders and, 789
moving mailboxes, 582, 590
outputting, 125–127, 281–282

CSVDE utility, 114
Ctrl+Click key combination, 361
CU (cumulative updates), 14, 27, 64–67
cumulative updates (CU), 14, 27, 64–67
Cunningham, Paul, 124
custom filters, 308–313
–CustomAttribute cmdlet parameter, 352–355, 385
–CustomConfigWriteScope cmdlet parameter, 143
–CustomRecipientWriteScope, 143, 157

D
%d variable, 339
DAC (Datacenter Activation Coordination), 551–552
DACP bit, 552
DACP (Datacenter Activation Coordination Protocol), 552
DAG (Database Availability Group)

about, 19–20, 32–33, 311, 457, 461–463, 489–494
activating mailbox database copies, 533–534
activation blocks, 542–544
Active Manager, 465–479
adding database copies, 514–517
adding database copies with EMS, 525
architectural overview, 10–11
AutoDatabaseMountDial setting, 539–542
building, 494–496
building DAG, 494–496
changes in high availability, 457–459
changes in message submission, 489
circular logging, 510–514, 554
cleaning up, 510
crimson events, 475–476, 502–504
DAG networks, 506–509
data center activation coordination, 551–552
databases and, 362, 411, 459–464
day-to-day management and operations, 489–551
design considerations, 552–562
handling storage failures, 549–551
I/O performance improvements, 401
lagged database copies, 525–532
managing properties, 504–506
migrating, 464–465
monitoring database copies, 517–522
moving database locations within, 544–546
moving databases, 539–542
naming conventions, 179
passive database copies, 460
performing server switchovers, 536–539
pre-staging Cluster Name Object, 497–499
public folders and, 767–768
rebalancing database copies, 534–536
removing database copies, 546–548
removing servers, 548–549

 DAG (Database Availability Group) 811

reseeding database copies, 523–525
role of FSW, 499–501
server maintenance, 562–565
server names, 44
sizing mailboxes, 394
stressed servers, 565–566
task logging, 502
transaction log replays, 479–489
virtual servers, 24
Windows Failover Clustering, 463–464

DAMs (deferred action messages), 318–319
dark zone, 60
Data Guarantee API, 609
data loss prevention (DLP), 18, 642, 646
Database Availability Group (DAG)

about, 19–20, 32–33, 311, 457, 461–463, 489–494
activating mailbox database copies, 533–534
activation blocks, 542–544
Active Manager, 465–479
adding database copies, 514–517
adding database copies with EMS, 525
architectural overview, 10–11
AutoDatabaseMountDial setting, 539–542
building, 494–496
building DAG, 494–496
changes in high availability, 457–459
changes in message submission, 489
circular logging, 510–514, 554
cleaning up, 510
crimson events, 475–476, 502–504
DAG networks, 506–509
data center activation coordination, 551–552
databases and, 362, 411, 459–464
day-to-day management and operations, 489–551
design considerations, 552–562
handling storage failures, 549–551
I/O performance improvements, 401
lagged database copies, 525–532
managing properties, 504–506
migrating, 464–465
monitoring database copies, 517–522
moving database locations within, 544–546
moving databases, 539–542
naming conventions, 179
passive database copies, 460
performing server switchovers, 536–539
pre-staging Cluster Name Object, 497–499
public folders and, 767–768
rebalancing database copies, 534–536
removing database copies, 546–548
removing servers, 548–549
reseeding database copies, 523–525
role of FSW, 499–501
server maintenance, 562–565
server names, 44

sizing mailboxes, 394
stressed servers, 565–566
task logging, 502
transaction log replays, 479–489
virtual servers, 24
Windows Failover Clustering, 463–464

Database Availability Group management service
(MsExchangeDAGMgmt .exe), 503

–Database cmdlet parameter, 193, 634
database copies

activating mailbox, 533–534
activation blocks, 542–544
adding with EMS, 525
automatic database transitions, 467–469
cleaning up, 510
DAGs and, 465, 514–517, 555
failover, 466
identifying specific, 525
lagged, 525–532
monitoring, 517–522
passive, 460, 544
rebalancing, 534–536
removing, 546–548
reseeding, 523–525
scanning for, 458
switchover, 466, 533–534

database management
about, 407–409
activation preference, 477
automatic database transitions, 467–469
automatic reseeding of failed databases, 458
backups, 416–417
circular logging and, 429–430
cleaning up before creating copies, 510
creating mailbox databases, 410–414
custom filter to address mailboxes in databases, 310–313
DAGs and, 362, 555–556
database checksums, 432–435
database compaction, 432, 436
database copies, 510, 514–536
database defragmentation, 432, 435
database redundancy, 411, 522
database replication, 390, 411, 459, 479–489
database schemas, 398–400
database usage statistics, 451–453
debugging swelling databases, 444–445
dismounting databases, 422, 447, 469, 545
estimating database size, 217–218
log placement, 428–429
mailbox resources provisioning management agent,

209–213
maximum database size, 389–392
maximum number of active databases, 402–403
mounted databases, 407, 426–427, 462–463, 546
moving databases, 536, 539–542, 544–546

812 DAMs (deferred action messages)

naming conventions, 179
numbers supported, 407
OAB and, 371
protection against excessive database growth, 443–444
rebuilding databases, 448–451
removing databases, 416–418
renaming databases, 414–415
seeding databases, 489
updating after installation, 414–416
write smoothing, 395

database portability, 459–464
database scope, 158–159
database usage statistics, 451–453
DatabaseAvailabilityGroupIpAddresses property, 505
Datacenter Activation Coordination (DAC), 551–552
Datacenter Activation Coordination Protocol (DACP), 552
–DatacenterActivationMode cmdlet parameter, 552
DataMoveReplicationConstraint property, 620–621
DataMoveReplicationConstraint setting, 481, 609
Data.oab file, 361
DataPath property, 410–411
date formats, 199
debugging

generating transcripts, 114
swelling databases, 444–445

Default Archive and Retention Policy, 653–655
Default Archive Policy, 653
default folders, 200–201, 393
default group location, 288–289
Default MRM Policy, 652, 655
default policy tags (DPT), 658–659, 666
Default Role Assignment Policy, 290, 295
DefaultPublicFolderMailbox property, 771
deferred action messages (DAMs), 318–319
Deferred Actions folder, 318
defragmentation, database, 432, 435
Defragmentation Tasks counter, 435
Delegated Setup role group, 63, 74, 141
delegating

groups, 275
mailboxes, 229–232
Outlook access, 239–240
role assignments, 160
roles, 140, 163, 625

–Delegating cmdlet parameter, 154
Delete key, 95
delete tags, 672
DeleteAndAllowRecovery action, 672
DeleteAttachments property, 257
DeleteComments property, 257
–DeleteContent cmdlet parameter, 703
Deleted Items folder, 393, 649, 658, 695
–DeleteExistingFiles cmdlet parameter, 524
DeleteNonCalendarItems property, 258
DeleteSubject property, 257

Deletions folders, 746
delivery reports

about, 320–322
administrator searches for, 322–327
EMS searches for, 327–329
troubleshooting, 323

designing
DAGs, 552–562
retention policies, 663–665

detail templates, 382–386
Details Templates Editor, 382–386
detecting corrupt items . See corrupt items
–DetectOnly cmdlet parameter, 446
development priorities, 2–5
DHCP (Dynamic Host Configuration Protocol), 490
diagnostics for Exchange Server, 330–332
Direction property, 598
dirty pages, 425
Disable-Mailbox cmdlet, 92, 219, 656
Disable-MailPublicFolder cmdlet, 786
disabling

administrative auditing, 748
archive mailboxes, 656–657
mailboxes, 218–220, 223
retention tags, 687

disaster recovery mechanisms, 529
DisconnectDate property, 220
discovery actions, 642–643, 646
discovery mailboxes, 76, 182, 188, 224–226, 721
Discovery Management role group

about, 74
controlling access to discovery mailboxes, 722
default discovery mailboxes and, 234
linking to tasks, 135
performing searches, 225
RBAC support, 174
role assignment and, 152

discovery metadata mailboxes, 224
discovery search mailboxes, 224
DiscoveryHolds folder, 726–727, 746
DiscoveryMaxConcurrency property, 725
DiscoveryMaxKeywords property, 725
DiscoveryMaxKeywordsPerPage property, 725
DiscoveryMaxMailboxes property, 725
DiscoveryMaxMailboxResultsOnly property, 725
DiscoveryPreviewSearchResultsPageSize property, 725
DiscoverySearchMailbox account, 76
DiskFreeSpace property, 522
DiskFreeSpacePercent property, 522
DiskTotalSpace property, 522
Dismount-Database cmdlet, 415, 512, 545
dismounting databases, 422, 447, 469, 545
display templates, 382–386
–DisplayName cmdlet parameter, 192, 307, 348
DisplayName property, 185, 222

 DisplayName property 813

DistinguishedName property, 185
distribution groups

about, 267–269
address book policies and, 350
completing mailboxes, 193
creating, 270–275
defining default location, 288–289
dynamic, 179, 246, 300–313
group expansion, 277–278
group naming policy, 287, 289–295
group owners, 271, 275–277, 350
managing, 269–270, 286–297
metrics for, 275
moderated, 244–246, 270, 283
protected, 278–281
security groups, 252, 284–285
tracking usage, 285–286
viewing group members, 268–269, 281–283

Distribution Groups role, 147
DistributionGroupNamingPolicy property, 292
DLL (dynamic link library), 344–345
DLP (data loss prevention), 18, 642, 646
DNS (Domain Name System), 327, 462, 508
document library, 796
domain controllers, 495
Domain Name System (DNS), 327, 462, 508
–DomainController cmdlet parameter, 91
domains

accepted, 340
Active Directory information, 35
preparing, 48

–DoNotIncludeArchive cmdlet parameter, 731
DPT (default policy tags), 658–659, 666
drizzle synchronization, 578
.dsc file extension, 376
DSN error code 5 .7 .1, 280
dynamic buffer allocation, 402
dynamic distribution groups

about, 270, 300
Active Directory and, 176
creating, 302–305
creating with EMS, 306–308
custom filters, 308–313
OPATH queries, 300–302
validating query results, 305–306

Dynamic Host Configuration Protocol (DHCP), 490
dynamic link library (DLL), 344–345
dynamic quorums, 494
dynamic throttling, 580

E
E2EComplete migration product, 575
EAC (Exchange Administration Center)

about, 24
accessing data, 176–177

accessing mailbox audit data, 759
address book policies, 352–353
applying retention policy to mailboxes, 677
archive mailboxes, 650–652
bulk mailbox creation, 195
certificate management, 313–317
changing columns, 177–178
Compliance Management section, 171, 668, 673, 759
creating DAGs, 490–491
delivery reports, 320–329
development priorities, 4
distribution groups, 267–313
exporting information to CSV files, 181–182
filtering capabilities, 177, 342
Groups section, 302, 331
Hybrid section, 172
importing and exporting mailbox data with, 629–632
in-place holds, 705–706
language support, 196–200
mail flow and rules, 318–320
Mail Flow section, 172, 325, 333, 335
Mailbox Delegation section, 229–230, 232–233
mailbox import and export, 629–632
management interfaces, 21–22, 170–173
managing migration batches, 581–592
managing recipients, 180–183
migration batches with, 574, 581–592
Mobile section, 172–173
moving databases and, 544
mysterious mailboxes, 182–183
naming conventions, 178–180
Offline Address Book and, 362
Organization section, 171, 313, 346, 352
permissions, 143–144, 233–234
Permissions section, 133–134, 143–144, 171, 295
Protection section, 171
public folders and, 766
Public Folders section, 172, 188, 767
RBAC support, 132
Recipients section, 146, 171, 177, 182, 241, 250, 273–274,

581
refresh option, 176
replication queue lengths, 481
reporting licenses, 70–71
running without mailboxes, 329–330
Servers section, 172, 315, 409–410, 494, 537
setting diagnostics for Exchange Server, 330–332
setting up mailboxes, 191–193
sharing policies, 313
starting, 173–175
Unified Messaging section, 172
viewing correct, 174
viewing migration batch properties, 595–596
Windows PowerShell and, 84

ECP (Exchange Control Panel), 21–22, 170, 269, 707

814 DistinguishedName property

ecTooManyMountedDatabases error, 544
EDB (Exchange database), 388
edge servers, 48
eDiscovery searches, 224–225, 233, 702, 726
Edit control type, 385
editions, Exchange Server, 22–23, 32–33
ELC (Email Lifecycle Assistant), 726–727
email address policies

about, 333–334
creating, 337–340
email policy priority, 334–336, 340
filters and, 341–345
mask variables, 339

Email Lifecycle Assistant (ELC), 726–727
email notification, 595–596
email service . See addressing messages; mailbox

management
–EmailAddress cmdlet parameter, 612
EMC (Exchange Management Console), 21–22, 650
EMS (Exchange Management Shell)

about, 24, 31, 83, 92–120
accessing mailbox audit data, 759
Active Directory for PowerShell, 120–123
adding database copies, 525
address book policies, 352–353
creating dynamic distribution groups, 306–308
delegated setup and, 63
email address policies, 343–345
enabling archives, 648
executing searches, 731–732
handling information returns, 98
mailbox import and export, 632–637
MailTips management, 377–378
management interfaces, 21–22, 170
migration batches with, 574, 592–595
public folders and, 766
room lists, 270, 298
searches for delivery reports, 327–329
useful examples, 123–128
Windows PowerShell, 83–92, 129

Enable-CmdletExtensionAgent cmdlet, 206
Enable-Mailbox cmdlet, 193–194, 206, 649, 651
Enable-QuarantineMailbox cmdlet, 440
end-user roles, 164–165
endpoints, migration, 611–612
Enterprise Administrators group, 48
Enterprise edition, 33, 462
EOP (Exchange Online Protection), 16
–eq comparison operator, 110
–Equipment cmdlet parameter, 195
equipment mailboxes

about, 188, 254–255, 265
creating, 195
defining custom properties, 255–256
naming conventions, 178–179

ESE (Extensible Storage Engine)
about, 388–389
DAG and, 466
handling storage failures, 549
memory allocation and, 402–403
timestamps, 425
transaction logs, 419–425, 479
view tables, 400

ESEUTIL utility
about, 57, 445, 450–451
/D parameter, 448
database compaction, 436
/K switch, 482
/MH parameter, 422
/MS parameter, 450
/p switch, 427
/R switch, 482
rebuilding databases, 451

–EstimateOnly cmdlet parameter, 731
event-based assistants, 454
Event Viewer, 471
EWS (Exchange Web Services)

about, 40–41
ESE versus, 389
message tracking, 326
synchronizing information, 792
testing considerations, 28, 30

EWSEditor (Exchange Web Services Editor), 40–41
examining search results, 720–724
$ExBin variable, 101
Exchange Administration Center (EAC)

about, 24
accessing data, 176–177
accessing mailbox audit data, 759
address book policies, 352–353
applying retention policy to mailboxes, 677
certificate management, 313–317
changing columns, 177–178
Compliance Management section, 171, 668, 673, 759
creating DAGs, 490–491
delivery reports, 320–329
development priorities, 4
distribution groups, 267–313
exporting information to CSV files, 181–182
filtering capabilities, 177, 342
Groups section, 302, 331
Hybrid section, 172
I/O performance improvements, 401
importing and exporting mailbox data with, 629–632
in-place holds, 705–706
language support, 196–200
mail flow and rules, 318–320
Mail Flow section, 171–172, 325, 333, 335
Mailbox Delegation section, 229–230, 232–233
mailbox import and export, 629–632

 Exchange Administration Center (EAC) 815

management interfaces, 21–22, 170–173
managing recipients, 180–183
migration batches with, 574, 581–592
Mobile section, 172–173
moving databases and, 544
mysterious mailboxes, 182–183
naming conventions, 178–180
Offline Address Book and, 362
Organization section, 171, 313, 346, 352
permissions, 143–144, 233–234
Permissions section, 133–134, 143–144, 171, 295
Protection section, 171
public folders and, 766
Public Folders section, 172, 188, 767
RBAC support, 132
Recipients section, 146, 171, 177, 182, 241, 250, 273–274,

581
refresh option, 176
replication queue lengths, 481
reporting licenses, 70–71
running without mailboxes, 329–330
Servers section, 172, 315, 409–410, 494, 537
setting diagnostics for Exchange Server, 330–332
setting up mailboxes, 191–193
sharing policies, 313
starting, 173–175
Unified Messaging section, 172
viewing correct, 174
viewing migration batch properties, 595–596
Windows PowerShell and, 84

Exchange Authorization Library (ADDriver), 90–91
Exchange Control Panel (ECP), 21–22, 170, 269, 707
Exchange database (EDB), 388
Exchange Install Domain Servers group, 75
Exchange LegacyInterOP role group, 74
Exchange Management Console (EMC), 21–22, 650
Exchange Management Shell (EMS)

about, 24, 31, 83, 92–120
accessing mailbox audit data, 759
Active Directory for PowerShell, 120–123
adding database copies, 525
address book policies, 352–353
creating dynamic distribution groups, 306–308
delegated setup and, 63
email address policies, 343–345
enabling archives, 648
executing searches, 731–732
mailbox import and export, 632–637
MailTips management, 377–378
management interfaces, 21–22, 170
migration batches with, 574, 592–595
public folders and, 766
room lists, 270, 298
searches for delivery reports, 327–329

useful examples, 123–128
Windows PowerShell, 83–92, 129

Exchange-MBX.xml file, 52
Exchange Online-ApplicationAccount, 76
Exchange Online Protection (EOP), 16
Exchange Online (Service), 5–9
Exchange Organization Administrators security group, 48
Exchange Personal Information property set, 35
Exchange Server

about, 1–2
Active Directory support, 34–37, 45–48
addressing, 333–386
architectural overview, 10–11
creating organization, 49–50
Database Availability Group, 457–566
deploying, 50–63
development priorities, 2–5
editions supported, 22–23, 32–33
Exchange Administration Center, 267–332
Exchange Store, 387–456
influence of cloud service, 5–9
installing, 43–81
mailbox management, 169–266
moving mailboxes, 567–640
preparing for, 26–32, 47–48, 63–73, 77–81
public folders, 765–790
role-based access control, 131–168
setting diagnostics, 330–332
site mailboxes, 791–805
synchronization with SharePoint and, 795–799
upgrading, 11–22, 63–73
utilities supported, 37–41
virtualization, 24–25
Windows PowerShell, 83–130

Exchange Servers role group, 74–75
Exchange Store . See also Information Store

about, 19–20
background maintenance, 432–437
corrupt item detection and isolation, 437–448
database management, 407–418
database usage statistics, 451–453
I/O operation, 392–402
mailbox assistants, 454–455
managed availability, 226–227, 407
maximum database size, 389–392
rebuilding databases, 448–451
transaction logs, 419–432
workers, controller, and memory, 402–407

Exchange Trace Analyzer (ExTRA) utility, 57
Exchange Trusted Subsystem role group

about, 74, 77
FSW and, 500
remote PowerShell and, 89
split permissions model, 166–167

Exchange Web Services Editor (EWSEditor), 40–41

816 Exchange Authorization Library (ADDriver)

Exchange Web Services (EWS)
about, 40–41
ESE versus, 389
message tracking, 326
synchronizing information, 792
testing considerations, 28, 30

Exchange Windows Permissions role group, 74, 166–167
ExchangeGuid property, 107
–ExchangeRemoteMove cmdlet parameter, 612
ExchangeSetup.log file, 56–57
–ExcludeDuplicateMessages cmdlet parameter, 713, 731
–ExcludeFolders cmdlet parameter, 633, 636
executing searches, 731–732
execution policies, PowerShell, 118–119
$ExInstall variable, 101
–ExpansionServer cmdlet parameter, 277
Expert diagnostic level, 331
expiry dates, 437, 684
export . See import and export (mailbox)
Export-CSV cmdlet, 125–127, 281–282
Export-PublicFolderStatistics .ps1 script, 789
Export-RetentionTags .ps1 script, 681
$ExScripts variable, 101
Extensible Storage Engine (ESE)

about, 388–389
DAG and, 466
handling storage failures, 549
memory allocation and, 402–403
timestamps, 425
transaction logs, 419–425, 479
view tables, 400

ExternalURL property, 366
ExTRA (Exchange Trace Analyzer) utility, 57

F
F2 key, 95
F4 key, 95
F7 key, 95–96
F8 key, 95
facilities provisioning, 191
FAI (folder-associated item), 207
failover, database copies, 466
Failover Cluster Manager, 463–464, 498
$False variable, 101
Federated Services role, 313
FederatedEmail account, 76, 638
file share witness (FSW), 491, 499–501
–Filter cmdlet parameter, 109–110
filters

address mailboxes in databases, 310–313
client-side, 110–113
custom, 308–313
database, 158–159
dynamic distribution groups, 308–313
EAC, 177

email address policies, 341–345
OPATH, 110, 346
recipient, 180–181, 306, 334, 337, 341–342
server-side, 110–113

firewall rules, 492
–FirstName cmdlet parameter, 192
FirstName property, 185
folder-associated item (FAI), 207
FolderBind action, 756
folders . See also public folders

default, 200–201, 393
larger, 124–125
managed, 688–689
naming conventions, 179
retention policy tags, 661
setting retention policy on, 685–687

–FolderScope cmdlet parameter, 746
–ForceGroupMetricsGeneration cmdlet parameter, 376
Forefront Protection for Exchange (FPE), 16
forest functional mode, 26
Format-List cmdlet, 98
Format-Table cmdlet, 98
$FormatEnumerationLimit variable, 100
Fortune magazine, 643
FPE (Forefront Protection for Exchange), 16
FQDN (fully qualified domain name), 90, 314
free disk space, 432, 522
front-end . See CAS (Client Access Server)
FSW (file share witness), 491, 499–501
Full Access permission, 226, 230, 232–235
FullScanMoveJobsPollingInterval property, 622
fully qualified domain name (FQDN), 90, 314

G
%g variable, 339
GAL (Global Address List)

about, 35
address book policies and, 348–349, 351–357
address lists and, 346
group naming policy and, 287, 292
mail-enabled contacts, 250–251
mail users, 252
naming mailboxes, 178, 185–187
Offline Address Book and, 360, 367–371
public folders, 775
resource mailboxes, 254–255
tracking group usage, 286

gap coalescing technique, 394–395
Get-ActiveSyncDevice cmdlet, 125–126
Get-ADDomainController cmdlet, 121
Get-AddressList cmdlet, 347
Get-AdminAuditLogConfig cmdlet, 749
Get-ADUser cmdlet, 122
Get-CalendarProcessing cmdlet, 202, 258–259, 261
Get-CASMailbox cmdlet, 112

 Get-CASMailbox cmdlet 817

Get-ClusterNode cmdlet, 564
Get-Command cmdlet, 85, 93–94
Get-Contact cmdlet, 98
Get-Credential cmdlet, 90, 612
Get-DatabaseAvailabilityGroup cmdlet, 467, 493
Get-DatabaseAvailabilityGroupNetwork cmdlet, 507, 509
Get-DistributionGroup cmdlet, 112
Get-DistributionGroupMember cmdlet, 217, 305
Get-DynamicDistributionGroup cmdlet, 112–113, 278, 304,

307–308
Get-EmailAddressPolicy cmdlet, 334, 341–342
Get-EventLog cmdlet, 98
Get-EventLogLevel cmdlet, 331–332
Get-ExchangeDiagnosticInfo cmdlet, 576
Get-ExchangeServer cmdlet

about, 92
finding property values, 410
identities, 105–106
reporting issues, 71–72
selective output, 99
version numbers, 67–68

Get-ExCommand cmdlet, 86
Get-ExecutionPolicy cmdlet, 118
Get-FailedContentIndexDocuments cmdlet, 734
Get-Group cmdlet, 98, 107, 350
Get-HealthReport cmdlet, 471
Get-InboxRule cmdlet, 320
Get-Mailbox cmdlet

about, 83
address book policies, 354–356
applying retention policies, 678
arbitration mailboxes, 59, 547
archive mailboxes, 650
checking language, 196
checking mailboxes, 312, 362–363
checking quotas, 217
EAC support, 174, 182–183
equipment mailboxes, 195, 265
filter examples, 110, 112–113
health mailboxes, 228, 547
larger folders and, 125
limiting number of objects returned, 109–111
multi-domain forests, 123
OAB generation mailboxes, 367
object versions, 69
removing databases, 417–418
returning properties, 98, 108
room mailboxes, 195, 262
selective output, 99–100
server names and, 44
shared mailboxes, 241

Get-MailboxAutoReplyConfiguration cmdlet, 202–203
Get-MailboxCalendarConfiguration cmdlet, 202–204, 261
Get-MailboxCalendarSettings cmdlet, 261

Get-MailboxDatabase cmdlet
about, 92
checking mounted databases, 517
checking OABs, 413
debugging swelling databases, 444
moving database locations, 544
reconnecting mailboxes, 220
removing database copies, 547
removing mailboxes, 510
removing servers, 548
retrieving maintenance schedule, 434
updated status information, 481
viewing activation preferences, 535
white space, 449–450
worker processes, 402

Get-MailboxDatabaseCopyStatus cmdlet
content index, 482
database copy information, 520–522, 536, 542
moving database locations, 545–546
replay queue length, 529
replication status, 516, 518–519
server location, 362
wildcard characters, 481

Get-MailboxExportRequest cmdlet, 626, 637
Get-MailboxExportRequestStatistics cmdlet, 626, 637
Get-MailboxFolder cmdlet, 202, 204, 320
Get-MailboxFolderPermission cmdlet, 240
Get-MailboxFolderStatistics cmdlet, 92, 125, 746, 798
Get-MailboxImportRequest cmdlet, 625, 633–634
Get-MailboxImportRequestStatistics cmdlet, 625, 631,

634–635
Get-MailboxJunkEMailConfiguration cmdlet, 202, 204–205
Get-MailboxMessageConfiguration cmdlet, 202, 204
Get-MailboxRegionalConfiguration cmdlet, 199, 202
Get-MailboxSearch cmdlet, 702, 707, 731
Get-MailboxServer cmdlet, 375, 455, 519
Get-MailboxSpellingConfiguration cmdlet, 202
Get-MailboxStatistics cmdlet

about, 92, 108, 207
accessing move report histories, 600
auditing mailboxes, 184
checking space usage, 652
getting more information about a move, 597
health mailboxes, 228
quarantined mailboxes, 439
reconnecting mailboxes, 222
remote procedure calls and, 128
removing database copies, 547
source of mailbox move information, 599

Get-ManagementRole cmdlet, 136, 138, 142
Get-ManagementRoleAssignment cmdlet, 152–155, 162–

164, 296
Get-ManagementRoleEntry cmdlet, 136, 138, 146, 156
Get-Member cmdlet, 112
Get-MessageTrackingLog cmdlet, 286

818 Get-ClusterNode cmdlet

Get-MigrationUser cmdlet, 594–595
Get-MigrationUserStatistics cmdlet, 585, 595, 599
Get-MonitoringItemIdentity cmdlet, 471
Get-MoveRequest cmdlet

about, 605
checking status of move request, 609
clearing move requests, 610
removing databases, 417–418
suspending mailbox moves, 617
viewing move request properties, 598

Get-MoveRequestStatistics cmdlet
about, 576, 605
percentage of move completed, 176, 598
retrieving updated information, 481
source of mailbox move information, 599
status detail, 579
suspending mailbox moves, 616–618
total mailbox size, 597
troubleshooting with, 599

Get-Notification cmdlet, 638
Get-OfflineAddressBook cmdlet, 362, 364–366
Get-OrganizationConfig cmdlet, 292, 770
Get-PublicFolder cmdlet, 769, 780, 786
Get-PublicFolderMailboxDiagnostics cmdlet, 772
Get-PublicFolderMoveRequest cmdlet, 784
Get-PublicFolderStatistics cmdlet, 773
Get-Queue cmdlet, 564
Get-Recipient cmdlet

archive mailboxes, 650
checking mailboxes, 312
discovering hidden recipients, 357
filters and, 112, 343
validating query results, 305–306

Get-RetentionPolicy cmdlet, 662, 674–675
Get-RetentionPolicyTag cmdlet, 662, 666, 670, 672
Get-RoleGroup cmdlet, 139, 144, 151, 162
Get-RoleGroupMember cmdlet, 144
Get-SearchDocumentFormat cmdlet, 730
Get-SendConnector cmdlet, 70
Get-SiteMailboxDiagnostics cmdlet, 148
Get-StoreUsageStatistics cmdlet, 442, 451–453
Get-ThrottlingPolicy cmdlet, 724
Get-TransportService cmdlet, 324
Get-User cmdlet

bulk updates and, 115–116
filters and, 112–113
handling information returns, 98
variables and, 102, 107

Get-WebServicesVirtualDirectory cmdlet, 613
–GetEffectiveUsers cmdlet parameter, 163
GivenName property, 385
Global Address List (GAL)

about, 35
address book policies and, 348–349, 351–357
address lists and, 346
group naming policy and, 287, 292

mail-enabled contacts, 250–251
mail users, 252
naming mailboxes, 178, 185–187
Offline Address Book and, 360, 367–371
public folders, 775
resource mailboxes, 254–255
tracking group usage, 286

global tables, 400
globally unique identifier (GUID)

active copy of user's mailbox, 44
archive mailboxes, 651
database portability and, 459
default OAB operation, 363
as mailbox identifiers, 107–109
system registry and, 438
target mailboxes, 601

GlobalWebDistributionEnabled property, 366
GoDaddy certificate vendor, 314
Goodman, Steve, 124
Grant Full Access permission, 230
Grant Send As permission, 229
Grant Send On Behalf Of permission, 229
–GrantSendOnBehalfTo cmdlet parameter, 232
Grogan, Andy, 124
group metrics, 373–382
Group Metrics mailbox assistant, 375–376
Group-Object cmdlet, 92–93, 286
Groupbox control type, 385
groups . See also distribution groups; role groups

ABPs and, 350
authentication and, 280–281
closed, 270
delegating, 275
group metrics, 373–382
moderated, 244–246, 270, 283
public, 270
with searches, 728–730
searches and, 728–730
security, 252, 284–285
tracking usage, 285–286
user-maintained, 286–299
USGs, 73–77, 139–141, 267
version numbers, 268
viewing members, 268–269, 281–283

GroupType property, 284
–gt operator, 110
GUID (globally unique identifier)

active copy of user's mailbox, 44
archive mailboxes, 651
database portability and, 459
default OAB operation, 363
as mailbox identifiers, 107–109
system registry and, 438
target mailboxes, 601

Guid property, 108

 Guid property 819

H
HABs (hierarchical address books), 349, 371–373
HardDelete action, 756
hardware

development influenced by, 5
freeing disk space, 432, 522
protection against high latency, 442
recycling, 23
transaction log I/O, 428

health mailboxes, 182–183, 226–229, 547
Health Manager Service process (MSExchangeHMHost .exe),

226
Health Manager Worker process (MSExchangeHMWorker

 .exe), 226
health sets, 471
Help Desk role group, 74, 135, 141, 145–146
Hidden From Address Lists property, 357
hidden recipients, 357–358
hidden system folder, 786
hierarchical address books (HABs), 349, 371–373
hierarchy, public folders, 766–767
high availability . See also DAG (Database Availability Group)

about, 457–459
Active Manager and, 469–472
handling move request errors, 609
lagged copies and, 527
mailbox moves and, 619–621

High diagnostic level, 331
high latency, 442, 508, 550, 553
HighAvailability channel, 503
HoldForMigration parameter, 789
$home variable, 101
HomeMDBBL property, 59
HomeMTA property, 44
Hotmail, 6
HR provisioning, 190
HTML-format messages, 397–398
HTML reports, 127–128
HTTP proxy logs, 367
HTTPS protocol, 8
Hygiene Management role group, 74, 152
Hyper-V, 24–25
hypervisors, 24–25
hyphen (-), 103, 110

I
I/O operations

about, 392–397
database schema, 398–400
high availability and, 457–458
import of PST data, 626
improvements to, 400–402
maintaining contiguity, 392, 394–395, 397–398
memory and, 463

sizing mailboxes, 394
transaction logs, 427–429

%i variable, 339
ICS (Incremental Change Synchronization), 578, 772
identities (cmdlets), 105–109
–Identity cmdlet parameter, 105–109, 116, 690
–IgnoreDefaultScope cmdlet parameter, 123
–IgnoreNamingPolicy cmdlet parameter, 290
–IgnoreNetworkParameter cmdlet parameter, 509
IIS (Internet Information Services), 53, 85, 88–90
–ilike operator, 110
import and export (mailbox)

about, 623–624
with EAC, 629–632
with EMS, 632–637
exporting mailbox data, 635–637
gaining permission to execute, 624–626
planning import of PST data, 626–629
running multiple concurrent, 633

Import-Module cmdlet, 52, 121
Import-PSSession cmdlet, 90
Import-RetentionTags .ps1 script, 681
in-place holds, 703–708, 726–728, 736
Inbox folder, 393, 658
–IncludedRecipients cmdlet parameter, 307, 347
–IncludeFolders cmdlet parameter, 633, 636
IncludeKeywordStatistics property, 713
–IncludeMoveHistory cmdlet parameter, 600
–IncludeMoveReport cmdlet parameter, 601
–IncludeReport cmdlet parameter, 599
–IncludeSystemTags cmdlet parameter, 662
IncludeUnsearchableItems property, 713
IncomingLogCopyingNetwork property, 522
Incremental Change Synchronization (ICS), 578, 772
incremental resynchronization, 487–488
incremental synchronization, 575, 615
incremental updates, 578
indexes

content, 776
secondary, 393, 395, 437, 578

Information Assistant process, 248
Information Store

about, 388
DAG and, 466
improvements in, 19–20
MailTips and, 374
MRS and, 568
processing overview, 402–407
remote procedure calls to, 128
startup process, 421

Information Store Integrity maintenance utility (ISINTEG),
445

initialization scripts, 90, 100
–Initials cmdlet parameter, 192
InPlaceHoldEnabled property, 707, 714

820 HABs (hierarchical address books)

InPlaceHoldPeriod property, 707
Insert key, 95
Insert log record type, 425
Install-WindowsFeature cmdlet, 47, 51, 53
installing Exchange Server

about, 43–44
Active Directory support, 45–48
creating Exchange organization, 49–50
deployment overview, 50–63
domain controllers and, 495
namespace planning, 77–81
security groups and accounts, 73–77
updates and, 63–73
updating mailbox databases, 414–416

InstallWindowsComponent .ps1 script, 52
Integrated Scripting Environment (ISE), 103–105
Integrated Windows Authentication (IWA), 79–80
interfaces, management, 21–22
Internet Information Services (IIS), 53, 85, 88–90
IP addresses, 492–493, 508
IPM_SUBTREE, 775
ISA Server, 6
–IsArchive cmdlet parameter, 637
iSCSI networks, 509
ISE (Integrated Scripting Environment), 103–105
IsExcludedFromInitialProvisioning property, 210
IsExcludedFromProvisioning property, 210
IsExcludedFromProvisioningBySpaceMonitoring property,

210
IsExcludedFromServingHierarchy flag, 771
IsHierarchicalGroup property, 372
ISINTEG (Information Store Integrity maintenance utility),

445
IsMemberOfDL property, 385
isolating corrupt items . See corrupt items
IssueWarningQuota property, 214, 803
IsSuspendedFromProvisioning property, 210
IT provisioning, 190–191
IWA (Integrated Windows Authentication), 79–80

J
JET database engine, 511
journaling messages, 249
Junk Email Options Assistant, 454

K
Kerberos authentication, 79
keyboard commands, 95–97
keyword query language (KQL), 710–711, 736
KQL (keyword query language), 710–711, 736

L
Label control type, 385
lagged database copies

about, 525–530

Safety Net and, 531–532
self-maintained, 530–532

large-item limit, 584–585, 590
LastAvailableLogTime property, 521
LastCrashTime system registry setting, 438
LastLogGenerated property, 521
LastLogInfoIsStale property, 521–522
–LastName cmdlet parameter, 192
LastName property, 185
LastNumberOfRecords property, 365
LastStatusTransitionTime property, 521
LastTouched property, 364–365
latency, 442, 508, 550, 553
LCR (local continuous replication), 29
LDAP (Lightweight Directory Access Protocol), 110, 270,

301, 349
LDAPReads metric, 453
LDAPSearches metric, 453
LDIFDE utility, 114, 386
LegacyExchangeDN property, 34, 222
legal compliance . See compliance management
licenses, reporting, 70–73
life cycle of site mailboxes, 800–803
Lightweight Directory Access Protocol (LDAP), 110, 270,

301, 349
–like operator, 110
linked mailboxes, 188
linked value replication (LVR), 268–269
Listbox control type, 385
litigation hold (mailboxes), 19, 697, 699–701
Litigation Hold role, 704
–LitigationHoldDate cmdlet parameter, 700
–LitigationHoldOwner cmdlet parameter, 700
Live@EDU service, 6
load balancing

moving mailboxes, 568–569
upgrade considerations, 16

local continuous replication (LCR), 29
Log Record Checksum (LRCK) algorithm, 427
log sets (log streams), 419–427
logical corruption, 526
logical unit number (LUN), 395, 428
–LogLevel cmdlet parameter, 731
–LogonType cmdlet parameter, 760
LogRecordBytes metric, 453
LogRecordCount metric, 453
logs and logging . See also transaction logs

Application and Service Logs, 502
Application Event Log, 332, 364, 433, 443, 544
circular, 414, 429–431, 486, 510–514, 554
diagnostic levels, 330–332, 608
fluctuations in number of, 480
HTTP proxy, 367
message-subject, 324
migration batches, 592

 logs and logging 821

placement considerations, 428–429
protection against excessive log growth, 443–444
rebuilding databases, 448–449
reserved, 408, 431–432
setup, 56–57
task, 502
temporary log files, 430–431

lossy failure, 580–581
Lotus Notes, 337, 344
Low diagnostic level, 331
Lowest diagnostic level, 331
LRCK (Log Record Checksum) algorithm, 427
–lt operator, 110
LUN (logical unit number), 395, 428
LVR (linked value replication), 268–269
Lync, integration with, 3, 18
LZ77 compression, 506
LZX compression, 361

M
%m variable, 339
mail-enabled contacts, 179, 250–251
mail-enabled security groups, 284–285
mail-enabling public folders, 779–783
Mail Recipient Creation role, 146–147
Mail Recipients role, 146–147, 156
mail users, 252–253
mailbox assistants, 375–376, 454–455
–Mailbox cmdlet parameter, 783
Mailbox Import Export role, 133, 140, 159, 174, 624
mailbox management . See also specific mailboxes

about, 169–170
activating database copies, 533–534
applying retention policy to, 677–681
attributes and names, 185
auditing mailbox access, 239, 754–762
AutoDatabaseMountDial setting, 539–542
automating settings, 205–206
bulk mailbox creation, 195
common problems, 191
completing mailboxes, 193–194
creating mailboxes, 187–209
custom attributes, 207–209
custom filter to address mailboxes in databases, 310–313
data retention states, 745
default folders, 200–201
disabling mailboxes, 218–220, 223
enabling mailboxes for auditing, 757–758
language support, 196–200
mail-enabled contacts, 250–251
mail users, 252–253
mailbox assistants, 375–376, 454–455
mailbox databases, 410–416
mailbox quotas, 213–218, 391–392, 396, 606
mailbox repair cmdlets, 445–448

managing recipients, 180–183
manipulating settings, 202–206
message quotas, 128
MFCMAPI utility and, 38–40
migrating DAGs, 464–465
moderated recipients, 243–250
moving mailboxes, 59–60, 567–640
naming mailboxes, 185–187
need for mailboxes, 183–184
OAB generation mailboxes, 366–367
operational flexibility and, 4
perfection and progress, 170–180
placing mailboxes on hold, 19
provisioning mailboxes, 607
quarantined mailboxes, 439–441
recalling messages, 241–243
reconnecting mailboxes, 220–223
removing mailboxes, 218–220, 223
resources provisioning management agent, 209–213
role assignment policies and, 164–166
setting mailbox permissions, 229–240
setting mailbox quotas, 213–218
sizing mailboxes, 391–394
transport service, 27–28
viewing properties, 176

Mailbox Replication Proxy service (MRSProxy), 612–614
Mailbox Replication Service (MRS)

about, 567–568
archive mailboxes and, 211
autosuspended state for moves, 587
configuration file, 621–623
corrupt item detection and isolation, 440–441
creating mailbox databases, 413–414
ensuring high availability, 620–621
improvements in, 8
mailbox import and export, 623
managing individual mailbox moves, 605–611
migration batches, 584–590, 593
Migration service and, 574
MSExchangeRepl versus, 465, 567
planning import of PST data, 627
planning mailbox moves, 615
preventing loss of data, 580–581
processing overview, 575–578
removing databases, 418
reporting mailbox moves, 599–604
suspending mailbox moves, 616–618
system resources and, 579–580
transaction log replay, 480

Mailbox Search role, 159, 704
Mailbox server role (backend), 1, 314
mailbox tables, 400
Mailbox Transport Submission service, 243
MailboxDatabaseFailureItems channel, 503
MailboxGuid property, 108

822 %m variable

MailboxReplicationService policy, 579, 607
MailboxReplicationServiceHighPriority policy, 579, 607
MailboxType property, 593
MailTips

about, 373–376
auto-reply message, 203
client interaction, 376–377
configuring, 377–378
customizing, 380–381
distribution groups, 187
DLP and, 18
mail delivery indication, 251
moderated groups, 245–246
moderated mailboxes, 250
multilingual, 381
OAB support, 371, 381–382
setting up, 253, 275
user experience, 378–379

–MailTipsAllTipsEnabled cmdlet parameter, 377
–MailTipsExternalRecipientTipsEnabled cmdlet parameter,

378
–MailTipsGroupMetricsEnabled cmdlet parameter, 378
–MailTipsLargeAudienceThreshold cmdlet parameter, 378
–MailTipsMailboxSourcedTipsEnabled cmdlet parameter,

378
–MailTipTranslations cmdlet parameter, 381
MailUniversalDistributionGroup, 267
MailUniversalSecurityGroup, 267
maintenance, background . See background maintenance
Majority Node Set clusters, 493
Managed Availability (MSExchangeHWWorker)

Active Manager and, 469–472, 536
database redundancy, 522
health mailboxes and, 226–227
Managed Store and, 407
tracking actions, 472

Managed Folder Assistant (MFA)
about, 454
background maintenance, 390
cumulative updates, 65
Email Lifecycle Assistant, 726–727
expired items, 673
PST data and, 629
public folder mailboxes, 773
retention policies and, 653, 655, 665–666, 684–685,

689–696
retention settings for mailboxes, 513
writing policy information into mailbox, 678

managed folders, 688–689
Managed Store . See Exchange Store
–ManagedBy cmdlet parameter, 149, 151, 276
ManagedBy property, 113
–ManagedFolderMailboxPolicy cmdlet parameter, 193
ManageGroupManagementRole .ps1 script, 297
Management Committee group, 245

management interfaces, 21–22, 170
management roles . See roles
managing databases . See database management
–ManualDAGNetworkConfiguration cmdlet parameter, 509
MAPI (Messaging Application Programming Interface)

about, 8
applying retention policies, 689
DAG networks and, 507
LZ77 algorithm and, 506
MFCMAPI utility, 38–40
OAB support, 366
properties supported, 692–693

MaxActiveMovesPerSourceMDB property, 622
MaxActiveMovesPerSourceServer property, 622
MaxActiveMovesPerTargetMDB property, 622
MaxActiveMovesPerTargetServer property, 622
MaxConcurrentMigrations property, 614
maximum database size, 389–392, 614
maximum number of active databases, 402–403
maximum number of open site mailboxes, 800
MaximumActiveDatabases property, 402–404
MaxMoveHistoryLength property, 623
MaxReceiveSize property, 803
MaxRetries property, 623
–MaxSendSize cmdlet parameter, 584–585, 605, 627
MaxTotalMovesPerMRS property, 622
Medium diagnostic level, 331
meeting requests

meeting room conflicts, 260
processing, 261–265
room lists, 270, 298–299

MemberDepartRestriction property, 272, 284
MemberJoinRestriction property, 272, 284, 294
memory management

Exchange Store, 402–407
I/O operations and, 463
mailbox searches and, 726
PowerShell memory limits, 111

Message Tracking role, 137–138, 141, 147, 323
MessageBind action, 756–757
messages . See also addressing messages

approving, 274
auto-reply, 187
changes in submission, 489
compressing, 398
FAI, 207
health mailboxes, 227, 229
journaling, 249
message-subject logging, 324
moderated groups and, 245
processing moderation requests, 247–249
recalling, 241–243
recovering, 643
sending on behalf of other users, 237–239
troubleshooting, 443

 messages 823

MessageTrackingReportId property, 328
MessageTypes property, 713
Messaging Application Programming Interface (MAPI)

about, 8
applying retention policies, 689
DAG networks and, 507
LZ77 algorithm and, 506
MFCMAPI utility, 38–40
OAB support, 366
properties supported, 692–693

messaging connectors, 179
messaging records management (MRM)

about, 18, 641, 657
archive mailboxes and, 650
creating retention policies, 673–677
creating retention tags, 668–673
designing retention policies, 663–665
Managed Folder Assistant, 665–666
naming retention tags, 666–668
system tags, 662–663
types of retention tags, 657–662

metadata, 578, 712
MFA (Managed Folder Assistant)

about, 454
background maintenance, 390
cumulative updates, 65
Email Lifecycle Assistant, 726–727
expired items, 673
PST data and, 629
public folder mailboxes, 773
retention policies and, 653, 655, 665–666, 684–685,

689–696
retention settings for mailboxes, 513
writing policy information into mailbox, 678

MFCMAPI utility
about, 38–40
accessing mailbox audit data, 759
deferred action messages, 319
quarantined mailboxes and, 439–440
validating dates, 696
viewing properties, 693, 796–797

Microsoft Business Productivity Online Service, 6
Microsoft Exchange Replication service

Active Manager and, 465–479
handling storage failures, 549–550
MRS versus, 465, 567
verifying transaction logs, 482

Microsoft Exchange Security Groups OU, 73, 75, 148
Microsoft Exchange Server 2013 . See Exchange Server
Microsoft Exchange Service Host process, 572–573
Microsoft Exchange System Objects OU, 781
Microsoft Exchange Transport Log Search service, 326
Microsoft Federation Gateway, 313
Microsoft Internet Information Services, 53, 85, 88–90
Microsoft Lync, integration with, 3, 18

Microsoft Management Console (MMC), 21, 36, 170, 382
Microsoft SharePoint, 3, 18, 389
Microsoft System Center Data Protection Manager, 527
Microsoft System Center Operations Manager, 442–443,

470, 520
Microsoft Technology Adoption Program, 14, 68
Microsoft Unified Communications Managed API, 53
migrating DAGs, 464–465
Migration account, 76
migration arbitration mailbox, 573
Migration Batch Wizard, 588
migration batches

clearing, 584
completing, 590
controlling processing, 615–616
with EAC, 574, 581–592
with EMS, 574, 592–595
logging, 592
removing, 584
removing move requests, 591, 610–611
viewing details, 589
viewing properties of, 595–596

migration endpoints, 611–612
Migration role, 148
Migration service

about, 570, 572–575
logging activity, 592
managing individual mailbox moves, 605–611
managing migration batches with EAC, 581–590
managing migration batches with EMS, 592–595
planning mailbox moves, 614–615

MMC (Microsoft Management Console), 21, 36, 170, 382
mobile access to public folder mailboxes, 786
mobile devices, 786
MobilePhone property, 154
moderated groups, 244–246, 270, 283
moderated mailboxes, 249–250
moderated recipients, 243–250
moderation requests, 247–249
modern public folders, 20–21, 420–421, 787–790
monitoring database copies, 517–522
Mount-Database cmdlet, 411–412, 512, 546
–MountDialOverride cmdlet parameter, 539
mounted databases, 407, 426–427, 462–463, 546
Move action, 756
Move-ActiveMailboxDatabase cmdlet, 538–541
Move-DatabasePath cmdlet, 415, 545–546
Move-Mailbox cmdlet, 606
Move Mailboxes role, 142, 148, 152
move reports

about, 597–598
accessing histories, 599–606
outputting to files, 600–601

move requests
checking and altering status, 609–611

824 MessageTrackingReportId property

clearing, 610–611
enforcing age limits for, 610–611
handling errors, 607–609
removing, 591, 610–611
viewing properties, 598

move tags, 672
MoveToArchive action, 672
MoveToDeletedItems action, 756
moving databases

moving locations within DAGs, 544–546
potential issues, 539–542
server health and, 536
transaction logs and, 480

moving mailboxes
about, 567–571
alerts and, 638–639
assigning priority, 607
asynchronous moving, 571–572
checking and altering move request status, 609–610
creating mailbox databases, 413–414
enabling MRSProxy, 612–614
ensuring high availability, 619–621
handling move request errors, 607–609
import and export processes, 623–637
managing individual moves, 605–611
migration batches with EAC, 581–592
migration batches with EMS, 592–595
migration endpoints, 611–612
Migration service, 572–575
MRS and, 567–568, 575–581, 621–623
planning, 614–619
removing databases, 418
reporting moves, 595–604
scheduling, 617
suspending, 615–619
transaction log replay, 480
transaction logs, 578
variations in speed, 619

moving public folders, 783–785
MRM (messaging records management)

about, 18, 641, 657
archive mailboxes and, 650
creating retention policies, 673–677
creating retention tags, 668–673
designing retention policies, 663–665
Managed Folder Assistant, 665–666
naming retention tags, 666–668
system tags, 662–663
types of retention tags, 657–662

MRS (Mailbox Replication Service)
about, 567–568
archive mailboxes and, 211
autosuspended state for moves, 587
configuration file, 621–623
corrupt item detection and isolation, 440–441

creating mailbox databases, 413–414
ensuring high availability, 620–621
improvements in, 8
mailbox import and export, 623
managing individual mailbox moves, 605–611
migration batches, 584–590, 593
Migration service and, 574
MSExchangeRepl versus, 465, 567
planning import of PST data, 627
planning mailbox moves, 615
preventing loss of data, 580–581
processing overview, 575–578
removing databases, 418
reporting mailbox moves, 599–604
suspending mailbox moves, 616–618
system resources and, 579–580
transaction log replay, 480

MRSProxy (Mailbox Replication Proxy service), 612–614
MsExchange Database counter, 435
MSExchange Database/Instances/DB Maintenance IO

Reads/sec counter, 449
MsExchangeDAGMgmt .exe (Database Availability Group

management service), 503
MSExchangeHMHost .exe (Health Manager Service process),

226
MSExchangeHMWorker .exe (Health Manager Worker

process), 226
msExchangeHomeServerName property, 44
MSExchangeHWWorker (Managed Availability)

Active Manager and, 469–472, 536
database redundancy, 522
health mailboxes and, 226–227
Managed Store and, 407
tracking actions, 472

MSExchangeRepl (Replication service)
Active Manager and, 465–479
handling storage failures, 549–550
MRS versus, 465, 567
verifying transaction logs, 482

MSExchangeServicesAppPool setting, 614
msExchDataPath property, 236
msExchDelegateLinkList property, 236–237
msExchESEParamCacheSizeMax property, 405
msExchESEparamCacheSizeMin property, 406
msExchExtensionAttribute property, 385
msExchGroupExternalMemberCount property, 374
msExchGroupMemberCount property, 374
msExchMailboxMoveBatchName property, 577
msExchMailboxMoveFlags property, 577
msExchMailboxMoveRemoteHostName property, 577
msExchMailboxMoveSourceMDBLink property, 577
msExchMailboxMoveStatus property, 577
msExchMailboxMoveTargetMDBLink property, 577
msExchMaxActiveMailboxDatabases property, 34
MSExchMDBAvailabilityGroupLink property, 496

 MSExchMDBAvailabilityGroupLink property 825

MSExchQueryFilter property, 301
multi-domain forest, 122–123
multi-forest design, 45–46, 172
Multivalued Listbox control type, 385
MyBaseOptions role, 164
MyContactInformation role, 164
MyDistributionGroupMembership role, 165, 350
MyDistributionGroups role, 165, 290, 295–296
MyMarketPlaceApps role, 165
MyProfileInformation role, 164
MyRetentionPolicies role, 165, 682
MyTeamMailboxes role, 165
MyTextMessaging role, 165
MyVoiceMail role, 164

N
–Name cmdlet parameter, 192, 251, 253, 307, 348, 731
Name property, 185
name resolution, 365–366
Name Service Provider interface (NSPI), 365
named parameters, 97
namespace planning

about, 77
handling connections with CAS, 79–80
protocol-specific, 80–81
self-signed certificates, 77–78

naming conventions
about, 43–44
applying different, 186
EAC, 178–180
mailboxes, 185–187
public folder mailboxes, 768
retention tags, 666–668
retroactive, 180
underscores, 26
user-maintained groups, 289–295

NDRs (nondelivery reports), 420
–ne comparison operator, 110
 .NET Framework, installing, 44
network interface cards (NICs), 458, 499, 506–508
NetworkCompression property, 505
NetworkEncryption property, 505
networks

APIPA addressing, 492
DAG, 506–509
iSCSI, 509
transient conditions, 483

New Address List screen, 347, 353
New-AddressBookPolicy cmdlet, 354
New-AdminAuditLogSearch cmdlet, 751
New-DatabaseAvailabilityGroup cmdlet, 490, 493, 498, 508
New-DistributionGroup cmdlet, 295–296, 298
New-DynamicDistributionGroup cmdlet, 306–308, 310–311
New Email Address Policy screen, 337–338, 342
New-EmailAddressPolicy cmdlet, 343

New-FederationTrust cmdlet, 313
New-GlobalAddressList cmdlet, 353
New-InboxRule cmdlet, 319–320
New-Item cmdlet, 120
New-Mailbox cmdlet

about, 206
archive mailboxes, 648
database scope, 159
discovery mailboxes, 225
equipment mailboxes, 195
OAB generation mailboxes, 367
properties supported, 192–193
remote PowerShell, 91
room mailboxes, 195

New-MailboxAuditLogSearch cmdlet, 755, 759–760
New-MailboxDatabase cmdlet, 129, 212, 412
New-MailboxExportRequest cmdlet, 160, 625, 636, 722
New-MailboxFolder cmdlet, 202, 204
New-MailboxImportRequest cmdlet

about, 625, 632
importing PST data, 635
role assignments and, 160
tickles, 576

New-MailboxRepairRequest cmdlet, 446–447
New-MailboxRestoreRequest cmdlet, 581, 785
New-MailboxSearch cmdlet, 702–703, 731–732
New-MailContact cmdlet, 251
New-MailUser cmdlet, 253
New-ManagementRole cmdlet, 156, 161
New-ManagementRoleAssignment cmdlet, 157, 160–162,

323, 625
New-ManagementScope cmdlet, 143, 158–159
New-MigrationBatch cmdlet, 592–594, 611, 639, 790
New-MigrationEndpoint cmdlet, 612, 614
New-MoveRequest cmdlet

about, 148, 605–606
database scope and, 159
discovery mailboxes, 226
enforcing age limits for move requests, 610–611
immediate processing, 440
mailbox provisioning and, 607
migration processing, 573, 575, 587
suspending mailbox moves, 616, 618

New-OfflineAddressBook cmdlet, 354
New-PSSession cmdlet, 89–90
New-PublicFolder cmdlet, 777, 783
New-PublicFolderMigrationRequest cmdlet, 789
New-PublicFolderMoveRequest cmdlet, 773, 784
New-RetentionPolicyTag cmdlet, 661, 671, 673–674, 689
New-RoleGroup cmdlet, 145, 148, 158
New-SiteMailbox cmdlet, 148, 801
New-TestCASConnectivityUser .ps1 script, 183
New-ThrottlingPolicy cmdlet, 725
NICs (network interface cards), 458, 499, 506–508
noderunner processes, 406

826 MSExchQueryFilter property

nondelivery reports (NDRs), 420
nonsystem tags, 662–663
notification, email, 595–596
–NotificationEmails cmdlet parameter, 594
–notlike operator, 110
NSPI (Name Service Provider interface), 365
NTFS file system, 389
$Null variable, 101, 680

O
OAB generation mailboxes, 366–367
OAB (Offline Address Book)

about, 357–358
address book policies, 349, 354–355
contents of, 365–366
creating customized, 367–371
creating mailboxes, 366–367
default operation, 363–365
email address policies, 340
generating, 362–367
group metrics, 375
mailbox databases and, 412–413
MailTips support, 378, 381–382
mixed environment, 360–361
Outlook and, 359–362
user-maintained groups, 288

OABGeneratorAssistant, 363–365
OABGeneratorWorkCycle property, 363
OABGeneratorWorkCycleCheckPoint property, 363
Oab.xml file, 361
object versions, 69–70
ObjectModified property, 752
OffCAT (Office Configuration Analyzer Tool), 37
Office 365

about, 349
archive and, 649
influence of cloud service, 9
Managed Availability, 469
motivation for upgrading, 12
public folder mailboxes, 773
site mailboxes and, 800

Office Configuration Analyzer Tool (OffCAT), 37
Office property, 351–352
Offline Address Book (OAB)

about, 357–358
address book policies, 349, 354–355
contents of, 365–366
creating customized, 367–371
creating mailboxes, 366–367
default operation, 363–365
email address policies, 340
generating, 362–367
group metrics, 375
mailbox databases and, 412–413
MailTips support, 378, 381–382

mixed environment, 360–361
Outlook and, 359–362
user-maintained groups, 288

offline defragmentation, 448
OLD defragmentation, 435
OnComplete event, 206
online defragmentation, 435, 448
online repair cmdlets, 445–448
OOF (out-of-office) notices, 371, 374, 377–378, 749
OPATH filters, 110, 346
OPATH queries, 268, 270, 300–302
Operational channel, 503
operational processes, testing, 29–30
OR operator, 705
organization mailboxes, 362
Organization Management role group

about, 75, 134–135, 151
administrator searches and, 322
delegating roles, 140, 163
EAC and, 174–175
managing DAG properties, 504
public folders, 774
RBAC Address Lists role, 346
remote Windows PowerShell, 87
role assignments, 152, 160
security groups, 284
special roles, 159–160

organizational forms library, 786–787
organizational units (OUs)

hierarchical address books, 372
mail-enabled accounts, 75–76
mail-enabled objects, 34
security groups and, 73
setting role scopes, 157

–OrganizationalUnit cmdlet parameter, 193, 307
OrganizerInfo property, 258
OST files, 585, 627
OUs (organizational units)

hierarchical address books, 372
mail-enabled accounts, 75–76
mail-enabled objects, 34
security groups and, 73
setting role scopes, 157

Out-HTML cmdlet, 127
out-of-office (OOF) notices, 371, 374, 377–378, 749
Out-String cmdlet, 100
Outlook

archive mailboxes, 649
delivery reports, 321
expired items and, 673
group membership and, 281–282
MailTips and, 378–379
maintaining rules, 319
managing groups, 269–270
MFCMAPI utility and, 38–40

 Outlook 827

moderated groups, 283
Offline Address Book and, 359–362
retention policies, 684–686
retention tags, 666–667, 676–677
room list groups, 299
site mailboxes and, 792, 799–800
troubleshooting, 443
upgrading versions, 11, 13, 16

Outlook Web App (OWA)
about, 11
accessing personal tags, 662–663
address book policies, 356
archive mailboxes, 649
delegating access, 239–240
delivery reports, 321–322
EAC and, 177
expired items and, 673
group membership and, 281
language support, 196–200
MailTips settings, 377
MailTips support, 378–379
maintaining rules, 319
managing groups, 276, 287
opening another user's mailbox, 237
Options section, 154–156, 269, 276, 287, 331
Organize Email section, 321
People section, 348
retention policies, 684–686
retention tags, 666–667, 676
room list groups, 299
security groups, 284
Windows PowerShell and, 84

–OverrideContentMailbox cmdlet parameter, 784–785
OWA (Outlook Web App)

about, 11
accessing personal tags, 662–663
address book policies, 356
archive mailboxes, 649
delegating access, 239–240
delivery reports, 321–322
EAC and, 177
expired items and, 673
group membership and, 281
language support, 196–200
MailTips support, 377–379
maintaining rules, 319
managing groups, 276, 287, 350
opening another user's mailbox, 237
Options section, 154–156, 269, 276, 287, 331
Organize Email section, 321
People section, 348
retention policies, 684–686
retention tags, 666–667, 676
room list groups, 299

security groups, 284
Windows PowerShell and, 84

ownership of groups, 271, 275–277, 350

P
page zeroing, 433, 436
PagePreRead metric, 453
PageRead metric, 453
PAM (Primary Active Manager) role, 466–467
parameters . See also specific cmdlet parameters

named, 97
positional, 97, 105

Partial Attribute Set (PAS), 35
PAS (Partial Attribute Set), 35
passive database copies, 460, 544
–Password cmdlet parameter, 192
passwords, mailbox, 190–191
Patches system registry setting, 69
Performance Monitor, 435, 449, 517, 520
–Permanent cmdlet parameter, 220
PermanentlyDelete action, 672
permissions

discovery mailboxes, 226
EAC, 143–144, 233–234
mailbox import and export, 624–626
preparing Active Directory, 48
public folders, 775
revoking, 232
roles and, 139
setting for mailboxes, 229–240
split permissions model, 166–167
testing operational processes, 29–30

personal archive . See archive mailboxes
personal tags

about, 658, 660
accessing through OWA, 682
applying to items, 685–686
creating, 671–672
naming, 666–668

pipelines, 101–102, 109, 678
PKI (public key infrastructure), 315
planning

import of PST data, 626–629
mailbox moves, 614–619

policies . See also retention policies
address book, 348–357
EAC, 313
email address, 333–345
execution, 118–119
group naming, 287, 289–295
mailbox creation, 190–191
MRS, 579
processing meeting requests, 261–265
removing tags from, 687–688
Resource Booking Attendant and, 256–261

828 Outlook Web App (OWA)

role assignment, 133–134, 153–155, 163–166
sharing, 313
site mailboxes, 803–804
user-maintained groups, 289–295

portability, database, 459–464
positional parameters, 97, 105
PowerShell . See Windows PowerShell
PR_ARCHIVE_DATE property, 693
PR_ARCHIVE_PERIOD property, 693
PR_ARCHIVE_TAG property, 693
pre-staging Cluster Name Object, 497–499
precoded filters, 310
preparing for Exchange Server

about, 26–27
Active Directory, 47–48
installation considerations, 63–73
namespace planning, 77–81
test plans, 28–29
testing for operational processes, 29–30
testing for programming and customizations, 30–31
transport considerations, 27–28
updating versions, 31–32

–PreserveMailboxSizeLimit cmdlet parameter, 606
preserving information

about, 696–698
creating searches, 708–716
examining search results, 720–724
Exchange searches, 733–736
groups with searches, 728–730
in-place holds, 703–708
putting mailboxes on litigation hold, 699–701
putting mailboxes on retention hold, 698–699
removing searches, 730–731
resource throttling for searches, 724–726
retrieving discovered content, 716–720
search syntax, 736–737
searching mailbox content, 701–703

PreviewResultsLink property, 714
Primary Active Manager (PAM) role, 466–467
PrimarySMTPAddress property, 185
priorities

assigning for moves, 607
development, 2–5
email policy, 334–336, 340

privacy
challenges of, 4–5
complying with laws, 208

ProcessExternalMeetingMessages property, 262, 264
Products system registry setting, 69
$Profile variable, 120
profiles, 119–120
ProhibitSendQuota property, 115, 214
ProhibitSendReceiveQuota property, 214, 771, 803
properties . See specific properties
protected distribution groups, 278–281
protocols and required certificates, 314

ProvisionedFolder corruption type, 446
provisioning

mailboxes, 607
servers, 63
site mailboxes, 803–804

ProxyAddresses property, 385
PR_POLICY_TAG property, 693
PR_RETENTION_DATE property, 692
PR_RETENTION_FLAGS property, 693
PR_RETENTION_PERIOD property, 692
PR_ROAMING_XMLSTREAM property, 691
PR_START_DATE_ETC property, 692, 694
PST Capture Tool, 628
PST files

about, 201
archive mailboxes and, 644–647
importing data directly into archives, 635
legitimate movement, 443
mailbox import and export, 623–624, 629–637
planning import, 626–629

public folder mailboxes
about, 766
calculating size, 772–773
controlling the root, 774–776
creating, 767–770
mobile access, 786
naming conventions, 768
number needed, 770–772
redirecting content, 785–786
writeable hierarchy, 770

Public Folder Management role group, 75, 135, 774
public folders

about, 765–766, 804
accessing, 778
content indexing and, 776
creating, 776–779
creating mailboxes, 767–770
hierarchy in, 766–767
importing-exporting data in, 624
mail-enabling, 779–783
modern, 20–21, 420–421, 787–790
moving, 783–785
naming conventions, 179
new concepts, 766–767
organizational forms library, 786
permissions, 775
removing, 786
transaction logs and, 420–421

Public Folders container, 345
public groups, 270
public key infrastructure (PKI), 315
PublicFolderMigrationComplete flag, 790
PublicFolderToMailboxMapGenerator .ps1 script, 789
Purges folder, 746
$pwd variable, 101

 $pwd variable 829

Q
QBDG suffix, 179
quarantined mailboxes, 439–441
queries

OPATH, 268, 270, 300–302
validating results, 305–306

queue lengths, 481, 517, 529
queues, MRS, 576
quorums

dynamic, 494
FSW role and, 499

QuotaNotificationSchedule property, 215
quotas

accommodating imported data, 626
dealing with I/O, 396
ensuring sufficiency of, 606
Recoverable Items, 746–747
setting, 213–218
site mailboxes, 803
sizing mailboxes, 391–392

quotation marks ("), 102–103

R
RBAC Address Lists role, 346
RBAC Discovery Management role group, 704
RBAC (role-based access control)

about, 85, 131–136
Active Directory, 35
execution policies and, 118
figuring out, 167–168
mailbox import and export, 624–626
remote Windows PowerShell, 86–92
role assignment, 133–134, 152–166
role entries and, 134
role groups and, 133, 139–141
role scope and, 134, 141–143, 409
roles and, 133, 136–139
security groups, 284
split permissions model, 166–167
testing for operational processes, 29–30
universal security groups, 73
working with, 143–152

RCA (Remote Connectivity Analyzer), 37
read-status tracking, 324
rebalancing database copies, 534–536
rebuilding databases, 448–451
Recall Message feature, 241–243
Recipient Management role group

about, 75
administrator searches and, 322
creating security groups, 284
linking to tasks, 135
remote PowerShell and, 91

Recipient Policies role, 148

Recipient read scope, 141
Recipient write scope, 142
–RecipientContainer cmdlet parameter, 307–308
RecipientContainer property, 301
–RecipientFilter cmdlet parameter, 309–311, 347
RecipientFilter property, 301
–RecipientOrganizationalUnitScope cmdlet parameter, 157
–RecipientPathFilter cmdlet parameter, 328
recipients

about, 180
filtering, 180–181, 306, 334, 338, 341–342
hidden, 357–358
moderated, 243–250

Recipients property, 713
RecipientType property, 284
RecipientTypeDetails property, 228, 284, 802
reconnecting mailboxes, 220–223
Records Management role group, 75, 136, 322
Recoverable Items structure

about, 737
asynchronous moving, 571
function of, 737–739
improvements, 739–742
managing quotas for, 746–747
retention periods and, 671
single-item recovery, 743–745
viewing items in, 745–746

RecoverableItemsQuota setting, 757
recovering failed servers, 61–63
recovering messages, 643
–Recurse cmdlet parameter, 769
recycling hardware, 23
Redirect-Message cmdlet, 564
redirecting content to public folder mailboxes, 785–786
RedistributeActiveDatabases .ps1 script, 535–536
redundancy, database, 411, 522
registry, system . See system registry
regulatory compliance . See compliance management
released to manufacturer (RTM), 13–14
relocating databases, 480, 536, 539–542, 544–546
Remote Connectivity Analyzer (RCA), 37
remote management, 492
remote procedure call (RPC)

avoiding access errors, 492
delivering messages, 28
MAPI, 8, 506
retrieving mailbox information, 128

remote Windows PowerShell
about, 86–88
connecting to, 88–91
limiting user functionality, 91–92

RemoteExchange .ps1 script, 90, 119–120
RemoteSigned execution policy, 118
Remove-ADPermission cmdlet, 232

830	 QBDG	suffix

Remove-DatabaseAvailabilityGroupNetwork cmdlet, 509
Remove-DatabaseAvailabilityGroupServer cmdlet, 494,

548–549
Remove-DistributionGroup cmdlet, 297
Remove-Mailbox cmdlet, 155, 219–220, 223
Remove-Mailbox Permission cmdlet, 205
Remove-MailboxDatabase cmdlet, 418, 548
Remove-MailboxDatabaseCopy cmdlet, 544, 547
Remove-MailboxExportRequest cmdlet, 626
Remove-MailboxImportRequest cmdlet, 625, 635
Remove-MailboxSearch cmdlet, 730–731
Remove-ManagementRoleAssignment cmdlet, 165
Remove-MigrationBatch cmdlet, 594
Remove-MigrationUser cmdlet, 591
Remove-MoveRequest cmdlet

about, 591
clearing move requests, 610
migration batches with EAC, 584–585, 605
removing databases, 418
suspending mailbox moves, 619

Remove-PublicFolder cmdlet, 786
Remove-PublicFolderMoveRequest cmdlet, 785
Remove-RetentionPolicy cmdlet, 688
Remove-RetentionPolicyTag cmdlet, 671–672
Remove-RoleGroup cmdlet, 152
Remove-RoleGroupMember cmdlet, 150
Remove-StoreMailbox cmdlet, 219–220
RemovePrivateProperty property, 258
removing

database copies, 546–548
databases, 416–418
mailboxes, 218–220, 223
migration batches, 584
move requests from migration batches, 591
public folders, 786
retention policies, 688
searches, 730–731
servers, 548–549
tags from policies, 687–688

renaming databases, 414–415
repair cmdlets, 445–448
repairing Exchange Server, 61
Replace log record type, 425
replay, transaction log . See transaction log replay
ReplayLagManagerNumAvailableCopies system registry

setting, 531
ReplayLagPlayDownPercentDiskFreeSpace system registry

setting, 531
ReplayLagStatus property, 522
ReplayLagTime property, 527–528
ReplayQueueLength property, 521
replication

block mode, 484–486
database, 390, 411, 459
public folders and, 767

queue lengths, 481, 517
transaction log replay and, 479–489

Replication service (MSExchangeRepl)
Active Manager and, 465–479
handling storage failures, 549–550
MRS versus, 465, 567
verifying transaction logs, 482

ReplicationPort property, 505
reporting licenses, 70–73
reporting mailbox moves

about, 595–596
accessing move report histories, 599–604
getting more information about moves, 597–598
troubleshooting, 599

reports
delivery, 320–329
HTML, 127–128

representational state transfer (REST), 792
REQ file, 317
RequestInPolicy property, 262–263
RequestOutofPolicy property, 262, 264
–RequireSenderAuthenticationEnabled cmdlet parameter,

280
Reread Logon Quotas interval registry setting, 217, 235
reseeding database copies, 523–525
reserved logs, 408, 431–432
Reset Password role, 137
–ResetPasswordOnNextLogon cmdlet parameter, 192
resilience equation, 558–559
Resource Booking Assistant, 454
Resource Booking Attendant, 256–262, 265, 299
resource forest design, 46
resource mailboxes

about, 188, 254–255
creating, 195
defining custom properties, 255–256
naming conventions, 178–179

resource throttling for searches, 724–726
ResourceCapacity property, 255
ResourceCustom property, 255
resources provisioning management agent, 209–213
REST (representational state transfer), 792
Restore-MailboxExportRequest cmdlet, 576
Restricted execution policy, 118
–ResultSize cmdlet parameter, 109–111, 328
Resume-ClusterNode cmdlet, 565
Resume-MailboxDatabaseCopy cmdlet, 529, 546
Resume-MailboxExportRequest cmdlet, 626
Resume-MailboxImportRequest cmdlet, 625
Resume-MoveRequest cmdlet, 605, 608, 617
Resume-PublicFolderMigrationRequest cmdlet, 790
Resume-PublicFolderMoveRequest cmdlet, 784
resynchronization

after moving mailboxes, 587
incremental, 487–488

 retention hold (mailboxes) 831

retention date calculation, 693–696
retention hold (mailboxes), 19, 697–699
retention policies

applying to mailboxes, 677–681
compliance management and, 644, 646
creating, 663, 673–677
customizing for specifc mailboxes, 681–683
designing, 663–665
Managed Folder Assistant and, 653, 655, 665–666, 689–696
managing in hybrid environment, 681
modifying, 681
removing, 688
setting on folders, 685–687
user interaction with, 684–685

retention policy tags (RPT), 658–659, 666
retention tags

changing, 688
creating, 668–673
disabling, 687
managing in hybrid environment, 681
MRM and, 657
naming, 666–668
removing from policies, 687–688
troubleshooting, 671
types of, 657–662

RetentionAction property, 670
RetentionComment property, 680, 700
–RetentionEnabled cmdlet parameter, 672
RetentionEnabled property, 666
RetentionURL property, 678, 680, 700
RetryDelay property, 623
revoking permissions, 232
Rich Text Format (RTF), 397–398
Richard, Pat, 124
role assignment policies, 133–134, 153–155, 163–166
role assignments

about, 133, 152–163
controlling, 153
default, 141
delegated, 160

role-based access control (RBAC)
about, 85, 131–136
Active Directory, 35
execution policies and, 118
figuring out, 167–168
mailbox import and export, 624–626
remote Windows PowerShell, 86–92
role assignment, 133–134, 152–166
role entries and, 134
role groups and, 133, 139–141
role scope and, 134, 141–143, 409
roles and, 133, 136–139
security groups, 284
split permissions model, 166–167
testing for operational processes, 29–30

universal security groups, 73
working with, 143–152

role entries, 134
role groups . See also specific role groups

about, 133
adding roles to, 147–149
creating, 145–149
default, 141
identifying membership, 162–163
linking to tasks, 135–136
maintaining membership, 149–150
managing, 151–152
specific scopes for, 157–158
universal security groups and, 139–141

role scope, 134, 141–143, 157–158, 409
roles

about, 133, 136–139
adding to role groups, 147–149
cmdlets and, 139
creating for specific tasks, 155–157
delegating, 140, 163, 625
EAC and, 175
end-user, 164–165
scopes and, 141–143
unscoped, 160–162

–Room cmdlet parameter, 195
room lists, 270, 298–299, 349
room mailboxes

about, 188, 254–255
creating, 195
defining custom properties, 255–256
naming conventions, 178–179
viewing delegates, 263

–RoomList cmdlet parameter, 298
ROPCount metric, 453
RPC (remote procedure call)

avoiding access errors, 492
delivering messages, 28
MAPI, 8, 506
retrieving mailbox information, 128

RPT (retention policy tags), 658–659, 666
RTF (Rich Text Format), 397–398
RTM (released to manufacturer), 13–14
rule processing, 318–320, 492

S
S/MIME (Secure Multipurpose Internet Mail Extensions), 734
%s variable, 339
Safety Net, 459, 503, 531–532
SAM (Standby Active Manager), 190
SAM (Standby Active Manager) role, 466
SAN (storage area networks), 557
Sarbanes–Oxley Act, 641
SCC (single copy cluster), 29
schedules, maintenance, 434

832 retention hold (mailboxes)

Scheduling Assistant, 454
scheduling mailbox moves, 617
scheduling threads, 550
Schema Administrators group, 48
schemas

Active Directory information, 35–36
database, 398–400
preparing, 47–48

SCOM (System Center Operations Manager), 442–443, 470,
520

SCR (standby continuous replication), 29
scripting agent, 205
ScriptingAgentConfig.xml file, 205–206
scripts . See also specific scripts

calling, 117
cmdlets in, 93, 117
conditional checking, 103
initialization, 90, 100
outputting CSV files, 125–127
pipelines and, 101–102
writing, 93

Search-ADAccount cmdlet, 122
Search-AdminAuditLog cmdlet, 751–752
Search Foundation, 578, 701, 733–735
Search-Mailbox cmdlet, 703, 731
Search-MailboxAuditLog cmdlet, 755, 759
Search-MessageTrackingReport cmdlet, 326–328
–SearchDumpster cmdlet parameter, 731
SearchDumpster property, 713
searches

concurrent, 733
creating, 708–716
for delivery reports, 321–329
eDiscovery, 224–225, 233, 702, 726
examining results, 720–724
Exchange support, 733–736
executing, 731–732
groups with, 728–730
mailbox content, 701–703
memory limitations and, 726
refining, 712–716
removing, 730–731
resource throttling for, 724–726
Search Foundation processes, 578
syntax for, 736–737

SearchFolder corruption type, 446
–SearchQuery cmdlet parameter, 731
SearchQuery property, 713
secondary indexes (views), 393, 395, 437, 578
Secure Multipurpose Internet Mail Extensions (S/MIME), 734
Secure Sockets Layer (SSL), 30, 77, 313–314
security . See also permissions

administrators and, 319–320
challenges of, 4–5
cmdlets and, 89

installation and, 73–77
mailboxes and, 184
PST files and, 646
self-signed certificates, 78

security groups
about, 284–285
mail users and, 252

security support provider (SSP), 506
seeding databases, 489
Select-Object cmdlet, 98, 282
self-maintained lagging, 530–532
self-signed certificates, 77–78, 314, 317
Send As permission, 229–231, 275
Send-NewUserWelcome .ps1 script, 194
Send On Behalf Of permission, 229–231, 241, 275
SendAs action, 756
Senders property, 713
SendOnBehalf action, 756
Sent Items folder, 393, 658
separate rules functionality, 318
–Server cmdlet parameter, 86, 207
Server Management role group, 75, 135
server message block (SMB), 500
server-side filters, 110–113
server-side rules, 318
server switchovers, 536–539
ServerManager PowerShell module, 52
ServerManagerCmd cmdlet, 52
ServerManagerCmd PowerShell module, 52
servers

edge, 48
maintaining, 562–565
mounted databases, 463
provisioning, 63
recovering failed, 61–63
removing, 548–549
stressed, 565–566
virtual, 24–25
witness, 490–491

Service (Exchange Online), 5–9
service level agreement (SLA), 9
service packs (SPs), 64
Set-AdminAuditLogConfig cmdlet, 748–749
Set-ADServerSettings cmdlet, 59, 122, 364
Set-AuthenticodeSignature cmdlet, 118
Set-CalendarProcessing cmdlet, 202, 204, 260–261, 264
Set-CASMailbox cmdlet, 84
Set-Contact cmdlet, 98, 381
Set-DatabaseAvailabilityGroup cmdlet

adding IP addresses, 493
DAC and, 552
editing properties, 492, 505–506
exerting manual control over networks, 509
lag copy self-maintenance, 531

Set-DatabaseAvailabilityGroupNetwork cmdlet, 509

 Set-DatabaseAvailabilityGroupNetwork cmdlet 833

Set-DistributionGroup cmdlet
group expansion, 277–278
mail-enabled groups, 285
mailbox delegation permissions, 232
management lists for groups, 276
marking existing groups, 298
moderated groups, 245, 248–249
multilingual custom MailTips, 381
protected groups, 278–279
users maintaining groups, 294

Set-DynamicDistributionGroup cmdlet, 246, 301, 306, 313
Set-EmailAddressPolicy cmdlet, 335, 343
Set-EventLogLevel cmdlet, 331
Set-ExchangeServer cmdlet, 71, 411
Set-ExecutionPolicy cmdlet, 118–119
Set-Group cmdlet, 98, 372–373
Set-InboxRule cmdlet, 320
Set-Mailbox cmdlet

about, 84, 192, 194
address book policies, 351–352, 355
applying retention policies, 678
assigning quota values, 216
bulk updates, 115
custom MailTips, 380
defining custom properties, 256
EAC and, 175
email address policies, 333
limiting user functionality, 91–92
mailbox delegation, 231–232
managing archive properties, 651
multilingual custom MailTips, 381
OAB generation mailboxes, 367
putting mailboxes on litigation hold, 699–701
putting mailboxes on retention hold, 698–699
RBAC and, 137
read tracking, 325
remote PowerShell and, 91
removing retention policies, 680
role assignment policies, 164–165
setting language, 196–197
shared mailboxes, 241

Set-MailboxAuditByPassAssociation cmdlet, 758
Set-MailboxAutoReplyConfiguration cmdlet, 202–203
Set-MailboxCalendarConfiguration cmdlet, 202–204, 206,

261
Set-MailboxCalendarSettings cmdlet, 261
Set-MailboxDatabase cmdlet

activation performance numbers, 535
backup settings, 416
controlling checksum scans, 433
handling move request errors, 609
maintenance settings, 434
OAB assignments, 370
provisioning settings, 211
reconnecting mailboxes, 220–221

renaming databases, 414
setting values, 620

Set-MailboxDatabaseCopy cmdlet, 159, 525, 527, 531
Set-MailboxExportRequest cmdlet, 625, 637
Set-MailboxFolderPermission cmdlet, 239
Set-MailboxImportRequest cmdlet, 625
Set-MailboxJunkEMailConfiguration cmdlet, 202, 204–205
Set-MailboxMessageConfiguration cmdlet, 202, 204
Set-MailboxRegionalConfiguration cmdlet, 199, 202–203,

206
Set-MailboxSearch cmdlet, 730–731
Set-MailboxServer cmdlet

activation blocks, 542–544
building DAGs, 561
database activation restrictions, 565
maximum number of databases, 402
OAB updates, 364
server switchovers, 538–539
work cycle information, 455

Set-MailboxSpellingConfiguration cmdlet, 202
Set-MailContact cmdlet, 251
Set-MailPublicFolder cmdlet, 381
Set-MailUser cmdlet, 253
Set-ManagementRoleAssignment cmdlet, 158
Set-MigrationBatch cmdlet, 594, 639
Set-MigrationEndpoint cmdlet, 614
Set-MoveRequest cmdlet, 608, 610–611
Set-Notification cmdlet, 639
Set-OfflineAddressBook cmdlet, 366, 370
Set-OrganizationConfig cmdlet

configuring MailTips, 377–378
creating site mailboxes, 802
group creation settings, 288, 292
hierarchical address books, 372
locking down public files, 790
read-status tracking setting, 324

Set-OrganizationConfig command, 790
Set-OutlookAnywhere cmdlet, 79
Set-PublicFolder cmdlet, 784, 786
Set-ReceiveConnector cmdlet, 92
Set-ResourceConfig cmdlet, 255–256
Set-RetentionPolicyTag cmdlet, 671, 681–682, 688
Set-RoleAssignmentPolicy cmdlet, 165
Set-RoleGroup cmdlet, 151, 158
Set-ServerComponentState cmdlet, 563–566
Set-SiteMailbox cmdlet, 803
Set-SiteMailboxProvisioningPolicy cmdlet, 804
Set-ThrottlingPolicy cmdlet, 725
Set-TransportConfig cmdlet, 531, 627
Set-User cmdlet

about, 98
address book policies and, 351–352
hierarchical address books, 373
remote PowerShell and, 88
updating mailbox properties, 194

834 Set-DistributionGroup cmdlet

Set-WebServicesVirtualDirectory cmdlet, 613
Set-WorkloadPolicy cmdlet, 580
Setup command

about, 49–51
/ActiveDirectorySplitPermissionsparameter, 167
/ADToolsNeeded switch, 52
delegated setup, 63
/IAcceptExchangeServerLicenseTerms parameter, 49
/PrepareAD parameter, 52, 167
/PrepareSchema parameter, 52
recovering failed servers, 62
running, 53–56
split permissions model, 167
uninstalling Exchange Server, 58
Windows PowerShell and, 84

setup logs, 56–57
shared mailboxes, 188, 240–241
SharePoint

integration with, 3, 18
site mailboxes and, 791–792
SQL support, 389
synchronization with Exchange and, 795–799

sharing policies, 313
Shift+Delete key combination, 738
Shift+Tab key combination, 97
–ShowDetails cmdlet parameter, 760
Simple Mail Transfer Protocol (SMTP)

certificate management, 313
email address policies, 343–344
message routing and, 35
selective output example, 100
site mailboxes and, 794

single copy cluster (SCC), 29
single forest design, 45
single-instance storage, 393
single-item recovery, 743–745
SinglePageRestore property, 521
site mailboxes

about, 18, 791–795, 804
accessing information from Outlook, 799–800
importing-exporting data in, 624
life cycle of, 800–803
Office 365 and, 800
opening maximum number of, 800
provisioning policy, 803–804
sizing, 803

sizing
databases, 389–392
mailboxes, 391–394
public folder mailboxes, 772–773
site mailboxes, 803
transaction logs, 420

–SkipActiveCopyChecks cmdlet parameter, 541
–SkipClientExperienceChecks cmdlet parameter, 540
–SkipHealthChecks cmdlet parameter, 541

–SkipLagChecks cmdlet parameter, 541
SLA (service level agreement), 9
SMB (server message block), 500
SMTP (Simple Mail Transfer Protocol)

certificate management, 313
email address policies, 343–344
message routing and, 35
selective output example, 100
site mailboxes and, 794

SoftDelete action, 756, 759
SoftDeleted state, 581, 604
Sort-Object cmdlet, 92–93
Source property, 713
–SourceMailboxes cmdlet parameter, 731
SourceMailboxes property, 713
–SourceRootFolder cmdlet parameter, 636
split brain syndrome, 551
split permissions model, 166–167
Split-PublicFolderMailbox .ps1 script, 773
SPs (service packs), 64
SQL Server, 388–389
SSL (Secure Sockets Layer), 30, 77, 313–314
SSP (security support provider), 506
StalledDueToHA status, 481
Standard edition, 32–33, 407
Standby Active Manager (SAM), 190
Standby Active Manager (SAM) role, 466
standby continuous replication (SCR), 29
Start-MailboxSearch cmdlet, 702, 731
Start-ManagedFolderAssistant cmdlet, 678, 690
Start-MigrationBatch cmdlet, 593
Start-Transcript cmdlet, 114
StartDagServerMaintenance .ps1 script, 563
State or Province property, 305, 346, 351
statistics, database usage, 451–453
–Status cmdlet parameter, 99, 481, 493, 634
Status property, 520, 713–714
–StatusDetail cmdlet parameter, 579
–StatusMailRecipients cmdlet parameter, 731, 762
StatusRetrievedTime property, 521
Stop-MailboxSearch cmdlet, 702
StopDagServerMaintenance .ps1 script, 563
storage area networks (SAN), 557
storage management

Active Directory, 35–36
DAG design, 557
eDiscovery searches, 225
handling storage failures, 549–551
setting mailbox quotas, 213–218
single-instance, 393
upgrading, 15–22
virtualized servers, 24–25

Store (Exchange Store) . See Exchange Store
–StoreMailboxIdentity cmdlet parameter, 220, 223
streaming backups, 29, 389

 streaming backups 835

stressed servers, 565–566
submission changes in messages, 489
Super Help Desk Users USG, 140
Support Diagnostics role, 160
Suspend-ClusterNode cmdlet, 564
–Suspend cmdlet parameter, 616, 618
Suspend-MailboxDatabaseCopy cmdlet, 529, 531, 545
Suspend-MailboxExportRequest cmdlet, 626
Suspend-MailboxImportRequest cmdlet, 625, 635
Suspend-MoveRequest cmdlet, 605
suspending mailbox moves, 615–619
–SuspendWhenReadyToComplete cmdlet parameter,

616–617
SuspendWhenReadyToComplete property, 606
swelling databases, 444–445
switchovers

database copies, 466, 533–534
server, 536–539
targetless, 538

synchronization
incremental, 575, 615
public folder hierarchy, 772
with SharePoint and Exchange Server, 795–799
site mailboxes, 791–792

syntax for searches, 736–737
System Attendant process, 363
System Center Operations Manager (SCOM), 442–443, 470,

520
system registry

CrashCount entry, 438
execution policy, 119
LastCrashTime entry, 438
Patches entry, 69
Products entry, 69
ReplayLagManagerNumAvailableCopies entry, 531
ReplayLagPlayDownPercentDiskFreeSpace entry, 531
RereadLogonQuotasInterval entry, 217, 235
version numbers, 68

system resources, MRS and, 579–580
system tags, 662–663
SystemMailbox account, 76, 224, 363

T
Tab key, 95–97
TAP (Technology Adoption Program), 14, 68
TargetArchiveDatabase property, 593
TargetDatabase property, 593
targetless switchovers, 538
–TargetMailbox cmdlet parameter, 713, 731
–TargetRootFolder cmdlet parameter, 636
task items, retention policies and, 677
task logging, 502
Tasks folder, 658
TCP (Transmission Control Protocol), 7–8, 479
Team Mailboxes role, 148

Technology Adoption Program (TAP), 14, 68
templates

display, 382–386
OAB, 361

temporary log files, 430–431
Test-AssistantHealth cmdlet, 454–455
Test-MigrationServerAvailability cmdlet, 613
Test-Path cmdlet, 120
Test-ReplicationHealth cmdlet, 545
testing

ACID tests, 419
cumulative updates, 67
customizations, 30–31
operational processes, 29–30
programming, 30–31
test plans, 28–29
virtual machines and, 25

Thawte certificate vendor, 314
threads, scheduling, 550
Threat Management Gateway (TMG), 16
throttle-based assistants, 454
throttling

dynamic, 580
resource throttling for searches, 724–726

tickles (signals), 576
time formats, 199
time to live (TTL) settings, 462
time zone property, 261
TimeInCPU metric, 453
TimeInServer metric, 452–453
timestamps, 425
TLS (Transport Layer Security), 313
TMG (Threat Management Gateway), 16
tombstone maintenance, 437
TotalMailboxSize property, 597
tracking group usage, 285–286
transaction log replay

about, 479–483
block mode replication, 484–486
incremental resynchronization, 487–488
seeding databases, 489
transaction log compression, 483–484
transaction log truncation, 486–487

transaction logs
about, 388, 408, 419
block mode replication and, 484–486
checksums, 427
circular logging, 429–431
compressing, 483–484
database redundancy and, 411
debugging swelling databases, 445
excessive growth, 443–444
I/O operations, 427–429
log sets, 419–427
moving mailboxes, 578

836 stressed servers

replaying, 479–489
reserved logs, 431–432
sizing, 420
truncating, 486–487, 511
validating, 482

transcripts, 114
transient network conditions, 483
transitions, automatic database, 467–469
Transmission Control Protocol (TCP), 7–8, 479
Transport Dumpster, 459
Transport Layer Security (TLS), 313
Transport Queues role, 141
transport service, 27–28, 247–248
Troubleshoot-DatabaseLatency .ps1 script, 442
Troubleshoot-DatabaseSpace .ps1 script, 443
troubleshooting

adding scopes, 158
archive mailboxes, 656
dark zone and, 60
delivery reports, 323
deployment, 56
exceeded message quotas, 128
excessive database or log growth, 443–444
high latency, 442
mailbox creation, 212
mailbox moves, 599
migration batch logs, 592
retention tags, 671

$True variable, 101
truncation, transaction log, 486–487, 511
TruncationLagTime property, 528
TTL (time to live) settings, 462
–Type cmdlet parameter, 671

U
UAC (User Account Control), 54
UAnrdex.oab file, 360
UBrowse.oab file, 360
UCMA (Unified Communications Managed API), 53
UDetails.oab file, 360
UM Management role group, 75, 136
unattended installation, 54–55
UNC (Universal Naming Convention), 593
underscore (_), 26
Unicode format, 623
Unified Communications Managed API (UCMA), 53
Unified Messaging server role, 314
uninstalling Exchange Server, 58–60
Universal Naming Convention (UNC), 593
universal security groups (USGs), 73–77, 139–141, 267
Unrestricted execution policy, 118–119
Unscoped Role Management role, 160
unscoped roles, 160–162
–UnscopedTopLevel cmdlet parameter, 161
Unsearchable subfolder, 721

Update action, 756
Update-EmailAddressPolicy cmdlet, 340, 343, 345
Update-MailboxDatabaseCopy cmdlet, 516, 524, 542
Update-OfflineAddressBook cmdlet, 354, 364–365
Update-PublicFolderMailbox cmdlet, 772
Update-RoleGroupMember cmdlet, 150
updates

bulk, 114–116
cumulative, 14
incremental, 578
installation and, 27, 63–73
mailbox databases, 414–416
mailbox properties, 194, 652
OAB, 363–364
testing, 67
version, 31–32
waiting for, 13–15

UPdndex.oab file, 360
upgrading Exchange Server

building business cases, 16
common scenarios, 11–12
evolving from earlier versions, 12–13
fundamental questions before, 15–17
Information Store improvements, 19–20
integration with Lync, 3, 18
integration with SharePoint, 3, 18
management interfaces, 21–22
modern public folders, 20–21
preparations for, 26–27, 63–73
waiting for updates, 13–15

upgrading from managed folders, 688–689
UPN property, 185
UPN (User Principal Name), 185
URdndex.oab file, 360
UseDatabaseQuotaDefaults property, 215, 772
User Account Control (UAC), 54
user accounts

Active Directory, 49
administrators, 163
mail-enabled, 75–76

user-defined variables, 101–103
user mailboxes, 178, 187
user-maintained groups

about, 286–287
creating group naming policy, 287, 289–295
defining default group location, 288–289
planning, 287–288
restricting users, 295–297
room lists, 298–299

User Options role, 145–146
User Principal Name (UPN), 185
–UserPrincipalName cmdlet parameter, 192
Users OU, 75, 228, 288
USGs (universal security groups), 73–77, 139–141, 267
UTmplts.oab file, 360

	 UTmplts.oab	file	 837

V
validating

checksums, 427
query results, 305–306
transaction logs, 482

variables
common and user-defined, 101–103
email address policies, 339

–Verbose cmdlet parameter, 114
verbose PowerShell, 129
VeriSign certificate vendor, 118, 314
versions and version numbers

about, 67–69
DAG servers, 494–495
evolving from earlier, 12–13
groups and, 268
installation and, 63
object, 69–70
selecting for deployment, 22–23
updating, 31–32

Versions folder, 746
View-Only Organization Management role group, 75, 135,

323
View-Only Recipients role, 146
–ViewEntireForest cmdlet parameter, 122, 364
viewing group members, 268–269, 281–283
views (secondary indexes), 393, 395, 437, 578
VIPs (virtual IPs), 558
virtual IPs (VIPs), 558
virtual servers, 24–25
virtualization, 24–25
VMware, 24–25
voice mail, default tag, 661
Volume Shadow Copy Services (VSS)

backup considerations, 458
restoring databases, 390
streaming backups, 29, 389

VSS (Volume Shadow Copy Services)
backup considerations, 458
restoring databases, 390
streaming backups, 29, 389

W
watermarks, 55–56
Watson dumps, 551
WCF (Windows Communications Foundation), 568
WebDAV API, 16, 30
Where-Object cmdlet, 92–93, 107
white space in databases, 444, 449–450, 597
wildcard characters, 94, 110, 138, 737
Windows CA (Windows Certificate Services), 314–315
Windows Certificate Services (Windows CA), 314–315
Windows Communications Foundation (WCF), 568
Windows Failover Clustering, 463–464, 492, 495–496, 553

Windows PowerShell . See also cmdlets
about, 83–86
Active Directory for, 120–123
automation and, 170
command editing, 95–97
deployment overview, 50–53
development priorities, 4
execution policies, 118–119
hyphens and, 103
influence of cloud service, 6
installing, 44
Integrated Scripting Environment, 103–105
memory limits, 111
profiles, 119–120
quotation marks and, 102–103
remote, 86–92
ServerManager module, 52
ServerManagerCmd module, 52
starting sessions, 53
testing programming and customizations, 30
verbose output, 129

Windows Server Backup, 389
Windows Server Manager, 51
Windows Unified Communications Managed API, 44
Windows User Account Control (UAC), 54
witness servers, 490–491
WitnessDirectory property, 505
WitnessServer property, 505
worker processes

health mailboxes, 226–227
Managed Availability, 402–407, 469–472, 522, 536

WorkerProcessId property, 402, 521
working directory, 117
Workload Management, 579
Write-AdminAuditLog cmdlet, 750
write smoothing, 395
writing scripts, 93

X
X.400 standard, 343–344
X.509 certificates, 26, 313
%xg variable, 339
XML configuration files, 51–52, 205–206
%xs variable, 339
XSO API, 568

Z
zeroing, page, 433, 436

838 validating

	Table of Contents
	Foreword for Exchange 2013 Inside Out books
	Introduction
	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Chapter 3: The Exchange Management Shell
	How Exchange uses Windows PowerShell
	Using remote Windows PowerShell
	Connecting to remote PowerShell
	Limiting user functionality

	EMS basics
	Command editing
	Handling information EMS returns
	Selective output
	Using common and user-defined variables
	Using PowerShell ISE with Exchange
	Identities
	Piping
	OPATH filters
	Server-side and client-side filters
	Transcripts
	Bulk updates
	Calling scripts
	Execution policies
	Profiles

	Active Directory for PowerShell
	Setting the right scope for objects in a multi-domain forest

	Exploring useful EMS examples
	Looking for large folders
	Outputting a CSV file
	Creating a report in HTML

	Verbose PowerShell
	Controlling access to Exchange

	Index

