

Microsoft Excel 2013:
Building Data Models
with PowerPivot

Alberto Ferrari and Marco Russo

Copyright © 2013 by Alberto Ferrari and Marco Russo
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7634-3

Third Printing: December 2014

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fi ctitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown

Production Editor: Christopher Hearse

Editorial Production: S4 Carlisle Publishing Services

Technical Reviewer: Javier Guillen

Indexer: Ellen Troutman Zaig

Cover Design: Twist Creative • Seattle

Cover Composition: Zyg Group, LLC

Illustrator: S4 Carlisle Publishing Services

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a Glance

Introduction xiii

ChAPtER 1 Introduction to PowerPivot 1

ChAPtER 2 Using the unique features of PowerPivot 31

ChAPtER 3 Introducing DAX 49

ChAPtER 4 Understanding data models 83

ChAPtER 5 Publishing to SharePoint 117

ChAPtER 6 Loading data 133

ChAPtER 7 Understanding evaluation contexts 179

ChAPtER 8 Understanding CALCULATE 209

ChAPtER 9 Using hierarchies 233

ChAPtER 10 Using Power View 261

ChAPtER 11 Shaping the reports 289

ChAPtER 12 Performing date calculations in DAX 323

ChAPtER 13 Using advanced DAX 369

ChAPtER 14 Using DAX as a query language 417

ChAPtER 15 Automating operations using VBA 445

ChAPtER 16 Comparing Excel and SQL Server Analysis Services 463

Index 473

 v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction . xiii

Chapter 1 Introduction to PowerPivot 1
Using a PivotTable on an Excel table . 2

Using PowerPivot in Microsoft Office 2013 . 5

Adding information to the Excel table . 6

Creating a data model with many tables . 8

Understanding relationships .11

Understanding the data model .13

Querying the data model .14

The PowerPivot add-In .15

Using OLAP tools and converting to formulas .18

Understanding PowerPivot for Excel 2013 .23

Creating a Power View report. .25

Chapter 2 Using the unique features of PowerPivot 31
Loading data from external sources . 31

Creating a PowerPivot PivotTable .35

Using the DAX language .37

Creating a calculated column .37

Creating a calculated field . 41

Computing complex aggregations like Distinct Count44

Refreshing the PowerPivot data model. .48

vi Contents

Chapter 3 Introducing DAX 49
Understanding DAX calculations .49

DAX syntax .49

DAX data types .50

DAX operators .52

DAX values .53

Understanding calculated columns and fields .54

Calculated columns .54

Calculated fields .55

Handling errors in DAX expressions .60

Conversion errors .60

Arithmetical operations .61

Intercepting errors .63

Formatting DAX code .65

Common DAX functions .68

Aggregate functions .68

Logical functions .71

Information functions .72

Mathematical functions . 74

Text functions . 74

Conversion functions .75

Date and time functions . 76

Relational functions .77

Using basic DAX functions .78

Chapter 4 Understanding data models 83
Understanding the basics of data modeling .83

Producing a report without a data model .84

Building a data model .88

More about relationships .89

Understanding normalization and denormalization 91

Denormalizing within SQL queries .95

The PowerPivot query designer .95

When to denormalize tables .102

 Contents vii

Understanding over-denormalization. .104

Understanding OLTP and data marts .106

Querying the OLTP database .107

Data marts, facts, and dimensions .110

Star schemas .111

Which database is the best to query? .112

Using advanced relationships .112

Chapter 5 Publishing to SharePoint 117
SharePoint 2013 and PowerPivot integration .117

Licensing and setup .118

Publishing a workbook to SharePoint .118

Using the PowerPivot Gallery .123

Connecting Excel to a SharePoint Excel data model 125

Creating a Power View report. .127

Managing the PowerPivot data refresh .129

Chapter 6 Loading data 133
Understanding data sources .133

Loading from a database .135

Loading from a list of tables .137

Loading relationships .139

Selecting related tables .140

Loading from a SQL query .141

Loading from views .142

Opening existing connections .143

Loading from Access .144

Loading from SQL Server Analysis Services .146

Using the MDX editor .148

Handling of keys in the OLAP cube .150

Loading from a tabular database .152

Loading from SharePoint .153

viii Contents

Using linked tables .157

Loading from Excel files .160

Loading from text files .163

Loading from the Clipboard .165

Loading from a report .167

Loading from a data feed .171

Loading from Windows Azure Marketplace. .173

Suggest related data .176

Refreshing connections .176

Chapter 7 Understanding evaluation contexts 179
Introduction to evaluation contexts .180

Understanding the row context .184

Testing your evaluation context understanding .185

Using SUM in a calculated column .185

Using fields in a calculated field .186

Creating a row context with iterators .189

Understanding FILTER, ALL, and context interactions192

Working with many tables .195

Row contexts and relationships .196

Filter context and relationships .198

Introducing VALUES . 199

Introducing ISFILTERED and ISCROSSFILTERED 201

Evaluation contexts recap .205

Creating a parameter table .206

Chapter 8 Understanding CALCULATE 209
Why is CALCULATE needed? .209

CALCULATE examples .213

Filtering a single column .213

Filtering with complex conditions .218

Using CALCULATE inside a row context .222

 Contents ix

Understanding circular dependencies. .225

CALCULATE rules .229

Understanding ALLSELECTED .230

Chapter 9 Using hierarchies 233
Understanding hierarchies .233

When to build hierarchies .235

Building hierarchies .235

Creating hierarchies on multiple tables .236

Performing calculations using hierarchies .238

Using parent/child hierarchies .248

Chapter 10 Using Power View 261
What is Power View? .261

Power View basics .262

Using the Filters pane .265

Decorating your report .267

Understanding table, matrix, and cards .268

Using the matrix visualization .269

Using the card visualization .270

Using a table as a slicer .272

Using charts .272

Using the line chart .273

Using the pie chart .274

Using the scatter chart .275

Using maps .277

Understanding drill-down .281

Using tiles .283

Understanding multipliers .286

Using Power View effectively .287

x Contents

Chapter 11 Shaping the reports 289
Key Performance Indicators (KPIs) .289

Creating data models for Power View .299

Understanding Power View metadata .304

Using Summarize By .305

Using the default field set .308

Using the Table Behavior dialog box .309

Defining sets .310

Creating dynamic sets with MDX .314

Using perspectives .318

Understanding drill-through .322

Chapter 12 Performing date calculations in DAX 323
Building a calendar table .323

Working with multiple calendar tables .326

Calculating working days .329

Aggregating and comparing over time .339

Year-to-Date (YTD), Quarter-to-Date (QTD), and

Month-to-Date (MTD) .339

Time intelligence with CALCULATE . 343

Computing periods from the prior year (PY) 346

Computing the moving annual total .348

Using other aggregation functions .349

Computing difference over a previous year351

Closing balance over time .353

Semiadditive measures .353

OPENINGBALANCE and CLOSINGBALANCE functions.356

Updating balances by using transactions .360

Computing moving averages .363

 Contents xi

Chapter 13 Using advanced DAX 369
Banding .369

Ranking .374

Using many-to-many relationships .382

Computing new and returning customers .386

Understanding KEEPFILTERS .390

Implementing basket analysis .400

Understanding the power of calculated columns: ABC analysis407

Handling currency conversion .411

Chapter 14 Using DAX as a query language 417
Understanding EVALUATE .417

Creating an Excel table with EVALUATE .418

Using common functions in queries .423

Using FILTER .423

Using CALCULATETABLE . 424

Using ADDCOLUMNS .425

Using VALUES with ADDCOLUMNS . 426

Using SUMMARIZE .427

Using the ROLLUP option .430

Linking back a DAX query .431

Computing ABC analysis with a linked-back table435

Using CROSSJOIN .439

Using GENERATE .440

Querying with DAX Studio .443

Chapter 15 Automating operations using VBA 445
Enabling the DEVELOPER tab of the ribbon .445

Updating a linked-back DAX query through VBA.451

Using the Model object .455

xii Contents

Importing data into the data model using VBA .456

Understanding data connections .459

Chapter 16 Comparing Excel and SQL Server Analysis Services 463
Understanding the different versions of the engine 463

Feature matrix .464

Securing your data .465

Programmability and flexibility .466

Translations .468

Database size .469

Number of databases .471

PowerPivot as a prototyping system .472

Index 473

About the Authors 489

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xiii

Introduction

Microsoft Excel is the world standard for performing data analysis. Its ease of use
and power make the Excel spreadsheet the tool that everybody uses, regardless

of the kind of information being analyzed.

You can use Excel to store your personal expenses, your current account information,
your customer information or a complex business plan, or even your weight-loss
 progress during a hard-to-follow diet. The possibilities are infinite—we are not even
going to try to start enumerating all the kind of information you can analyze with
Excel. The fact is that if you have some data to arrange and analyze, your chances are
 excellent that Excel will be the perfect tool to use. You can easily arrange data in a
tabular format, update it, generate charts, PivotTables, and calculations based on it, and
make forecasts with relatively limited knowledge of the software. With the advent of
the cloud, now you can use Excel on mobile devices like tablets and smart phones, too,
using Internet to have constant access to your information. Also, in earlier versions of
Excel, there was a limit of 65,536 rows per single worksheet, and the fact that so many
customers asked Microsoft to increase this number (which Microsoft did, raising the
limit to 1 million rows in Excel 2007) is a clear indication that users want Excel to store
and analyze large amounts of data.

Besides Excel users, there is another category of people dedicating their professional
lives to data analysis: business intelligence (BI) professionals. BI is the science of getting
insights from large amounts of information, and, in recent years, BI professionals have
learned and created many new techniques and tools to manage systems that can
handle the range of hundreds of millions or even billions of rows. BI systems require
the effort of many professionals and expensive hardware to run. They are powerful, but
they are expensive and slow to build, which are serious disadvantages.

Before 2010, there was a clear separation between the analysis of small and large
amounts of data: Excel on one side and complex BI systems on the other. A first step
in the direction of merging the two worlds was already present in Excel because the
 PivotTable tool had the ability to query BI systems. By doing that, data analysts could
query large BI systems and get the best of both worlds because the result of such a
query can be put into an Excel PivotTable, and thus they could use it to perform further
analysis.

In 2010, Microsoft made a strong move to break down the wall between BI
 professionals and Excel users by introducing xVelocity, a powerful engine that drives
large BI solutions directly inside Excel. That happened when Microsoft SQL Server 2008

xiv Introduction

R2 PowerPivot for Excel was released as a free add-in to Excel 2010. The goal was to
make the creation of BI solutions so easy that Excel would start to be not only a BI
 client, but also a BI server, capable of hosting complex BI solutions on a notebook. They
called it self-service BI.

Microsoft PowerPivot has no limits on the number of rows it can store: if you need
to handle 100 million rows, you can safely do so, and the speed of analysis is amazing.
PowerPivot also introduced the DAX language, a powerful programming language
aimed to create BI solutions, not only Excel formulas. Finally, PowerPivot is able to
 compress data in such a way that large amounts of information can be stored in
 relatively small workbooks. But this was only the first step.

The second definitive step to bring the power of BI to users was the introduction of
Excel 2013. PowerPivot is no longer a separate add-in of Excel; now it is an inherent part
of the Excel technology and brings the power of the xVelocity engine to every Excel
user. The era of self-service BI started in 2010, and it has advanced in 2013.

Because you are reading this introduction, you are probably interested in joining the
self-service BI wave, and you want to learn how to master PowerPivot for Excel. You will
need to learn the basics of the tool, but this is only the first step. Then, you will need
to learn how to shape your data so that you can execute analysis efficiently: we call
this data modeling. Finally, you will need to learn the DAX language and master all its
concepts so you can get the best out of it. If that is what you want, then this is the book
for you.

We are BI professionals, and we know from experience that building a BI solution is
not easy. We do not want to mislead you: BI is a fascinating technology, but it is also a
hard one. This book is designed to help you take the necessary steps to transform you
from an Excel user to a self-service BI modeler. It will be a long road that will require
time and dedication to travel, and you will find yourself making the adaptations you
need to learn new techniques. However, the results you will be able to accomplish are
invaluable.

The book is not a step-by-step guide to PowerPivot for Excel 2013. If you are looking
for a PowerPivot for Dummies book, then this is not the book for you. But if you want
a book that will go with you on this long, satisfying journey, from the first simple
 workbooks to the complex simulations you will be creating soon, then this is your
 ultimate resource.

When writing this book, we decided to focus on concepts and real-world examples,
starting at zero and bringing you to mastering the DAX language. We do not cover
every single feature, and we do not explain each operation in a “Click this, and then

 Introduction xv

do that” fashion. On the other hand, we packed in this single book a huge amount
of information so that, once you finished studying the book, you will have a great
 background in the new modeling options of Excel.

This last sentence highlights the main characteristic of this book: it is a book to
study, not just to read. Get prepared for a long trip—but we promise you that it will be
well worth it.

Note The PowerPivot and Power View features are included only with specific
configurations of Office 2013. The PowerPivot feature, which was available
in all versions of Excel 2010, is available only in Office 2013 Professional Plus,
SharePoint 2013 Enterprise Edition, SharePoint Online 2013 Plan 2, and the
E3 or E4 editions of Office 365. The Power View feature, new in Excel 2013,
is included with the same versions as PowerPivot. Fortunately, the Excel Data
Model is supported in all configurations of Excel 2013. Be aware, however,
that the variety of available configurations may change.

Who this book is for

The book is aimed at Excel users, project managers, and decision makers who wish to
learn the basics of PowerPivot for Excel 2013, master the new DAX language that is
used by PowerPivot, and learn advanced data modeling and programming techniques
with PowerPivot.

Assumptions about you

This book assumes that you have a basic knowledge of Excel 2010 or Excel 2013. You
do not need to be a master of Excel; just being a regular user is fine. We will cover what
is needed to make the transition from Excel to PowerPivot, but we do not cover in any
way the fundamentals of Excel, like entering a formula, writing a VLOOKUP function, or
other basic functionalities.

No previous knowledge of PowerPivot is needed. If you already tried to build a data
model by yourself, that is fine, but we will assume that you never opened PowerPivot
before reading the book.

xvi Introduction

Organization of this book

The book is designed to be read from cover to cover. Trying to jump directly to the
solution of a specific problem, skipping some content, will probably be the wrong
choice. In each chapter, we introduce concepts and functionalities that you will need to
understand the subsequent chapters. Moreover, we wrote some chapters knowing that
you will need to read them more than once, because the theoretical background they
provide is hard to take in at a first read.

The book is divided into 16 chapters:

Chapter 1, “Introduction to PowerPivot,” offers a guided tour of the basic features
of PowerPivot for Excel 2013. By following a step-by-step guide, we show the main
benefits of using PowerPivot for your analytical needs. We show how to create a simple
Power View report as well.

Chapter 2, “Using the unique features of PowerPivot,” shows the features that are
available only if you enable the PowerPivot for Excel add-in. This includes calculated
columns, calculated fields, hierarchies, and some other basic features. It is the logical
continuation (and conclusion) of Chapter 1.

In Chapter 3, “Introducing DAX,” we start covering the DAX language, including its
syntax and the most basic functions. We highlight the difference between a calculated
column and a calculated field, and at the end, we show a first practical example of DAX
usage.

Chapter 4, “Understanding data models,” is a theoretical chapter, covering the
basics of data modeling and showing the different modeling options in a Power-
Pivot database. We describe several concepts that are not evident for Excel users, like
 normalization and denormalization, the structure of a SQL query, how relationships
work and why they are so important, the structure of data marts, and data warehouses.

In Chapter 5, “Publishing to SharePoint,” we cover the process of publishing
 workbooks to Microsoft SharePoint to do team BI. Moreover, we introduce the concept
of PowerPivot for SharePoint being a server-side application that you can program and
extend using Excel and PowerPivot.

Chapter 6, “Loading data,” is dedicated to the many ways to load data inside
 PowerPivot. For each data source, we show the way it works and provide many hints
and best practices for that specific source.

Chapter 7, “Understanding evaluation contexts,” and Chapter 8, “Understanding
CALCULATE,” are the theoretical core of the book. There, we introduce the concepts of

 Introduction xvii

evaluation contexts, relationships, and the CALCULATE function. These are the pillars
of the DAX language, and you will need to master them before writing advanced data
models with PowerPivot.

Chapter 9, “Using hierarchies,” shows how to create and manage hierarchies.
It covers basic hierarchy handling, how to compute values over hierarchies, and finally,
it shows how to manage parent/child hierarchies by using the concepts learned in
 Chapters 7 and 8.

Chapter 10, “Using Power View,” is dedicated to the new reporting tool in Excel 2013:
Power View. There, we show the main feature of this tool, how to create simple Power
View reports, and how to filter data and build reports that are pleasant to look at and
provide useful insights in your data.

Chapter 11, “Shaping the reports,” covers several advanced topics regarding
 reporting. It includes Key Performance Indicators (KPIs), how to write them, and
how to use them to improve the quality of your reporting system. We also cover the
Power View metadata layer in PowerPivot, drill-through, sets in Excel or in MDX, and
 perspectives.

Chapter 12, “Performing date calculations in DAX,” deals with time intelligence.
Year to Date (YTD), Quarter to Date (QTD), Month to Date (MTD), working days versus
 non-working days, semiadditive measures, moving averages, and other complex
 calculations involving time are all topics covered here.

Chapter 13, “Using advanced DAX,” is a collection of scenarios and solutions, all of
which share the same background: they are hard to solve using Excel or in any other
tool, whereas they are somewhat easier to manage in DAX, once you gain the necessary
knowledge from the previous chapters in the book. All these examples come from
 real-world scenarios and are among the top requests we see when we do consultancy
or look at forums on the web.

Chapter 14, “Using DAX as a query language,” is dedicated to using DAX as a query
language (as you might guess). It covers the various functionalities of DAX when used
to query a database. It also shows advanced functionalities, like reverse-linked and
 linked-back tables, which greatly enhance the capabilities of PowerPivot to build
 complex data models.

Chapter 15, “Automating operations using VBA,” discusses using Microsoft Visual
Basic for Applications (VBA) to manage PowerPivot workbooks in a programmatic way,
automating a few common tasks. We provide some code examples and show how to
solve some of the common scenarios where VBA might be useful.

xviii Introduction

Chapter 16, “Comparing Excel and SQL Server Analysis Services,” compares the
functionalities of the three flavors of PowerPivot technology: PowerPivot for Excel,
 PowerPivot for SharePoint, and SQL Server Analysis Services (SSAS). The goal of this
 final chapter is to give you a clear picture of what can be done with PowerPivot for
Excel, when you need to move a step further and adopt PowerPivot for SharePoint, and
what extra features are available only in SSAS.

Conventions

The following conventions are used in this book:

■■ Boldface type is used to indicate text that you type.

■■ Italic type is used to indicate new terms, calculated fields and columns, and
database names.

■■ The first letters of the names of dialog boxes, dialog box elements, and
 commands are capitalized. For example, the Save As dialog box.

■■ The names of ribbon tabs are given in ALL CAPS.

■■ Keyboard shortcuts are indicated by a plus sign (+) separating the key names.
For example, Ctrl+Alt+Delete mean that you press Ctrl, Alt, and Delete keys at
the same time.

About the companion content

We have included companion content to enrich your learning experience. The
 companion content for this book can be downloaded from the following page:

http://www.microsoftpressstore.com/title/9780735676343

The companion content includes the following:

■■ A Microsoft Access version of the AdventureWorksDW databases that you can
use to build the examples yourself.

■■ All the Excel workbooks that are referenced in the text (that is, all the workbooks
that are used to illustrate the concepts). Note you need to have Excel 2013 to
open the workbooks.

http://www.microsoftpressstore.com/title/9780735676343

 Introduction xix

Acknowledgments

We have so many people to thank for this book that we know it is impossible to write a
complete list. So thank you so much to all of you who contributed to this book—even if
you had no idea that you were doing it. Blog comments, forum posts, email discussions,
chats with attendees and speakers at technical conferences, and so much more have
been useful to us, and many people have contributed significant ideas to this book.
That said, there are people we need to cite personally here because of their particular
contributions.

We want to start with Edward Melomed: he inspired us, and we probably would not
have started our journey with PowerPivot without a passionate discussion that we had
with him several years ago.

We have to thank Microsoft Press, O’Reilly Media, and the people who contributed
to the project: Kenyon Brown, Christopher Hearse, and many others behind the scenes.

The only job longer than writing a book is the studying you must do in preparation
for writing it. A group of people that we (in all friendliness) call “ssas-insiders” helped
us get ready to write this book. A few people from Microsoft deserve a special mention
as well because they spent precious time teaching us important concepts about
 PowerPivot and DAX. Their names are Marius Dumitru, Jeffrey Wang, and Akshai
Mirchandani. Your help has been priceless, guys!

We also want to thank Amir Netz, Ashvini Sharma, and T. K. Anand for their
 contributions to the discussion about how to position PowerPivot. We feel they helped
us in some strategic choices we made in this book.

Finishing a book in the age of the Internet is challenging because there is a
 continuous source of new inputs and ideas. A few blogs have been particularly
 important to our book, and we want to mention their creators here: Chris Webb, Kasper
de Jonge, Rob Collie, Denny Lee, and Dave Wickert.

Finally, a special mention goes to the technical reviewer, Javier Guillen. He
 double-checked all the content of our original text, searching for errors and giving us
 invaluable suggestions on how to improve the book. If the book contains fewer errors
than our original manuscript, it is because of Javier. If it still contains errors, it is our
fault, of course.

Thank you so much, folks!

xx Introduction

Support and feedback

The following sections provide information on errata, book support, feedback, and
 contact information.

Errata
We have made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site:

http://aka.ms/Excel2013DataModelsPP/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Note that product support for Microsoft software is not offered through these
 addresses.

We Want to hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we will read every one of your comments and ideas. Thanks
in advance for your input!

Stay in touch
Let’s keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress.

 49

C H A P T E R 3

Introducing DAX

Now that you have seen some of the features of Microsoft PowerPivot for Microsoft Excel 2013,
it is time to learn the fundamentals of the DAX language. PowerPivot has its own syntax for

defining calculation expressions. It is conceptually similar to an Excel expression, but it has specific
functions that allow you to create more advanced calculations on data stored in multiple tables. (The
PowerPivot language is called the Data Analysis eXpressions language, but we always use the shorter
DAX acronym.)

In this chapter, you will learn the basics of DAX and how to use it to solve some typical problems in
business scenarios.

Understanding DAX calculations

Just like Excel, any calculation in DAX begins with the assignment operator. The main difference is that
DAX never uses cell coordinates like A1, C2, and so on. In DAX, you always specify coordinates using
column and table names. Moreover, DAX does not support the concept of range as Excel does: to use
DAX efficiently, you need to learn to work with columns and tables.

Note In a DAX expression, you can get the value of a column for only a single row or for
the whole table—that is, you cannot get access to a specific row inside a table. To get a
range, you need to use DAX functions that filter a table, thus returning a subset of the rows
of the original table that corresponds to the needed range.

To express complex formulas, you need to learn the basics of DAX, which includes the syntax,
the different data types that DAX can handle, the basic operators, and how to refer to columns and
tables. In the next few sections, we are going to introduce these concepts.

DAX syntax
A relatively simple way to understand how DAX syntax works is to start with an example. Suppose
that you have a PowerPivot table like the one shown in Figure 3-1. Two columns, SalesAmount and
TotalProductCost, are useful in this particular instance. You can find this data model in the companion
workbook “CH03-01-SalesExample.xlsx.”

50 Microsoft Excel 2013: Building Data Models with PowerPivot

FIGURE 3-1 We will use this table to demonstrate DAX syntax.

Using this data, you now want to calculate the margin by subtracting the TotalProductCost from
the SalesAmount. To do that, you need to write the DAX formula shown in Figure 3-2 in a new
 column, which you can call GrossMargin.

FIGURE 3-2 You can enter the definition of GrossMargin into the formula bar.

This new formula is repeated automatically for all the rows of the table, resulting in a new column
in the table. In this example, you are using a DAX expression to define a calculated column. (Later
in this chapter, we will show that DAX is used also to define calculated fields.) This DAX expression
handles numeric values and returns a numeric value, too.

DAX data types
You saw in the previous formula how to handle numeric values. DAX can perform computations with
seven numeric types:

■■ Integer

■■ Real

■■ Currency

■■ Date (datetime)

■■ TRUE/FALSE (Boolean)

■■ String

■■ BLOB (which stands for “binary large object”)

 CHAPTER 3 Introducing DAX 51

PowerPivot has a powerful type-handling system, so you do not have to worry much about data
types: when you write a DAX expression, the resulting type is based on the type of the terms used in
the expression. You need to be aware of this in case the type returned from a DAX expression is not
the expected one; then you must investigate the data type of the terms used in the expression itself.
For example, if one of the terms of a sum is a date, the result is also a date; if the same operator is
used with integers, the result is an integer. This is known as operator overloading, and you can see an
example of its behavior in Figure 3-3, where the DatePlusOneWeek column is calculated by adding 7
to the value in the Date column. The result: a date.

FIGURE 3-3 Adding an integer to a date results in a date being increased by the corresponding number of days.

In addition to operator overloading, PowerPivot automatically converts strings into numbers and
numbers into strings whenever the operator requires it. For example, if you use the & operator, which
concatenates strings, PowerPivot automatically converts its arguments into strings. If you look at the
formula:

= 5 & 4

it returns a “54” string result. On the other hand, the formula:

= "5" + "4"

returns an integer result with the value of 9.

As you have seen, the resulting value depends on the operator and not on the source columns,
which are converted following the requirements of the operator. But even if this behavior is
 convenient, in the “Handling errors in DAX expressions” section later in this chapter, you will see what
types of errors might happen during these automatic conversions.

52 Microsoft Excel 2013: Building Data Models with PowerPivot

Inside DAX data types
DAX data types might be familiar to people used to working with Excel. However, we need to
review a few considerations about two of these data types because of how often they are used
in PowerPivot data models.

Date data type
PowerPivot stores dates in a datetime data type. This format uses a floating-point number
internally, wherein the integer corresponds to the number of days (starting from December
30, 1899) and the decimal identifies the fraction of the day. (Hours, minutes, and seconds are
converted to decimal fractions of a day.) Thus, the expression:

= NOW () + 1

increases a date by one day (exactly 24 hours), returning the date of tomorrow at the same
hour/minute/second of the execution of the expression itself.

TRUE/FALSE data type
The data type TRUE/FALSE is used to express logical conditions. For example, a calculated
 column defined by the following expression is of type TRUE/FALSE:

= Sales[TotalProductCost] > Sales[Amount]

The behavior of this data type is similar to the behavior of data types in Excel, and it is
 usually called a Boolean data type. Usually a column of this type is not made visible to the user
but is used internally for DAX calculations.

DAX operators
A list of the operators available in DAX is shown in Table 3-1.

Moreover, the logical operators are available also as DAX functions, with syntax very similar to
Excel syntax. For example, you can write:

AND ([Country] = "USA", [Quantity] > 0)
OR ([Country] = "USA", [Quantity] > 0)
NOT ([Country] = "USA")

that corresponds, respectively, to:

[Country] = "USA" && [Quantity] > 0
[Country] = "USA" || [Quantity] > 0
! ([Country] = "USA")

 CHAPTER 3 Introducing DAX 53

TABLE 3-1 Operators

Operator type Symbol Use Example

Parenthesis () Precedence order and grouping
of arguments

(5 + 2) * 3

Arithmetic +
-
*
/

Addition
Subtraction/negation
Multiplication
Division

4 + 2
5 – 3
4 * 2
4 / 2

Comparison =
<>
>
>=
<
<=

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

[Country] = “USA”
[Country] <> “USA”
[Quantity] > 0
[Quantity] >= 100
[Quantity] < 0
[Quantity] <= 100

Text concatenation & Concatenation of strings “Value is “ & [Amount]

Logical &&

||

!

AND condition between two
Boolean expressions
OR condition between two
Boolean expressions
NOT operator on the Boolean
expression that follows

[Country] = “USA” && [Quantity] > 0

[Country] = “USA” || [Quantity] > 0

! ([Country] = “USA”)

DAX values
You have already seen that you can use a value directly in a formula (for example, USA or 0). When
such values are used in this way, they are called literals and, although using literals is straightforward,
the syntax for referencing a column should be looked at. Here is the basic syntax:

'Table Name'[Column Name]

The table name can be enclosed in single quotes. Most of the time, though, the quotes can be
omitted if the name does not contain any special characters, such as spaces. In the following formula,
for example, the quotes can be omitted:

TableName[Column Name]

The column name, on the other hand, always needs to be enclosed in square brackets. Note that
the table name is optional. If the table name were omitted, the column name would be searched in
the current table, which is the one to which the calculated column or measure belongs. However,
we strongly suggest that you always specify the complete name (table and column) to avoid any
 confusion.

54 Microsoft Excel 2013: Building Data Models with PowerPivot

IntelliSense
Whenever you write a formula in Excel or PowerPivot, a special help feature called IntelliSense
shows all the possible function names and references that you can use in a formula. When you
write a formula in the PowerPivot window, if you type an opening square bracket, IntelliSense
shows only the columns of the current table (the one in which you are defining the calculated
column or the calculated field). If you type the first letters of a table name, you will see both
table name and column names in IntelliSense. In Figure 3-4, you can see the list of columns
of the current table displayed when the opening square bracket is typed into the calculated
column formula.

FIGURE 3-4 IntelliSense shows all the fields of the current table when you type the opening square
bracket into the PowerPivot window.

Understanding calculated columns and fields

Now that you know the basics of DAX syntax, you need to learn one of the most important concepts
in DAX: the difference between calculated columns and calculated fields. Even though they might
appear similar initially because you can make some calculations both ways, they are in reality very
 different. Understanding the differences between them is a key to unlocking the true power of DAX.

Calculated columns
In Chapter 2, “Using the unique features of PowerPivot,” you learned how to define a calculated
column. You can do this by using the Add button on the Design tab of the ribbon, or you can sim-
ply move to the last column, which is named Add Column, and start writing the formula. The DAX
 expression has to be inserted into the formula bar, and IntelliSense helps you write the expression.

 CHAPTER 3 Introducing DAX 55

A calculated column is just like any other column in a PowerPivot table. It can be used in rows,
 columns, filters, or values of a PivotTable. The DAX expression defined for a calculated column
 operates in the context of the current row of the table that it belongs to. Any reference to a column
returns the value of that column in the current row. You cannot access directly the values of other
rows.

Note As you will see in the “Aggregate functions” section later in this chapter, there are
DAX functions that aggregate the value of a column for the whole table. The only way
to get the value of a subset of rows is to use DAX functions that return a table and then
 operate on it. In this way, you can aggregate column values for a range of rows, or get a
single value from another row and operate on it. Using DAX, you can make a reference to a
table and apply filters so that only the desired rows are retrieved.

Calculated columns are easy to create and use. You already saw in Figure 3-2 how to define the
Gross Margin column to compute the amount of the gross margin:

[Gross Margin] = Sales[SalesAmount] - Sales[TotalProductCost]

The expression of the calculated column is evaluated for each row, and its result is stored in the
table as if it were a column retrieved from the database. Calculated columns are familiar to Excel users
because they behave in a very similar way to Excel table columns.

Calculated fields
You might remember from Chapter 2 that the definition of gross margin as a value works fine with
calculated columns, but if you want to compute the gross margin as a percentage, then you will need
to define a calculated field. It is now time to deepen your understanding of calculated fields and the
syntax needed to write them.

A calculated field is a DAX expression that uses the same syntax as a calculated column; the
 difference is the context of evaluation. A calculated field is evaluated in the context of the cell of the
PivotTable, whereas a calculated column is computed at the row level of the PowerPivot table. The
cell context depends on the user selections on the PivotTable. When you use SUM (SalesAmount)
in a calculated field, you mean the sum of all the rows that are aggregated under the PivotTable
cell, whereas when you use Sales[SalesAmount] in a calculated column, you mean the value of
 SalesAmount in this row.

When you create a calculated field, you can define a value that changes according to the filter that
the user applies to a PivotTable. In this way, you can solve the problem of calculating the gross margin
percentage.

56 Microsoft Excel 2013: Building Data Models with PowerPivot

To define a calculated field, you can choose New Calculated Field drop-down menu item displayed
by clicking the Calculated Fields button on the PowerPivot tab of the Excel ribbon (see Figure 3-5)
when a cell in a PivotTable is selected.

FIGURE 3-5 The New Calculated Field option on the PowerPivot ribbon.

At this point, the Calculated Field dialog box (see Figure 3-6) opens, and you can choose the table
name that contains the new calculated field, its name, a description, and finally, the DAX formula and
the format string.

FIGURE 3-6 Here, you can see the Calculated Field window, which is useful for creating a new calculated field.

Now, let’s focus on the formula to define a new measure. In a first attempt, you might define it by
using the same DAX expression used in the calculated column, but you would get the error shown in
Figure 3-7.

 CHAPTER 3 Introducing DAX 57

FIGURE 3-7 If you define the GrossMarginPerc calculated field with the same DAX expression as a calculated
column, you get an error message.

You display the error message by clicking Check Formula. The reason for this error is that the
context of execution is not a single row, but a group of rows. That group corresponds to the selection
that is implicitly defined by the cell that has to be calculated in the PivotTable. In such a context,
which contains multiple rows, there is no way to refer to the value of the column Sales[SalesAmount]
because a column has a value only when it is used in the context of a single row.

To avoid this error, you need to define an expression that divides the sum of the gross margin by
the sum of the sales. This expression makes use of the SUM function, which aggregates all the rows
filtered by the current selection in the PivotTable (which will be the year, as we said before). The
 following is the correct DAX expression for the measure calculated field; it is also shown in Figure 3-8.

= SUM (Sales[Gross Margin]) / SUM (Sales[SalesAmount])

58 Microsoft Excel 2013: Building Data Models with PowerPivot

FIGURE 3-8 The correct definition of the GrossMarginPerc measure calculated field.

Differences between calculated columns and calculated fields
Even if they look similar, there is a big difference between calculated columns and calculated
fields. The value of a calculated column is computed during data refresh and uses the current
row as a context; it does not depend on user activity on the PivotTable. A calculated field
operates on aggregations of data defined by the context of the current cell: source tables are
filtered according to the coordinates of the cell, and data is aggregated and calculated using
these filters. In other words, a calculated field always operates on aggregations of data in the
evaluation context, and for this reason the default execution mode does not reference any
single row. The evaluation context is explained further in Chapter 7.

Choosing between calculated columns and measures
Now that you have seen the difference between calculated columns and calculated fields, you might
be wondering when it is better to use one or the other. Sometimes either is an option, but in most
situations, your computation needs determine your choice.

You have to define a calculated column (in the PowerPivot table grid window) whenever you want
to do the following:

■■ Place the calculated results in an Excel slicer or see results in rows or columns in a PivotTable
(as opposed to the Values area).

 CHAPTER 3 Introducing DAX 59

■■ Define an expression that is strictly bound to the current row. (For example, Price * Quantity
cannot work on an average of the two columns.)

■■ Categorize text or numbers (for example, a range of values for a measure such as customer
age, such as 0–18, 18–25, and so on).

However, you must define a calculated field whenever you want to display the resulting calculation
values that reflect PivotTable selections made by the user and see them in the Values area of
 PivotTables. For example:

■■ When you calculate profit percentage of a PivotTable selection

■■ When you calculate ratios of a product compared to all products but filter both by year or
region

Some calculations can be covered both by calculated columns and calculated fields, even if
 different DAX expressions must be used in these cases. For example, you can define the GrossMargin
as a calculated column as follows:

= Sales[SalesAmount] - Sales[TotalProductCost]

but it can be defined as a calculated field too:

= SUM (Sales[SalesAmount]) – SUM (Sales[TotalProductCost])

The final result is exactly the same. We suggest that you favor the calculated field in this case
 because, being evaluated at query time, doing so does not consume memory and disk space.
 However, this factor is really important only in large datasets. When the size of the workbook is not
an issue, you can use the method you are more comfortable with.

Cross-references
It is obvious that a calculated field can refer to one or more calculated columns. It might be less
intuitive that the opposite is also true: A calculated column can refer to one or more calculated
fields. In this way, it forces the calculation of a field for the context defined by the current
row. This operation transforms and consolidates the result of a calculated field into a column,
which will not be influenced by user actions. Obviously, only certain operations can produce
 meaningful results because usually a calculated field makes computations that strongly depend
on the selection made by the user in the PivotTable.

60 Microsoft Excel 2013: Building Data Models with PowerPivot

Handling errors in DAX expressions

Now that you have seen some basic formulas, you should learn how to handle invalid calculations
gracefully if (or should we say when?) they happen. A DAX expression might contain invalid
 calculations because the data that it references is not valid for the formula. For example, you might
have a division by zero or a column value that is not a number being used in an arithmetic operation
such as multiplication. You must learn how these errors are handled by default and how to intercept
these conditions if you want to handle them in a special way.

Before you learn how to handle errors, it is worth describing the different kinds of errors that
might appear during a DAX formula evaluation. They are:

■■ Conversion errors

■■ Arithmetical operations

■■ Empty or missing values

Conversion errors
The first kind of error that we analyze is the conversion error. As you have seen before in this chap-
ter, DAX values are automatically converted between strings and numbers whenever the operator
requires it. To review the concept, all of these are valid DAX expressions:

"10" + 32 = 42
"10" & 32 = "1032"
10 & 32 = "1032"
DATE (2010,3,25) = 3/25/2010
DATE (2010,3,25) + 14 = 4/8/2010
DATE (2010,3,25) & 14 = "3/25/201014"

These formulas are always correct because they operate with constant values. But what about the
following one?

SalesOrders[VatCode] + 100

Because the first operator of this sum is obtained by a column (which, in this case, is a text column),
you must be sure that all the values in that column are numbers to ascertain whether they will be
converted and the expression will be evaluated correctly. If some of the content cannot be converted
to suit the operator’s needs, you will incur a conversion error. Here are typical situations:

"1 + 1" + 0 = Cannot convert value '1+1' of type string to type real
DATEVALUE ("25/14/2010") = Type mismatch

 CHAPTER 3 Introducing DAX 61

To avoid these errors, you need to write more complex DAX expressions that contain error
 detection logic to intercept error conditions and always return a meaningful result.

Arithmetical operations
The second category of errors is arithmetical operations, such as division by zero or the square root of
a negative number. These kinds of errors are not related to conversion; they are raised whenever you
try to call a function or use an operator with invalid values.

In PowerPivot, division by zero requires a special handling because it behaves in a way that is not
very intuitive (except for mathematicians). When you divide a number by zero, PowerPivot usually
returns the special value Infinity. Moreover, in the very special cases of 0 divided by 0 or Infinity
divided by Infinity, PowerPivot returns the special NaN (not a number) value. Because this is a strange
behavior for Excel users to encounter, we have summarized it in Table 3-2.

TABLE 3-2 Special result values for division by zero

Expression Result

10 / 0 Infinity

7 / 0 Infinity

0 / 0 NaN

(10 / 0) / (7 / 0) NaN

It is important to note that Infinity and NaN are not errors, but special values in PowerPivot. In
fact, if you divide a number by Infinity, the expression does not generate an error; rather, it returns 0
(note that in the following expression, 7/0 results in Infinity):

9954 / (7 / 0) = 0

Apart from this special situation, arithmetical errors might be returned when calling a DAX
 function with a wrong parameter, such as the square root of a negative number:

SQRT (-1) = An argument of function 'SQRT' has the wrong data type
 or the result is too large or too small

If PowerPivot detects errors like this, it blocks any further computation of the DAX expression
and raises an error. You can use the special DAX ISERROR function to check if an expression leads to
an error, something that you will use in the “Intercepting errors” section later in this chapter. Finally,
even if special values like NaN are displayed in this way in the PowerPivot window, they are displayed
as errors when shown in an Excel PivotTable and will be detected as errors by the error detection
 functions.

62 Microsoft Excel 2013: Building Data Models with PowerPivot

Empty or missing values
The third category is not a specific error condition. Rather, it is the presence of empty values, which
might result in unexpected results or calculation errors when combining those empty values with
other elements in a calculation. You need to understand how these special values are treated in
 PowerPivot.

DAX handles missing values, blank values, and empty cells in the same way; using the value
BLANK. BLANK is not a real value but a special way to identify these conditions. The value BLANK
can be obtained in a DAX expression by calling the BLANK function, which is different from an empty
string. For example, the following expression always returns a blank value, which is displayed as an
empty cell in the PowerPivot window:

= BLANK ()

On its own, this expression is useless, but the BLANK function becomes useful every time you want
to return an empty value. For example, you might want to display an empty cell instead of 0, as in the
following expression that calculates the total discount for a sale transaction and leaves the cell blank if
the discount is 0:

= IF (Sales[DiscountPerc] = 0, BLANK (), Sales[DiscountPerc] * Sales[Amount])

If a DAX expression contains a BLANK, it is not considered an error, but an empty value. So
an expression containing a BLANK might return a value or a blank, depending on the calculation
 required. For example, the following expression:

= 10 * Sales[Amount]

returns BLANK whenever Sales[Amount] is BLANK. In other words, the result of an arithmetic product
is BLANK whenever one or both terms are BLANK. This propagation of BLANK in a DAX expression
happens in several other arithmetical and logical operations, as shown in the following examples:

 CHAPTER 3 Introducing DAX 63

BLANK () + BLANK () = BLANK ()
10 * BLANK () = BLANK ()
BLANK () / 3 = BLANK ()
BLANK () / BLANK () = BLANK ()
BLANK () || BLANK () = FALSE
BLANK () && BLANK () = FALSE

However, the propagation of BLANK in the result of an expression is not produced by all formulas.
Some calculations do not propagate BLANK, but return a value depending on the other terms of
the formula. Examples of these are addition, subtraction, division by BLANK, and a logical operation
between a BLANK and a valid value. In the following expressions, you can see some examples of these
conditions, along with their results:

BLANK () - 10 = -10
18 + BLANK () = 18
4 / BLANK () = Infinity
0 / BLANK () = NaN
FALSE || BLANK = FALSE
FALSE && BLANK = FALSE
TRUE || BLANK = TRUE
TRUE && BLANK = FALSE

Empty values in Excel
Excel has a different way of handling empty values. In Excel, all empty values are considered
0 whenever they are used in a sum or in multiplication, but they return an error if they are part
of division or of a logical expression.

Understanding the behavior of empty or missing values in a DAX expression and using BLANK
to return an empty cell in a calculation are also important skills that control the results of a DAX
 expression. You can often use BLANK as a result when you detect wrong values or other errors, as you
are going to learn in the next section.

Intercepting errors
Now that you have seen the various kinds of errors that can occur, you can learn a technique to
intercept errors and correct them or, at least, show an error message that contains some meaningful
information. The presence of errors in a DAX expression frequently depends on the value contained
in tables and columns referenced in the expression itself. So you might want to control the presence
of these error conditions and return an error message. The standard technique is to check whether an
expression returns an error and, if so, replace the error with a message or a default value. A few DAX
functions have been designed to do this.

64 Microsoft Excel 2013: Building Data Models with PowerPivot

The first of them is the IFERROR function, which is very similar to the IF function, but instead of
evaluating a TRUE/FALSE condition, it checks whether an expression returns an error. You can see two
typical uses of the IFERRROR function here:

= IFERROR (Sales[Quantity] * Sales[Price], BLANK ())
= IFERROR (SQRT (Test[Omega]), BLANK ())

In the first expression, if either Sales[Quantity] or Sales[Price] are strings that cannot be converted
into a number, the returned expression is an empty cell; otherwise the product of Quantity and Price
is returned.

In the second expression, the result is an empty cell every time the Test[Omega] column contains a
negative number.

When you use IFERROR this way, you follow a more general pattern that requires the use of
ISERROR and IF:

= IF (
 ISERROR (Sales[Quantity] * Sales[Price]),
 BLANK (),
 Sales[Quantity] * Sales[Price]
)

= IF (
 ISERROR (SQRT (Test[Omega])),
 BLANK (),
 SQRT (Test[Omega])
)

You should use IFERROR whenever the expression that has to be returned is the same one that is
being tested for an error; you do not have to duplicate the expression in two places, and the resulting
formula is more readable and easier to fix later without introducing errors. You should use IF,
 however, when you want to return the result of a different expression when there is an error.

For example, ISNUMBER can be used to detect whether a string (the price in the first line) can
be converted to a number and then calculate the total amount; otherwise, an empty cell can be
 returned.

= IF (ISNUMBER (Sales[Price]), Sales[Quantity] * Sales[Price], BLANK ())
= IF (Test[Omega] >= 0, SQRT (Test[Omega]), BLANK ())

The second example simply detects whether the argument for SQRT is valid or not, calculating the
square root only for positive numbers and returning BLANK for negative ones.

 CHAPTER 3 Introducing DAX 65

A particular case is the test against the empty value. The ISBLANK function detects an empty value
condition, returning TRUE if the argument is BLANK. This is important especially when a missing
value has a meaning different from a value set to 0. In the following example, we calculate the cost
of shipping for a sales transaction, using a default shipping cost for the product if the weight is not
specified in the sales transaction:

= IF (
 ISBLANK (Sales[Weight]),
 RELATED (Product[DefaultShippingCost]),
 Sales[Weight] * Sales[ShippingPrice]
)

If we had just multiplied product weight and shipping price, we would have gotten an empty cost
for all the sales transactions with missing weight data.

Formatting DAX code

Before continuing with the explanation of the DAX language, it is useful to cover a very important
aspect of DAX: formatting the code. DAX is a functional language, meaning that no matter how
complex it is, a DAX expression is always a single function call with some parameters. The complexity
of the code is reflected in the complexity of the expressions that are passed as parameters to the
outermost function.

For this reason, it is normal to see expressions that span 10 lines or more. Seeing a 20-line DAX
expression may seem strange to you, but it is normal, and you will get used to it. Nevertheless, as
formulas start to grow in length and complexity, it is extremely important that you learn how to write
them correctly so that they are readable by humans.

There is no “official” standard to format DAX code, yet we believe that it is important to describe
the standard that we used with our code. It is probably not perfect, and you might prefer something
different. The only thing you need to remember when formatting your code is: “Do not write
 everything on a single line, or you will get in trouble before you know it.”

To demonstrate why formatting is so important, we show here a formula that you will use in Chapter
12, “Performing date calculations in DAX” It is somewhat complex to learn, but not the most complex
formula you will create. Here is what the expression looks like if you do not format it in some way:

IF (COUNTX (BalanceDate, CALCULATE (COUNT(Balances[Balance]), ALLEXCEPT
(Balances, BalanceDate[Date]))) > 0, SUMX (ALL (Balances[Account]), CALCULATE
(SUM(Balances[Balance]), LASTNONBLANK (DATESBETWEEN (BalanceDate[Date],
BLANK(),LASTDATE(BalanceDate[Date])), CALCULATE (COUNT(Balances[Balance]
))))), BLANK ())

66 Microsoft Excel 2013: Building Data Models with PowerPivot

Trying to understand what this formula computes is nearly impossible because you have no
idea which is the outermost function and how the different function calls are merged to create
the complete flow of execution. We have seen too many examples of formulas written this way by
 customers that, at some point, ask for help in understanding why the formula returns incorrect
 results. Guess what? The first thing we do is format the expression—only then can we start working
on it.

The same expression, properly formatted, looks like this:

=IF (
 COUNTX (
 BalanceDate,
 CALCULATE (
 COUNT (Balances[Balance]),
 ALLEXCEPT (Balances, BalanceDate[Date])
)
) > 0,
 SUMX (
 ALL (Balances[Account]),
 CALCULATE (
 SUM (Balances[Balance]),
 LASTNONBLANK (
 DATESBETWEEN (
 BalanceDate[Date],
 BLANK (),
 LASTDATE (BalanceDate[Date])
),
 CALCULATE (COUNT (Balances[Balance]))
)
)
),
 BLANK ()
)

The code is the same, but now it is much easier to identify the three parameters of IF and, most
important, to follow the blocks that raise naturally from the indented lines and see how they create
the complete flow of execution. Yes, the code is still hard to read, but now the problem is with DAX,
not the formatting. And you are shortly going to learn how to read and manage DAX.

Thus, this is the set of rules that we use in this book and the associated workbooks:

■■ Keywords like IF, COUNTX, and CALCULATE are always separated from any other term with a
space, and they are always written in uppercase.

■■ All column references are written in the form TableName[ColumnName], with no space
 between the table name and the opening square bracket.

■■ Commas are always followed by a space and are never preceded by a space.

■■ If the formula fits one single line, then no other rule need to be applied.

 CHAPTER 3 Introducing DAX 67

■■ If the formula does not fit on a single line, then the following applies:

• The function name stands on a line by itself, with the opening parenthesis.

• All the parameters are on separate lines, indented with four spaces and with a comma at
the end of the expression.

• The closing parenthesis is aligned with the function call and stands on a line by itself.

These are the basic rules that we use. If you find a way to express formulas that best fits your
 reading attitude, then use it. The goal of formatting is to make the formula easier to read, so use the
way that works best for you. The most important thing to remember when defining your personal set
of formatting rules is that you always need to see errors as soon as possible. If, on the unformatted
code shown earlier, DAX alerts you to a missing closing parenthesis, you will have a very hard time
spotting the error. On the other hand, it is much easier to see how the closing parenthesis matches
the opening function calls in the formatted code.

help with formatting DAX
Formatting DAX is not easy because you need to write it using a small font in a text box, and
unfortunately, Excel does not provide an editor for it. Nevertheless, a few hints might help you
when writing your DAX code:

■■ If you want to make the text bigger, you can use Ctrl + the mouse wheel to increase the
font size, making it easier to see the code.

■■ If you want to add a new line to the formula, you can press Shift+Enter.

■■ If editing in the text box is really difficult, you can always copy the code into another
 editor, like Notepad, make your changes, and then paste the formula into the text box
again.

Finally, whenever you look at a DAX expression, it is hard to understand at first glance whether it
is a calculated column or a calculated field. Thus, we use an equals sign (=) in this book to define a
calculated column and the assignment operator (:=) to define calculated fields:

CalcCol = SUM (Sales[SalesAmount]) is a calculated column
CalcFld := SUM (Sales[SalesAmount]) is a calculated field

68 Microsoft Excel 2013: Building Data Models with PowerPivot

Common DAX functions

Now that you have learned about the fundamentals of DAX and how to handle error conditions,
let’s take a brief tour through its most commonly used functions and expressions. Writing a DAX
 expression is often similar to writing an Excel expression because many functions are similar, if not
identical. Excel users often find using PowerPivot very intuitive, thanks to their previous knowledge
of Excel. In the remaining part of this chapter, you will see some of the most frequently used DAX
 functions, which you are likely to use to build your own PowerPivot data models.

You can see all the formulas shown in this section in the companion workbook
“CH03-02-Aggregation Functions.xlsx.”

Aggregate functions
Almost every PowerPivot data model needs to work on aggregated data. DAX offers a set of
 functions that aggregate the values of a column in a table and return a single value. We call this
group of functions aggregate functions. For example, the expression:

= SUM (Sales[Amount])

calculates the sum of all the numbers in the Amount column of the Sales table. This expression
 aggregates all the rows of the Sales table if it is used in a calculated column, but it considers only the
rows that are filtered by slicers, row, columns, and filter conditions in a PivotTable whenever it is used
in a measure.

The main four aggregate functions (SUM, AVERAGE, MIN, and MAX) operate only on numeric
 values. These functions are identical to the corresponding Excel functions both in name and in
 behavior: any data that is not numeric is ignored in the operation. In PowerPivot, these functions
work only if the column passed as an argument is of numeric or date type. In Figure 3-9, you can see
an example of calculated fields defined by these aggregate functions.

FIGURE 3-9 In this PivotTable, you can see different calculated fields using statistical functions that aggregate
SalesAmount values.

As in Excel formulas, DAX offers an alternative syntax to these functions to make the calculation on
columns that can contain both numeric and non-numeric values, such as text columns. That syntax simply
adds the suffix A to the name of the function to get the same name and behavior as the same function in
Excel. However, these functions are useful only for columns containing TRUE/FALSE values because TRUE

 CHAPTER 3 Introducing DAX 69

is evaluated as 1 and FALSE as 0. Any value for a text column is always considered to be 0. Empty cells
are never considered in the calculation. So even if these functions can be used in non-numeric columns
without retuning an error, their results are not always the same as Excel because there is no automatic
 conversion to numbers for text columns. These functions are named AVERAGEA, COUNTA, MINA, and
MAXA, and Figure 3-10 displays an example of their usage in measures operating in a TRUE/FALSE column
of the sample table shown in the same worksheet. The table is used as a linked table in PowerPivot, and
the lower part of the screenshot is a PivotTable based on that PowerPivot data.

FIGURE 3-10 TRUE/FALSE is evaluated as 1/0 in A-suffixed statistical functions.

Even though these aggregate functions have the same name, there is a difference in the way they
are used in DAX and Excel. In PowerPivot, a column has a type, and its type determines the behavior
of aggregate functions in that column. Excel handles a type for each cell, whereas PowerPivot handles
a type for each column. PowerPivot deals with data in tabular form (technically called relational data)
with well-defined types for each column, whereas Excel formulas work on heterogeneous cell values
without well-defined types. If a column in PowerPivot is of a number type, all the values can be only
numbers or empty cells. If a column is of a text type, these functions behave as if it were always 0
(except for COUNTA), even if the text can be converted to a number, whereas in Excel, the value is
considered a number on a cell-by-cell basis. For these reasons, these DAX functions are not very
 useful for text-type columns.

The only interesting function in the group of A-suffixed functions is COUNTA. It returns the
 number of cells that are not empty and works on any type of column. If you are interested in counting
all the cells in a column containing an empty value, you can use the COUNTBLANK function. Finally, if
you want to count all the cells of a column regardless of their content, you want to count the number
of rows of the table, which can be obtained by calling the COUNTROWS function. (It gets a table as
a parameter, not a column.) In other words, the sum of COUNTA and COUNTBLANK for the same
column of a table is always equal to the number of rows of the same table, as shown in Figure 3-11.

COUNTROWS(Sales) = COUNTA (Sales[SalesPersonID])
 + COUNTBLANK (Sales[SalesPersonID])

70 Microsoft Excel 2013: Building Data Models with PowerPivot

FIGURE 3-11 The COUNTROWS function returns the sum of COUNTA and COUNTBLANK of the same column.

So you can use four functions to count the number of elements in a column or table:

■■ COUNT operates only on numeric columns

■■ COUNTA operates on any type of columns

■■ COUNTBLANK returns the number of empty cells in a column

■■ COUNTROWS returns the number of rows in a table

There is still another very important counting function. DISTINCTCOUNT, which does exactly
what its name suggests: it counts the distinct values of a column, which it takes as its only parameter.
 DISTINCTCOUNT counts the BLANK value as one of the possible values. Thus, as shown in
Figure 3-12, the DISTINCTCOUNT of the IsActive column for category Drink is 3 because BLANK is a
possible value.

FIGURE 3-12 DISTINCTCOUNT counts the BLANK value as a valid value.

Note DISTINCTCOUNT is a function introduced in the 2012 version of PowerPivot. To
 compute the number of distinct values of a column in the previous version of PowerPivot,
you had to use COUNTROWS(DISTINCT(ColName)). The two patterns return the very same
result, but DISTINCTCOUNT is easier to read, requiring only a single function call.

 CHAPTER 3 Introducing DAX 71

A last set of statistical functions can apply an expression to each row of a table and then operate
an aggregation on that expression. This set of functions is very useful, especially when you want to
make calculations using columns of different related tables. For example, if a Sales table contains
all the sales transactions and a related Product table contains all the information about a product,
including its cost, you might calculate the total internal cost of a sales transaction by defining a
 calculated field with this expression:

Cost := SUMX (Sales, Sales[Quantity] * RELATED (Product[StandardCost]))

This function calculates the product of Quantity (from the Sales table) and the StandardCost of the
sold product (from the related Product table) for each row in the Sales table, and it returns the sum of
all these calculated values.

Generally, all the aggregate functions ending with an X behave in the following way: they calculate
an expression (the second parameter) for each of the rows of a table (the first parameter) and return a
result obtained by the corresponding aggregate function (SUM, MIN, MAX, or COUNT) applied to the
result of those calculations.

Evaluation context is important for understanding how this calculation works. You will learn more
about this behavior in Chapter 7, “Understanding evaluation contexts.” The X-suffixed functions
 available are SUMX, AVERAGEX, COUNTX, COUNTAX, MINX, and MAXX.

Logical functions
Sometimes you may want to build a logical condition in an expression—for example, to implement
different calculations depending on the value of a column or to intercept an error condition. In
these cases, you can use one of the logical functions in DAX. In the section, “Handling Errors in DAX
 Expressions,” earlier in this chapter, you learned the two most important functions of this group,
which are IF and IFERROR. All of these functions are very simple and do what their names suggest:
AND, FALSE, IF, IFERROR, SWITCH, NOT, TRUE, and OR. If, for example, you want to compute the
Amount as Quantity multiplied by Price only when the Price column contains a correct numeric value,
you can use the following pattern:

Amount := IFERROR (Sales[Quantity] * Sales[Price], BLANK ())

If you did not use IFERROR and the Price value contains an invalid number, the result for the
 calculated column would be an error because if a single row generates a calculation error, that error is
propagated to the whole column. The usage of IFERROR, however, intercepts the error and replaces it
with a blank value.

Another interesting function in this category is SWITCH, which is useful when you have a column
 containing a low number of distinct values and you want to get different behaviors depending on the

72 Microsoft Excel 2013: Building Data Models with PowerPivot

value. For example, the Size column in the DimProduct table contains L, M, S, and XL, and you might want
to decode this value in a more meaningful column. You can obtain the result by using nested IF calls:

SizeDesc :=
 IF (DimProduct[Size] = "S", "Small",
 IF (DimProduct[Size] = "M", "Medium",
 IF (DimProduct[Size] = "L", "Large",
 IF (DimProduct[Size] = "XL", "Extra Large", "Other"))))

A more convenient way to express the same formula using SWITCH is:

SizeDesc :=
 SWITCH (
 DimProduct[Size],
 "S", "Small",
 "M", "Medium",
 "L", "Large",
 "XL", "Extra Large",
 "Other"
)

The code in this expression is more readable, even though it is not faster, because, internally,
SWITCH statements are translated into nested IF.

tIP Because SWITCH is converted into a set of nested IF, where the first one that matches
takes precedence, you can test multiple conditions in the same expression using this
 pattern:

SWITCH (
 TRUE (),
 DimProduct[Size] = "XL" && DimProduct[Color] = "Red", "Red and XL",
 DimProduct[Size] = "XL" && DimProduct[Color] = "Blue", "Blue and XL",
 DimProduct[Size] = "L" && DimProduct[Color] = "Green", "Green and L"
)

Using TRUE as the first parameter means “Return the first result where the condition
 evaluates to true.”

Information functions
Whenever you need to analyze the type of an expression, you can use one of the information
 functions in DAX. All of these functions return a TRUE/FALSE value and can be used in any logical
 expression. They are ISBLANK, ISERROR, ISLOGICAL, ISNONTEXT, ISNUMBER, and ISTEXT.

 CHAPTER 3 Introducing DAX 73

It is important to note that when a table column is passed as a parameter, the functions ISNUM-
BER, ISTEXT, and ISNONTEXT always return TRUE or FALSE, depending on the data type of the
column and on the empty condition of each cell. In Figure 3-13, you can see how the column Price
(which is of Text type) affects the result of these calculated columns.

ISBLANK = ISBLANK (Sales[Price])
ISNUMBER = ISNUMBER (Sales[Price])
ISTEXT = ISTEXT (Sales[Price])
ISNONTEXT = ISNONTEXT (Sales[Price])
ISERROR = ISERROR (Sales[Price] + 0)

FIGURE 3-13 The results from information functions are based on column type.

You might be wondering whether ISNUMBER can be used with a text column just to check whether
a conversion to a number is possible. Unfortunately, you cannot use this approach; if you want to
test whether a text value can be converted to a number, you must try the conversion and handle the
error if it fails. For example, to test whether the column Price (which is of type String) contains a valid
number, you must write:

IsPriceCorrect = ISERROR (Sales[Price] + 0)

To get a TRUE result from the ISERROR function, for example, DAX tries to add a zero to the Price
to force the conversion from a text value to a number. The conversion fails for the N/A price value, so
you can see that ISERROR is TRUE.

Suppose, however, that you try to use ISNUMBER, as in the following expression:

IsPriceCorrect = ISNUMBER (Sales[Price])

In this case, you will always get FALSE as a result because, based on metadata, the Price column is not
a number but a string.

74 Microsoft Excel 2013: Building Data Models with PowerPivot

Mathematical functions
The set of mathematical functions available in DAX is very similar to the same set in Excel, with the
same syntax and behaviors. The most commonly used mathematical functions are ABS, EXP, FACT,
LN, LOG, LOG10, MOD, PI, POWER, QUOTIENT, SIGN, and SQRT. Random functions include RAND
and RANDBETWEEN. Finally, there are several functions to round numbers that deserve an example;
in fact, you might use several approaches to get the same result. Consider these calculated columns,
along with their results in Figure 3-14:

FLOOR = FLOOR (Tests[Value], 0.01)
TRUNC = TRUNC (Tests[Value], 2)
ROUNDDOWN = ROUNDDOWN (Tests[Value], 2)
MROUND = MROUND (Tests[Value], 0.01)
ROUND = ROUND (Tests[Value], 2)
CEILING = CEILING (Tests[Value], 0.01)
ISO.CEILING = ISO.CEILING (Tests[Value], 0.01)
ROUNDUP = ROUNDUP (Tests[Value], 2)
INT = INT (Tests[Value])
FIXED = FIXED (Tests[Value], 2, TRUE)

FIGURE 3-14 A summary of different rounding functions.

As shown, FLOOR, TRUNC, and ROUNDDOWN are very similar, except in the way that you can
specify the number of digits to round to. CEILING and ROUNDUP are very similar in their results,
but in the opposite way. You can see a few differences in the way the rounding is done between the
MROUND and ROUND functions. Finally, it is important to note that FLOOR and MROUND functions
do not work on negative numbers, whereas other functions do.

text functions
Almost all the text functions available in DAX are similar to those available in Excel, with only a few
exceptions: CONCATENATE, EXACT, FIND, FIXED, FORMAT, LEFT, LEN, LOWER, MID, REPLACE, REPT,
RIGHT, SEARCH, SUBSTITUTE, TRIM, UPPER, and VALUE. These functions are useful for manipulating
text and extracting data from strings that contain multiple values. For example, in Figure 3-15, you
can see an example of the extraction of first and last name from a string containing these values
separated by commas, with the title in the middle that we want to remove.

 CHAPTER 3 Introducing DAX 75

FIGURE 3-15 Here, you can see an example of extracting first and last names using text functions.

You start by calculating the position of the two commas, and then you use these numbers to
 extract the right part of the text. The SimpleConversion column implements a formula that might
return wrong values if there are fewer than two commas in the string (and it raises an error if there
are no commas at all), whereas the FirstLastName column implements a more complex expression
that does not fail in the case of missing commas. In fact, you can see in Figure 3-15 that the last row
shows an incorrect value in the SimpleConversion column, whereas the FirstLastName column shows
a correct conversion.

Comma1 = IFERROR (FIND (",", People[Name]), BLANK ())
Comma2 = IFERROR (FIND (",", People[Name], People[Comma1] + 1), BLANK ())
SimpleConversion = MID (People[Name], People[Comma2] + 1, LEN (People[Name]))
 & " " & LEFT (People[Name], People[Comma1] - 1)
FirstLastName = TRIM (
 MID (
 People[Name],
 IF (
 ISNUMBER (People[Comma2]),
 People[Comma2],
 People[Comma1]
) + 1,
 LEN (People[Name])
)
)
 & IF (
 ISNUMBER (People[Comma1]),
 " " & LEFT (People[Name], People[Comma1] - 1),
 ""
)

The FirstLastName column is defined by a long DAX expression, but you must use it to avoid pos-
sible errors that would propagate to the whole column if even a single value generated an error.

Conversion functions
You learned at the beginning of this chapter that DAX converts data types automatically to adjust
them to the needs of the operators. Even if this happens automatically, a set of functions still can
perform explicit conversion of types.

CURRENCY can transform an expression into a currency type, whereas INT transforms an
 expression into an integer. DATE and TIME take the date and time parts as parameters and return a
correct DATETIME. VALUE transforms a string into a numeric format, whereas FORMAT gets a numeric

76 Microsoft Excel 2013: Building Data Models with PowerPivot

value as the first parameter and a string format as its second one and can transform numeric values
into strings.

Date and time functions
In almost every type of data analysis, handling time and date is an important aspect. PowerPivot
has a large number of functions that operate on date and time. Some of them correspond to similar
 functions in Excel and make simple transformations to and from a datetime data type. The date and
time functions are DATE, DATEVALUE, DAY, EDATE, EOMONTH, HOUR, MINUTE, MONTH, NOW,
SECOND, TIME, TIMEVALUE, TODAY, WEEKDAY, WEEKNUM, YEAR, and YEARFRAC. To make more
complex operation on dates, such as comparing aggregated values year over year or calculating the
year-to-date value of a measure, there is another set of functions called Time Intelligence functions,
which will be described later in the book in Chapter 12.

As mentioned before in this chapter, a datetime data type internally uses a floating-point number
wherein the integer part corresponds to the number of the day (starting from December 30, 1899)
and the decimal part indicates the fraction of the day in time. (Hours, minutes, and seconds are
converted into decimal segments of the day.) So adding an integer number to a datetime value
increments the value by a corresponding number of days. However, most of the time the conversion
functions are used to extract day, month, and year from a date. The following example demonstrates
how to extract this information from a table containing a list of dates (see Figure 3-16 for the result of
the code):

Day = DAY (Calendar[Date])
Month = FORMAT (Calendar[Date], "MM - mmmm")
Year = YEAR (Calendar[Date])

FIGURE 3-16 Here, you can see an example of extracting date information using date and time functions.

As Figure 3-16 shows, the Month column is calculated using the FORMAT function, which is
 classified as a text function but is very useful for building a string that keeps the right sort order of
the months by placing the month number before the month name. (The Day and Year columns are
sorted in the right order because of their numeric data type.)

 CHAPTER 3 Introducing DAX 77

Relational functions
Two useful functions that enable you to navigate through relationships inside a DAX formula are
 RELATED and RELATEDTABLE. In Chapters 7 and 8, you learn all the details of how these functions
work, but for now, it is worthwhile to discuss them briefly here.

You already know that a calculated column can reference column values of the table in which it is
defined. Thus, a calculated column defined in FactResellerSales can reference any column of the same
table. But what can you do if you must refer to a column in another table? In general, you cannot use
columns in another table unless a relationship is defined between the two tables. However, if the two
tables are in a relationship, then the RELATED function enables you to access columns in the related
table.

For example, you might want to compute a calculated column in the FactResellerSales table that
checks whether the product that has been sold is in the Bikes category and, if so, apply a reduction
factor to the standard cost. To compute such a column, you must write an IF function that checks the
value of the product category, which is not in the FactResellerSales table. Nevertheless, a chain of
relationships starts from FactInternetSales, reaching DimProductCategory through DimProduct and
DimProductSubcategory, as Figure 3-17 shows.

FIGURE 3-17 FactResellerSales has a chained relationship with DimProductCategory.

It does not matter how many steps are necessary to travel from the original table to the related
one, DAX will follow the complete chain of relationships and return the related column value. Thus,
the formula for the AdjustedCost column can be expressed as follows:

=IF (
 RELATED (DimProductCategory[EnglishProductCategoryName]) = "Bikes",
 [ProductStandardCost] * 0.95,
 [ProductStandardCost]
)

78 Microsoft Excel 2013: Building Data Models with PowerPivot

In a one-to-many relationship, RELATED can access the “one” side from the “many” side because,
in that case, only one row in the related table exists, if any. If no row is related with the current one,
RELATED simply returns BLANK. This is different than Excel VLOOKUP function, which returns an error
if there is no match.

If you are on the “one” side of the relationship and you want to access the “many” side, RELATED
is not helpful because many rows from the other side might be available for a single row in the
current table. In that case, RELATEDTABLE will return a table containing all the related rows. For
example, if you want to know how many products are in each category, you can create a column in
 DimProductCategory with this formula:

= COUNTROWS (RELATEDTABLE (DimProduct))

This calculated column will show the number of products that are related for each product
 category, as shown in Figure 3-18.

FIGURE 3-18 Count the number of products by using RELATEDTABLE.

Like RELATED, RELATEDTABLE can follow a chain of relationships, always starting from the “one”
side and going in the direction of the “many” side.

Using basic DAX functions

Now that you have seen the basics of DAX, it is useful to check your knowledge of developing a
sample reporting system. With the limited knowledge you have so far, you cannot develop a very
complex solution. Nevertheless, even with a basic set of functions, you can already build something
interesting.

Start loading the following tables from AdventureWorksDW into a new Excel workbook: DimDate,
DimProduct, DimProductCategory, DimProductSubcategory, and FactResellerSales. The resulting data
model is shown in Figure 3-19. You can find this workbook under the name “CH03-05-Final Exercise.
xlsx.”

 CHAPTER 3 Introducing DAX 79

FIGURE 3-19 The Diagram view shows the structure of the demo data model.

To test your new knowledge of the DAX language, let’s start solving some reporting problems with
this data model.

First, count the number of products and enable the user to slice them by category and
 subcategory, so long as it is with any of the DimProduct columns. It is clear that you cannot rely
on calculated columns to perform this task; you need a measure that simply counts the number of
 products, called NumOfProducts. The code is as follows:

NumOfProducts := COUNTROWS (DimProduct)

Although this measure seems very easy to write, there is one problem. Because DimProduct is a
slowly changing dimension of type 2 (that is, it can store different versions of the same product to
track changes), the same product might appear several times in the table, and you want to count it
only once. This common scenario can be solved easily by counting the number of distinct values in
the natural key of the table. The natural key of DimProduct is the ProductAlternateKey column. Thus,
the correct formula to count the number of products is

NumOfProducts := DISTINCTCOUNT (DimProduct[ProductAlternateKey])

80 Microsoft Excel 2013: Building Data Models with PowerPivot

You can see in Figure 3-20 that although the number of rows in the table is 606, the number of
products is 504. This number correctly takes into account different versions of the same product,
counting them only once.

FIGURE 3-20 DISTINCTCOUNT is a useful and common function for counting.

This measure is very useful and, when browsed through a PivotTable, slicing by category and
 subcategory produces a report like the one shown in Figure 3-21.

FIGURE 3-21 A sample report using NumOfProducts.

In this report, the last row is blank because there are products without a category and
 subcategory. After investigating the data, you discover that many of these uncategorized products
are nuts, whereas other products are of no interest. Thus, you decide to override the Category and
Subcategory columns with two new columns following this pattern:

■■ If the category is not empty, then display the category.

■■ If the category is empty and the product name contains the word “nut,” show “Nuts” for the
category and “Nuts” for the subcategory.

■■ Otherwise, show “Other” as both category and subcategory.

Because you must use these values to slice data, this time you cannot use calculated fields; you
must create some calculated columns. You will put these two calculated columns in the DimProduct
table and call them ProductCategory and ProductSubcategory. The code is as follows:

 CHAPTER 3 Introducing DAX 81

ProductSubcategory =
 IF (
 ISBLANK (DimProduct[ProductSubcategoryKey]),
 IF (
 ISERROR (FIND ("Nut", DimProduct[EnglishProductName])),
 "Other",
 "Nut"
),
 RELATED (DimProductSubcategory[EnglishProductSubcategoryName])
)

This formula is interesting because it uses several of the functions you have just learned. The first IF
checks whether the ProductSubcategoryKey is empty and, if so, it searches for the word “Nut” inside
the product name. FIND returns an error if there is no match, which is why you must surround it with
the ISERROR function, which intercepts the error and enables you to take care of it. If FIND returns
an error, the result is “Other”; otherwise, the formula computes the subcategory name from the
 DimProductSubcategory by using the RELATED function.

tip The ISERROR function can be slow in such a scenario because it raises errors if it does
not find a value. Raising thousands if not millions of errors is a time-consuming operation.
In such a case, it is often better to use the fourth parameter of the FIND function (which is
the default return value if there is no match) to always get a value back, avoiding the error
handling. In this formula, we are using ISERROR for educational purposes. In a production
data model, it is always best to take care of performance speed and use the fourth
 parameter.

With this calculated column, you have solved the issue with ProductSubcategory. The very same
code, by replacing ProductSubcategory with ProductCategory, yields to the second calculated
column, which makes the same operation with the category (the difference between the formulas is
indicated in bold):

ProductCategory =
 IF (
 ISBLANK (DimProduct[ProductSubcategoryKey]),
 IF (
 ISERROR (FIND ("Nut", DimProduct[EnglishProductName])),
 "Other",
 "Nut"
),
 RELATED (DimProductCategory[EnglishProductCategoryName])
)

82 Microsoft Excel 2013: Building Data Models with PowerPivot

Note that you still must check whether ProductSubcategoryKey is empty because this is the only
available column in DimProduct to test if the product has a category. In fact, because of the way
data is shaped in AdventureWorks, all subcategories have a category, and a product does not have
a category if it does not have a subcategory. In different data models, you might face different
 scenarios, so that, for example, you might need to check ISBLANK (RELATED (DimProductCateg
ory[ProductCategoryKey])).

If you now browse this new data model in a PivotTable and use the newly created calculated
 column on the rows, you get the result shown in Figure 3-22.

FIGURE 3-22 You can build a report with the new product category and subcategory.

As you have seen, creating a report and shaping it to fit your analytical needs is easy with a basic
knowledge of the DAX language. DAX is the key to many complex reports that you will be able to
build with PowerPivot for Excel. You have a long way to go before you become a real DAX master, but
the ability to create this report alone, without help from anybody else, is already very rewarding.

 473

Symbols
& (ampersand)

&& (AND) operator, 53, 395
string concatenation operator, 51, 53

* (asterisk), multiplication operator, 53
. (commas), in DAX code, 66
= (equals sign)

equal to operator, 53
in calculated column and calculated field

definitions, 67
! (exclamation mark), NOT operator, 53
> (greater than) operator, 53
>= (greater than or equal to) operator, 53
< (less than) operator, 53
>= (less than or equal to) operator, 53
- (minus sign), subtraction/negation operator, 53
<> (not equal to) operator, 53
() (parentheses), precedence or grouping operator, 53
+ (plus sign), addition operator, 53
' ' (quotation marks, single) in DAX literals, 53
/ (slash), division operator, 53
∑ symbol before column names, 267
∑ Values field, 38
| (vertical bar), OR operator, 53

A
ABC analysis, 407–411

computing with linked-back table, 435–438
data model to compute ABC classes for

products, 408
dynamic, using VBA, 451–455

ABS function, 74
Access, loading data from, 143–144
actions defined in SSAS database, showing, 468
ADDCOLUMNS function, 441

Index

using in DAX queries, 425–427
using VALUES with, 426

AddConnection function, 456
additive measures, 353
additive nature of formula, many-to-many relationships

and, 385
Add To Data Model button, 159
AdventureWorks sample database, 5
aggregate functions, 68–71

A-suffixed, 69
changing, 46
using for date calculations, 349–351
X-suffixed, 71

aggregating and comparing over time, 339–352
ALL function, 193

filter context and, 209
parameter of CALCULATE, 212
removal of filters with, 194
using in FILTER expression in CALCULATE, 219

ALLSELECTED function, 230–232
detecting if column is filtered in hierarchy, 246
restoring original filter context of table, 297
using with RANKX, 377

Analysis Services. See SSAS
AND function, 71
AND operator, 53

combining filters, 395
conditions for filtering with CALCULATE, 218
TRUE/FALSE arguments in CALCULATE, 221

animation (in a bubble chart), 276
arithmetical operations in DAX, 61
arithmetic operators, 53
Assign Macro dialog box, 449
A-suffixed aggregate functions, 69
.atomsvc file extension, 156

technical information about source data feeds, 168
AVERAGE function, 68

averages, computing moving averages

474 Index

averages, computing moving averages, 363–368
AVERAGEX function, 71, 391

KEEPFILTERS function with, 399
VALUES function with, 394

Avg SalesGrowth calculated field, 297
Azure Marketplace. See Windows Azure Marketplace

B
banding, 369–374, 433
Bar Chart button, DESIGN tab of ribbon, 263
bar charts, 273. See also charts
basket analysis, implementing, 400–407

data model using many-to-many
relationships, 400

BI (Business Intelligence) tools, 463
features of different tools, 464

BLANK value, 62
DISTINCTCOUNT function and, 70

blank values, removing from P/C hierarchy, 252
BLOB type in DAX, 50
Booleans, TRUE/FALSE type in DAX, 50, 52
Browser View Options dialog box, 121
bubble charts, 275–277. See also charts
buttons, adding to a worksheet, 449

C
calculated columns, 54–55

ABC analysis, 407–411
choosing between calculated fields and, 58
creating in DAX, 37–41
creating using CALCULATE, 222
creating YearMonth column for Power View, 303
differences from calculated fields, 58
row context, 184
using in maps to concatenate address, 280
using SUM function in, 185–186

Calculated Field dialog box, 56, 186
calculated fields, 42, 55–58

as base field for KPI, 295
choosing between calculated columns and, 58
creating with DEFINE, 418
defining a KPI, 295
differences from calculated columns, 58
filtering in Power View Filters pane, 267
Sum of SalesAmount (example), 180
using CALCULATE function, 212
using fields in, 186–188

using instead of default summarization in Power
View, 306

CALCULATE function, 209–232
ALLSELECTED function, 230–232
altering the filter context, 211–213
calculating closing balance over time, 353–362
calculating monthly average of YTD sales, 351
circular dependencies, 225–229
computing difference over previous year, 351–

353
computing moving annual total (MAT), 348
computing prior year (PY) periods, 346–348
creating price bands, 371
currency conversions with, 415
evaluation contexts and, 179
examples of use, 213–221

filtering a column, 213–217
filtering with complex conditions, 218–221

forcing context transition, 384
KEEPFILTERS with, 395–400
reasons it's needed, 209
rules for, 229
time intelligence with, 343–346
using in row context, 222–225

context transition, 223–225
using to calculate average price, 350
using with ADDCOLUMNS, 426

CALCULATETABLE function, 221, 453
using in queries, 424
using on top of FILTER, 405

calculations
automatic, columns representing, 267
date calculations in DAX, 323–368

building a calendar table, 323–339
performing using hierarchies, 238–248

Calendar hierarchy, 234
calendar tables

aggregating and comparing over time, 339–352
building using DAX, 323–339

characteristics of correct calendar tables, 324
formulas for Dates table, 325
working with multiple calandar tables, 326–

329
cards

Card view using Power View metadata, 310
Card view with two slicers, 272
using card visualization in Power View, 270

Cartesian product, 439
CEILING function, 74
charts

 customers, new and returning, computing

 Index 475

changing Power View tables into, 264
drill-down feature, 283
inside tile section, filtering by tile, 285
multipliers in, 286
using as filters, 265
using in Power View, 272–277

bar and column charts, 273
line charts, 273
pie charts, 274
scatter charts, 275–277

circular dependencies in formulas, 225–229
Clipboard

loading data from, 165–166
avoiding use of Clipboard as data source, 166

CLOSINGBALANCE functions, 356–360
closing balance over time, 353–362

OPENINGBALANCE and CLOSINGBALANCE
functions, 356–360

semiadditive measures, 353–356
updating balances using transactions, 360–362

CLOSINGBALANCEYEAR function, 357
column-based databases, normalization and, 94
column charts, 273. See also charts
column filtering, tables before importing, 139
column-oriented databases, 24
column references in DAX code, 66
columns

adding to hierarchies, 235
evaluation context defined by, 183
filtering in Power View Filters pane, 267
filtering single column with CALCULATE, 213–217
naming when using multiple tables, 328
reduction of number returned as result with

SUMMARIZE, 430
rollup, 430

column summarization metadata, 305
Comma Separated Values. See CSV files
commas (.) in DAX code, 66
comparison operators, 53
CONCATENATE function, 74
concatenation operator (&), 53
Connection Properties dialog box, 178, 460
Connections button, DATA tab of Excel ribbon, 457
connections to data sources

Access database, 144
AddConnection function, 456
credentials for SharePoint data, 132
loading data from existing connection, 418
opening existing connection, 143–144

options for SQL Server database connection, 136
refreshing, 176–178
SQL Server Analysis Services, 146
understanding data connections, 459–462

interactions between Excel and PowerPoint
connections, 460

using VBA to modify data model, 462
Windows Azure Marketplace, 175

contexts. See evaluation contexts
context transition

AVERAGEX and, 394
forcing with CALCULATE function, 384
RANKX and, 378
using CALCULATE, 223–225

conversion errors in DAX, 60
conversion functions, 75
Convert To Formulas option, 21
COUNTA function, 69
COUNTAX function, 71
COUNTBLANK function, 69
COUNT function, 70

using to count products (example), 87
COUNTROWS function, 69, 190

USERELATIONSHIP function with, 405
using, 79

COUNTX function, 71
Create a New PivotTable dialog, 9
Create PivotTable dialog box, 14
CreatePivotTable function, 448
CreatePivotTable macro, running, 450
Create Relationship button, Design tab of PowerPivot

ribbon, 90
Create Relationship dialog box, 90
Create Set Based On Row Items… command, 312
credentials

avoiding storage on SharePoint, 132
Credentials section, Data Refresh

configuration, 131
cross-filtering, 203, 383
CROSSJOIN function, 439
CSV (Comma Separated Values) files, 163

adjusting content of, 165
handling more complex CSV files, 164

CUBEMEMBER formulas, 22
CUBEVALUE formulas, 22
currency conversion, 411–416
CURRENCY function, 75
Currency type in DAX, 50
customers, new and returning, computing, 386–390

Customize Ribbon page, Excel Options dialog box

476 Index

Customize Ribbon page, Excel Options dialog
box, 445

D
dashboards, creating, 19–23
databases

column-oriented, 24
in-memory, 25
loading data from into PowerPivot, 135–142
logical (user) versus physical (technician) view

of, 92
number of, PowerPivot vs. SSAS, 471
row-oriented, 23
row-oriented versus column-oriented, 25
size, PowerPivot vs. SSAS, 469

data category metadata, 305
data feeds

data source for PowerPivot, 134
loading data into PowerPivot, 171–173
SharePoint libraries exported as, 155
SQL Server Reporting Services reports as, 167

data filtering. See filtering; filters
data loading. See loading data
data marts, 110. See also data warehouses

and data loaded from OLAP cubes, 152
data models, 83–116

building, 88
building in PowerPivot versus building

reports, 44
computing ABC classes for products, 408
connecting Excel to SharePoint Excel data

model, 125
creating for Power View, 299–304

understanding Power View metadata, 304–
310

creating relationships and adding tables to data
model, 434

creating using SharePoint and PowerPivot, 155
creating with many tables, 8
data sources in, 134
defined, 13
denormalizing within SQL queries, 95–103
Excel data model, 241
for basket analysis, 400
for currency conversion, 412
importing data using VBA, 456–459

interaction between contexts and
relationships, 195

linked tables in, 159
loading data directly into PowerPivot model, 32
many-to-many relationships in, 382
merging data from different tables, 83
modifying using VBA, 462
multiple calendar tables in, 327
normalization and denormalization, 91–94
of complex solutions, 319
producing a report without, 84–88
querying, 14
refreshing in PowerPivot, 48
relationships and, 89–91
report data imported into, 169
sets and, 314
Tabular, loading data from, 152
understanding OLTP and data marts, 106–112
understanding over-denormalization, 104–106
using advanced relationships, 112–116

Data Refresh, managing from SharePoint, 129–132
data sources

limitations for refreshing data, 135
understanding, 133–135

complete list for PowerPivot, 134
data types in DAX, 50–52

conversion errors, 60
conversion functions, 75
Date, 52
TRUE/FALSE, 52

data warehouses, 106
choosing between OLTP system and, 112
ignoring Kimball methodology rules, 113
Kimball methodology, 110

DATEADD function, 346
date columns

choosing which to use, 342
in different tables, 327
specifying for date table, 341

DATE function, 75, 76
dates and time

date and time functions, 76
date calculations in DAX, 323–368

aggregating and comparing over time, 339–
352

building calendar table, 323–339
closing balance over time, 353–362

Date data in DAX, 52
sets, use with dates, 314

DATESBETWEEN function, 348

 drill-through

 Index 477

DateStream, 175
DATESYTD function, 343, 347
date tables, marking calendar tables as, 340
DATEVALUE function, 76
DAX (Data Analysis eXpression) language, 37–48,

49–82
advanced DAX, 369–416

banding, 369–374
calculated columns and ABC analysis, 407–

411
computing new and returning

customers, 386–390
currency conversion, 411–416
implementing basket analysis, 400–407
KEEPFILTERS function, 390–400
ranking, 374–381
using many-to-many relationships, 382–386

calculated columns, 54–55
calculated columns versus calculated fields, 58
calculated fields, 55–58
choosing between calculated columns and

measures, 58
common DAX functions, 68–78

aggregate functions, 68–71
conversion functions, 75
information functions, 72
logical functions, 71–72
mathematical functions, 74
relational functions, 77
text functions, 74

creating calculated column, 37–41
date calculations in, 323–368

aggregating and comparing over time, 339–
352

building a calendar table, 323–339
closing balance over time, 353–362
computing moving averages, 363–368

evaluation contexts and, 179
formatting code, 65–67
handling errors in DAX expressions, 60–65

arithmetical operations, 61
conversion errors, 60
from empty or missing values, 62
intercepting errors, 63

querying Tabular database, 152
understanding calculations, 49–54

DAX data types, 50–52
DAX syntax, 49–50
DAX values, 53
IntelliSense, 54

using as query language, 417–444
ABC analysis with linked-back table, 435–438
ADDCOLUMNS function, 425–427
creating Excel table with EVALUATE, 418–423
CROSSJOIN function, 439
GENERATE function, 440–442
linking back a DAX query, 431–435
making query dynamic with VBA, 451–455
querying with DAX Studio, 443
SUMMARIZE function, 427–431
understanding EVALUATE, 417
using common functions in queries, 423–425

using basic DAX functions, 78–82
DAX Studio, querying with, 443
DAY function, 76
decorating reports in Power View, 267
default field set metadata, 305

using, 308
DEFINE function, 418
denormalization. See normalization and

denormalization
dense or nondense ranking, 381
DESIGN tab of the ribbon

Map button, 278
Power View format options, 264
Slicer button, 272
Switch Visualization button group, 268

DEVELOPER tab of the ribbon, 445–450
enabling, 445
Insert button, adding button to a worksheet, 449
opening VBA window, 447
Record Macro button, 446
Stop Recording, 447
VBA operations that create PivotTable, 448

Diagram view, 18
designing hierarchies in, 235
showing tables belonging to a perspective, 321

dimensions, 110
in star schema, 111

Distinct Count aggregate function, 46
DISTINCTCOUNT function, 70

using, 80
DISTINCT function, using instead of VALUES, 427
division by zero, 61
Do Not Summarize option, 307
drill-down, 281–283
drill-through, 322

comparison of SSAS and PowerPivot for
Excel, 467

EARLIER function

478 Index

E
EARLIER function, 191

second parameter, number of steps to skip, 192
EARLIEST function, 192
EDATE function, 76
Edit DAX dialog box, 421
E-mail Notifications section, Data Refresh

configuration, 131
empty or missing values (in DAX), 62

COUNTBLANK function, 70
end of the fiscal year, 342
ENDOFYEAR function, 357
Enterprise Client Access License, 118
EOMONTH function, 76
errors

handling in DAX expressions, 60–65
in calculated fields, 57
trying to access column name in calculated

field, 188
EVALUATE statement, 417

creating Excel table with, 418–423
evaluation contexts, 179–208

context transition using CALCULATE, 223–225
creating a parameter table, 206–208
creating row context with iterators, 189–192
defined, 180
expression inside CALCULATE, 212
FILTER, ALL, and context interactions, 192–194
filter and row contexts, 185
filter context, 183
recap of important points, 205
row context, 184–185
SUMMARIZE function, 430
testing understanding of, 185–188

using fields in calculated fields, 186–188
using SUM in calculated column, 185–186

working with many tables, 195–204
filter context and relationships, 198
ISFILTERED and ISCROSSFILTERED

functions, 201–204
row contexts and relationships, 196–198
VALUES function, 199–200

EXACT function, 74
Excel

aggregate functions in, 69
data model, 6, 241
empty values in, 63
loading data from files into PowerPivot, 160–163
security and, 465

Excel 2010, PowerPivot for Excel 1.0, 5
Excel 2013

data model, 13
PowerPivot add-in, 15

Excel Options dialog box, Customize Ribbon
page, 445

Excel Services
document size limit, 119
Enterprise Client Access License for, 118
opening document on SharePoint, 120

Existing Connection dialog box, 459
Existing Connections button, 143, 418
Existing Connections dialog box, 419
EXP function, 74
exporting data, SharePoint libraries as data

feeds, 155
external sources, loading data from, 31–37

F
FACT function, 74
facts, 110

in star schema, 111
FALSE function, 71
Field Settings button, ANALYZE tab of ribbon, 86
Field Settings dialog box, 87
Fields, Items, & Sets button, Options ribbon of

Excel, 311
fields, using in calculated field, 186–188
file size, SharePoint and PowerPivot Gallery, 124
filter context, 183. See also evaluation contexts

altering by adding or removing filters, 209
and row context, 185
AVERAGEX and context transition, 394
created by SUMMARIZE, 430
defining set items, 311
ignoring existing context with ALL function, 193
in ranking, 377
intraction with relationships, 198
ISFILTERED and ISCROSSFILTERED functions, 201–

204
many-to-many relationships and, 383
modifying with CALCULATE, 211–213
RANKX and context transition, 378
recap of important points, 205
relationships and, 195
restoring original with ALLSELECTED

function, 297

 HOUR function

 Index 479

transforming row context into, using
CALCULATE, 223

FILTER function, 190
filtering new customers, 389
filtering price bands, 371
understanding FILTER, ALL, and context

interactions, 192–194
use as filter parameter in CALCULATE, 217
using ALL with, 219
using CALCULATETABLE with, 221
using in CALCULATE formula, 216
using in queries, 423

ADDCOLUMNS function and, 426
using on complete table in CALCULATE

expression, 215
using with EVALUATE, 418

filtering
tables before importing, 138
testing whether column is filtered, 242
using CALCULATE function

filtering on single column, 213–217
filtering with complex conditions, 218–232

filters
charts acting as, 265
evaluation context defined by, 183
KEEPFILTERS function, 390–400
removal with ALL function, 194
tiles as, 284
using Filters pane in Power View, 265–267

application of filters to entire report or part
of it, 266

FIND function, 74, 81
FIRSTDATE function, 358
FIRSTNONBLANK function, 356
fiscal year, 342
FIXED function, 74
flexibility, PowerPivot for Excel vs. SSAS, 467
FLOOR function, 74
FORMAT function, 74

using with dates, 76
formulas. See also DAX language

circular dependencies in, 225–229
converting PivotTable to, 18–23
definitions for Date table in Excel, 325
evaluation context, 181

filter and row contexts, 185
Excel versus DAX, 37
fomatting in DAX code, 65

IntelliSense help with, 54
FROM clause, SQL queries, 96
From Database button, PowerPivot ribbon, 32, 135

From Analysis Services Or Power Pivot
option, 146

From Other Sources button, PowerPivot ribbon, 134
From Text button, 163
FULL OUTER JOIN relationships, 100
functions

common DAX functions, 68–78
aggregate functions, 68–71
conversion functions, 75
information functions, 72–73
logical functions, 71–72
mathematical functions, 74
relational functions, 77
text functions, 74

displaying in VBA window, 448
in DAX code, 67
using basic DAX functions, 78–82
using common functions in queries, 423–425
VBA Model object, 456

G
GENERATE function, using in DAX queries, 440–442
Get External Data From Data Feeds feature, 168
GROUP BY clause in a SELECT statement (SQL), 429
GroupBy columns, 429
growth, analyzing, 290

H
HASONEVALUE function, 208, 344

using with RANKX, 377
Hide From Client Tools, 93
hierarchies, 233–260

building, 235
creating on multiple tables, 236
overview, 233–234
using parent/child (P/C) hierarchies, 248–259

maximum number of levels, 251
using to perform calculations, 238–248
when to build, 235

holidays table, 334
HOUR function, 76

identity relationship

480 Index

I
identity relationship, 91
IFERROR function, 64, 71

using with VALUES for price bands, 373
IF function, 64, 71

example of use, 81
order or, testing hierarchy lievels, 244
using nested IF calls, 72

images
adding to reports in Power View, 267
pictures in column in Card view, 271

Import Data dialog box, 419
Infinity (special value), 61
information functions, 72–73
in-memory databases, 25
INNER JOIN relationships, 100
INNER type of relationship, 99
Insert Pivot dialog box, 36
integers

Integer type in DAX, 50
INT function, 75

IntelliSense, 54
interactive reports, building using tiles in Power

View, 285
ISBLANK function, 65, 72
ISCROSSFILTERED function, 201, 203
ISERROR function, 72

using, 81
ISFILTERED function, 201–204

detecting hierarchy level, 244
detecting whether hierarchy Level column is

filtered, 254
inability to detect filter source, 245
testing whether column is filtered, 242

ISLOGICAL function, 72
ISNONTEXT function, 72
ISNUMBER function, 64, 72
ISTEXT function, 72
iterators, creating row context with, 189–192

J
JOIN predicate (SQL queries), 96
JOINs, types of, 100

OUTER JOIN and chains of relationships, 102

K
KEEPFILTERS function, 390–400
Keep Unique Rows, flagging column with, 309
Key Performance Indicator (KPI) dialog box, 294
key performance indicators. See KPIs
keywords in DAX code, 66
Kimball methodology, 110

data warehouses not using, 113
KPIs (key performance indicators), 289–299

creating new KPI, 294
defined, 294
defining month as good, bad, or

outstanding, 296

L
labels, table default label in Card view, 271
LASTDATE function, 348, 354

using in closing balance calculations, 357
LASTNONBLANK function, 355, 361

using, 356
last twelve months (LTM), 348
LAYOUT tab of ribbon, changing map charts, 281
LEFT function, 74
LEFT OUTER JOIN relationships, 100
LEN function, 74
licensing and setup (SharePoint), 118
linear dependencies in formulas, 225
line charts, 273. See also charts

creating in Power View report, 301
linked-back tables, computing ABC analysis

with, 435–438
linked tables, 432

difference from Excel file imports, 163
limitation of, 160
using to load data into PowerPivot, 157–160

linking back a DAX query, 431–435
literals, 53
LN function, 74
loading data, 133–178

from Access, 143–144
Access query designer in PowerPivot, 145

from a database, 135–142
choosing loading method, 137
loading from list of tables, 137–139
loading from SQL query, 141
loading from views, 142

 moving annual total (MAT)

 Index 481

loading relationships, 139
selecting related tables, 140

from Clipboard, 165–166
from data feeds, 171–173
from Excel files into PowerPivot, 160–163
from external source, 31–37
from reports, 167–171
from SharePoint, 153–157
from SQL Server Analysis Services, 146–153

handling of keys in OLAP cube, 150
loading from tabular database, 152
using MDX editor, 148–150

from text files, 163–165
from Windows Azure Marketplace, 173–176
opening existing connections, 143–144
refreshing connections, 176–178
understanding data sources, 133–135
using linked tables, 157–160
using VBA, 456–459

LOCATIONS panel in Power View, 278
drill-down path for map chart, 282

LOG10 function, 74
LOG function, 74
logical functions, 71–72
logical operators, 52, 53
LOOKUPVALUE function, 251

finding original currency of sales, 413
performance and, 414

LOWER function, 74
LTM (last twelve months), 348

M
macros

Assign Macro dialog box, 449
displaying in VBA window, 448
Record Macro button, DEVELOPER tab, 446
running CreatePivotTable macro, 450

Manage Data Refresh button, PowerPivot
Gallery, 130

Manage Relationship dialog box, 403
many side of relationship, source table as, 90
many-to-many relationships, 108, 382–386

advanced DAX coding with, 115
DAX formula for, 384
RELATED and RELATEDTABLE functions not

working with, 197
resulting from over-denormalization, 116
using in basket analysis data model, 400, 407

white paper on, 385
maps

transforming tables into, 27
using in Power View, 277–281

data model for map demo, 278
drill-down path created in LOCATIONS

panel, 282
getting more detailed information, 279
modifying appearance of map charts, 281

using multipliers in, 286
Mark As Date Table button, 340
Mark As Date Table dialog box, 341
mathematical functions, 74
MAT (moving annual total), 348
matrix, using in Power View, 269
MAX function, 68
MAXX function, 71
MDX (Multidimensional Expressions), 22

creating dynamic sets with, 314–318
MDX editor, 147

using, 148–150
measure groups, selecting in MDX query

designer, 148
measures, 42. See also calculated fields
metadata, Power View, 304–310

on Advanced tab of PowerPivot ribbon, 305
using default field set, 308
using Table Behavior dialog box, 309

Microsoft Office 2013, PowerPivot, 6
Microsoft SQL Server 2012 Business Intelligence,

license for, 118
Microsoft Word table, loading into PowerPivot, 165
MID function, 74
MIN function, 68
MINUTE function, 76
MINX function, 71
missing values (in DAX), 62
Model object, 455

useful functions, 456
ModelRelationships function, 456
ModelTables function, 456
MOD function, 74
Modify Set dialog box

designing MDX sets, 315
Recalculate Set With Every Update check

box, 317
MONTH function, 76
month-to-date (MTD), 339
MORE TABLES… option, 8
moving annual total (MAT), 348

moving averages, computing

482 Index

moving averages, computing, 363–368
MROUND function, 74
MTD (month-to-date), 339
multidimensional databases, loading data from, 133
Multidimensional Expressions. See MDX
multipliers, 286

N
naming columns when using multiple tables, 328
NaN (not a number), 61
new and returning customers, computing, 386–390
New Calculated Field option (PowerPivot ribbon), 56
New Set dialog box, 312
NEXTDAY function, 348
nonadditive behavior of formulas with many-to-

many relationships, 385
normalization and denormalization, 91–94

denormalized data in star schema, 111
denormalizing within SQL queries, 95–103
frequent cause of over-denormalization, 103
hiding normalized tables from data model, 93
many-to-many relationships resulting from over-

denormalization, 116
need for normalization, 94
turning normalized data model into

denormalized one, 92
understanding over-denormalization, 104–106
when to denormalize tables, 102

NOT function, 71
NOT operator, 53
NOW function, 76
numbers, conversion to strings, 51

O
OData (Open Data Protocol), 171

DateStream, 175
Office 2013, PowerPivot, 6
OFFSET function, 437
OLAP cubes, 4

handling of keys in, 150
hosted in databases, loading data in

PowerPivot, 133
MDX query language for, 147
querying in PowerPivot database with MDX, 316

OLAP Tools, 18–23
button on ANALYZE tab of Excel ribbon, 21

OLTP, 107–112

deciding wheter to load data from OLTP or data
warehouse, 112

querying OLTP database, 107–109
one side of relationship, target table as, 90
one-to-many relationships in PowerPivot data

model, 91
Open Data Protocol (OData), 171

DateStream, 175
OPENINGBALANCE functions, 356–360
OPENINGBALANCEMONTH function, 358
OPENINGBALANCEQUARTER function, 358
OPENINGBALANCEYEAR function, 358
Open New Excel Workbook button, PowerPivot

Gallery, 125
operator overloading, 51
operators in DAX, 52
Options ribbon of Excel, Fields, Items, & Sets

button, 311
ORDER BY function, 418, 436
OR function, 71
OR operator, 53
OUTER JOINs, 100

and chains of relationships, 102
over-denormalization. See normalization and

denormalization

P
PARALLELPERIOD function, 346
Parameters tab, Publish Options dialog box, 121
parameter tables, creating, 206–208
parent/child (P/C) hierarchies, 248–259

calculated column indicating if a node is a
leaf, 258

canonical representation of, 249
computing depth of browsing, 255
final formula for handling, 258
final result of browsing with a PivotTable, 250
functions for handling, 250
hiding level that is too deep, 254
maximum number of levels, 251
unique qualities of, 248
visualization problems with, 252

Pareto principle, 407
Paste Preview dialog box, 166
PATH function, 250
PATHITEM function, 251
PATHLENGTH function, 254

computing node depth in P/C hierarchies, 254

 query designer

 Index 483

P/C hierarchies. See parent/child hierarchies
percentages

computation with ALLSELECTED, 232
running percentage, 437

perspectives, 318–321
choosing from PowerPivot for SharePoint

model, 321
on Advanced tab of Power Pivot ribbon, 319
selecting, 320

Perspectives dialog box, 319
Picture button, Power View tab of ribbon, 267
pie charts, 274. See also charts

multipliers in, 286
PI function, 74
PivotTable

comparison to PowerPivot, 2
converting to formulas, 18–23
Create PivotTable dialog box, 14
creating in PowerPivot, 35–37
limitations of, 4

POWER function, 74
PowerPivot

creating PivotTable, 35–37
opening main window, 17
sample data for testing, 5
understanding PowerPivot for Excel 2013, 23–25

PowerPivot add-in, activating, 15–18
PowerPivot for Excel 2013, 463

comparison to SSAS, 463–472
database size, 469
different versions of engine, 463
features, 464
number of databases, 471
PowerPivot as prototyping system, 472
programmability and flexibility, 466–468
security, 465–466
translations, 468

PowerPivot for SharePoint, 464
PowerPivot Gallery, 118

connecting Excel to SharePoint Excel data
model, 125

creating Power View report from SharePoint, 128
Manage Data Refresh button, 130
using, 123–124

versioning and file size, 124
PowerPivot query designer, 95–102
Power View, 261–288

basics of, creating a report, 262–268
adding columns to existing table or new

table, 263

changing table into bar chart, 263
decorating a report, 267
using Filters pane, 265–267

creating a report, 25–30
creating data models for, 299–304

calculated column for year and month, 303
difference between PivotTable data models

and, 304
line chart, 301
table as default visualization, 301

defined, 29, 261
herarchies in reports, 234
inability to use sets, 314
metadata, 304–310

default field set, 308
sets of metadata, 305
using Summarize By, 305–307
using Table Behavior dialog box, 309

report, creating for Excel workbook saved in
SharePoint, 127–129

understanding drill-down, 281–283
understanding multipliers, 286
understanding table, matrix, and cards, 268–272

using card visualization, 270
using matrix visualization, 269
using table as a slicer, 272

using charts, 272–277
line charts, 273
pie charts, 274
scatter charts, 275–277

using effectively, 287
using maps, 277–281
using tiles, 283–285

Power View Fields panel, 262
primary keys, 91
prior year. See PY
programmability and flexibility, PowerPivot for Excel

vs. SSAS, 466
prototyping system, PowerPivot as, 472
Publish Options dialog box, Parameters tab, 121
PY (prior year)

computing difference over, 351–353
computing periods from, 346–348

Q
QTD (quarter-to-date), 339
queries. See DAX; query designer
query designer, 95–102

QUOTIENT function

484 Index

intuitive graphical interface, 98
opening and starting query editor, 96
SQL query editor with query written by

designer, 99
types of relationships, 100

QUOTIENT function, 74

R
RANDBETWEEN function, 74
RAND function, 74
ranking, 374–381, 433

RANKX and context transition, 378
RANKX function, 374–381

and context transition, 378
descending or ascending sort and dense or

nondense ranking, 381
expression evaluated to find the rank, 379
steps completed by, 375
using ALL on Products, 376

Real type in DAX, 50
Record Macro dialog box, 447
Refresh function, 456
refreshing data

database size and, 469
data source limitations for, 135
Excel tables versus linked tables, 160
from connections, 176–178
imported data in PowerPivot, 163
linked-back tables and, 435
PowerPivot data model, 48
PowerPivot report on SharePoint, 129–132
Windows Azure Marketplace data, 176

RELATED function, 77, 205
multiple paths connecting two tables, 334
row contexts and, 196
traversing chain of relationships, 197
using in creating hierarchy, 237
using SQL editor instead of, 95

RELATEDTABLE function, 77, 205
row context on one side of relationships, 196
traversing chain of relationships, 197

relational dartabases, loading data into
PowerPivot, 133

relational functions, 77
Relationship pane, query designer, 98
relationships, 89–91

activating with USERELATIONSHIPS, 405
automatic detection of, 12

between linked tables, 159
calendar tables, 326
corrected relationship set in query designer, 101
creating and adding tables to data model, 434
data loading from external source, 34
diagram of, 18
filter and row contexts' beharior regarding, 223
inactivating, 402
in query designer, 98
in star schema, 111
interaction with evaluation contexts, 195, 205

filter context, 198
row contexts, 196–198

loading for tables imported into PowerPivot, 139
many-to-many relationships, 108
ModelRelationships function, 456
OUTER JOIN and chains of relationships, 102
selecting related tables in Table Import

Wizard, 140
self-referencing, 249
types in query designer, 99, 100
understanding, 11
using advanced relationships, 112–116
versus using VLOOKUP, 84
warning about, 10

REPLACE function, 74
Reporting Services in SharePoint mode, 128
reports

data from, loading into PowerPivot, 167–171
report path names, 171

shaping, 289–322
creating data models for Power View, 299–

304
creating dynamic sets with MDX, 314–318
defining sets, 310–314
drill-through, 322
KPIs (key performance indicators), 289–299
Power View metadata, 304–310
using perspectives, 318–321

REPT function, 74
returning and new customers, filtering, 386–390
reverse-linked tables, 432
reverse-linking PowerPivot table in Excel, 418–420
RIGHT function, 74
RIGHT OUTER JOIN relationships, 100
ROLLUP option with SUMMARIZE function, 430
ROUNDDOWN function, 74
ROUND function, 74
rounding functions, 74
ROUNDUP function, 74

 SSAS (SQL Server Analysis Services)

 Index 485

row context, 184–185, 209. See also evaluation
contexts

and temporary columns created by
functions, 426

creating with iterators, 189–192
interaction with relationships, 196–198
no row context in calculated fields, 187
problems with, VALUES function used with

RANKX, 380
recap of important points, 205
relationships and, 195
retrieving value of previous context, 191
transformation by CALCULATE, 211
using CALCULATE in, 222–225

Row Identifier property, updating in Table Behavior
window, 228

Row Identifier setting, Table Behavior dialog
box, 309

row-oriented databases, 23
rows

COUNTROWS function, 69
creating sets based on row items, 312
evaluation context defined by, 183
Keep Unique Rows, column flagged with, 309
limits for tables in Excel and PowerPivot, 421

running totals, computing, 409

S
SAMEPERIODLASTYEAR function, 291, 346–348, 348
scatter charts, 275–277. See also charts
Schedule Details section, Data Refresh

configuration, 131
SEARCH function, 74
SECOND function, 76
security

comparison of PowerPivot for Excel and
SSAS, 465

Security Notice window, .atomsvc connection
created by SharePoint, 156

SELECT command, SQL queries, 96
Select Related Tables button, Table Import

Wizard, 140
Select Table window, 168
self-referencing relationships, not supported by

PowerPivot, 249
semiadditive measures, 353–356
Set Manager dialog box, creating MDX sets, 315
sets

defining, 310–314
dynamic, creating with MDX, 314–318
inability to use in Power View, 314

SharePoint
connecting Excel to SharePoint Excel data

model, 125
licensing and setup, 118
loading data from, 153–157
PowerPivot for SharePoint, 464

as prototyping system, 472
database size and refreshes, 469
features, 464
number of databases, 471
security, 465

PowerPivot for SharePoint model, choosing
perspectives, 321

publising a workbook to, 118–123
creating Power View report, 127–129
managaing PowerPivot data refresh, 129–132
Parameters tab, Publish Options dialog

box, 121
saving a document to SharePoint, 119

SharePoint 2013 and PowerPivot integration, 117
Show Details option for drill-through, 322
SIGN function, 74
Silverlight, requirement for Power View, 26
slicers

evaluation context defined by, 183
numeric columns used as, 307
using table as slicer in Power View, 272–273

sorting, price bands, 372
SQL Server Analysis Services. See SSAS
SQL Server Reporting Services, loading data into

PowerPivot, 167
SQL (Structured Query Language)

Access query designer, 145
denormalizing within SQL queries, 95–103

example of simple query, 95
when to denormalize tables, 102

GROUP BY clause in SELECT statement, 429
loading data into PowerPivot from SQL

query, 141
use of SQL queries when starting data model is

complex, 108
SQRT function, 74
SSAS (SQL Server Analysis Services), 4

comparison to PowerPivot in Excel, 463–472
database size, 469
different versions of engine, 463
features, 464

star schemas

486 Index

number of databases, 471
PowerPivot as prototyping system, 472
programmability and flexibility, 466–468
security, 465
translations, 468

engine in Excel, 241
Excel workbook saved to SharePoint, 126
loading data into PowerPivot from, 146–153
SQL Server Analysis Services 2012 Tabular, 464

star schemas, 111
START AT function, 418
STARTOFMONTH function, 358
STARTOFQUARTER function, 358
STARTOFYEAR function, 358
strategic analysis of data, 290
string concatenation operator (&), 51, 53
strings

conversion to numbers in PowerPivot, 51
String type in DAX, 50

SUBSTITUTE function, 74
Suggest Related Data data source, using for

Windows Azure Marketplace, 176
SUM function, 68

additive measures, 353
using in CALCULATE, 224
using in calculated column, 185–186

Summarize By feature, 305–307
Summarize By Property option, 307

SUMMARIZE function
temporary columns created by, 426
using in DAX queries, 427–431

ROLLUP option, 430
with GENERATE, 442

SUMX function, 71, 189
calculating sales in original currency, 413
computing running total of sales, 409

SWITCH function, 71, 72
Switch Visualization button group, DESIGN tab of

ribbon, 268

T
Table Behavior dialog box, 271, 309
table behavior metadata, 305
Table Behavior window, updating RowIdentifier

property, 228
Table Import Wizard, 32, 134

data connections, 462
DAX query in, 152

for Microsoft SQL Server, 136
loading data from Excel files, 161
loading data from flat files, 164
loading data from OData feeds, 172
loading data from Windows Azure

Marketplace, 174
loading from Access, 144
loading report data into PowerPivot, 169
Preview & Filter button, 138
Select Related Tables button, 140
SQL Server Analysis Services connection, 147

Table Properties button, 100
tables

creating Excel table with EVALUATE, 418–423
default visualization in Power View, 301
in Power View, changing to matrix or cards, 268
inside tile section, filtering by tile, 285
linked and reverse-linked, 432
ModelTables function, 456
using as slicer in Power View, 272–273

tabular databases, loading data from, 152
Test Connection button, 136
text files

data sources for PowerPivot, 134
loading data from, 163–165

text functions, 74
TILE BY panel in Power View, 283
tiles

inability to mix with multipliers, 286
using in Power View, 283–285

time. See dates and time
TIME function, 75, 76
time intelligence functions

Date column, 324
Mark As Date Table and, 340
reflecting fiscal year, 342
using CALCULATE, 343–346

time interval of data refresh operations, 131
TIMEVALUE function, 76
TODAY function, 76
Top 10 Filter dialog box, 397
TopCount function, 316
TOPN function, 432

using in GENERATE query, 441
TOTALMTD function, 342
TOTALQTD function, 342
TOTALYTD function, 340–343
transactions, updating balances with, 360–362
translations, 468
TRIM function, 74

 YTD (year-to-date)

 Index 487

TRUE/FALSE (Boolean) types in DAX, 50, 52
conversion of value to a number, 254

TRUE/FALSE conditions in CALCULATE, 215, 217
changing filter into FILTER equivalent, 221

TRUE function, 71
TRUNC function, 74

U
UPPER function, 74
URLs

for data feeds, 171
for Reporting Services reports, 167, 171

user credentials, 131
USERELATIONSHIP function, using with

COUNTROWS, 405

V
Value Field Settings, 46
Value Field Settings dialog box, 239
VALUE function, 74, 75
VALUES function, 199–200, 205, 208

computing band name, 371
computing each day of a range, 366
restricting filter to current year, 298
used with RANKX, problems with row

context, 380
using IFERROR with, 373
using with ADDCOLUMNS, 426
using with AVERAGEX, 394

values (in DAX), 53
VBA (Visual Basic for Applications), automating

operations with, 445–462
enabling DEVELOPER tab of ribbon, 445–450

making a query dynamic, 451–455
importing data into data model, 456–459
understanding data connections, 459–462
using Model object, 455

versioning of files, SharePoint and PowerPivot
Gallery, 124

VertiPaq database, 463
views, loading data from, 142
Visual Basic for Applications. See VBA, automating

operations with
VLOOKUP function, 7, 84

comparison to relationships, 11
LOOKUPVALUE and, 413

W
WEEKDAY function, 76
week number in a year, calculating, 325
WEEKNUM function, 76
WHERE clause, SQL queries, 96
Windows Azure Marketplace

data from, loading into PowerPivot, 173–176
using Suggest Related Data, 176

Windows Live account ID, 174
Word, loading table into PowerPivot, 165
Workbook Connections dialog box, 177, 458, 460
working days, calculating, 329–339

computing difference in working days, 335–339
in different countries, 332

worksheets, importation from Excel files, 162

X
X-suffixed aggregate functions, 71
xVelocity engine, 23, 463

Y
YEARFRAC function, 76
YEAR function, 76
year-over-year (YOY) comparisons, 351–353
year-to-date. See YTD
YOY (year-over-year) comparisons, 351–353
YTD (year-to-date)

CALCULATE version of, 343
calculating for previous year, 346–348
calculating with TOTALYTD, 339–343

About the Authors

Alberto Ferrari (alberto.ferrari@sqlbi.com) and Marco Russo (marco.russo@
sqlbi.com) are the two founders of SQLBI.COM, where they regularly publish
articles about Microsoft PowerPivot, DAX, and SQL Server Analysis Services
Tabular. They have worked with PowerPivot since the first beta version in 2009.

They both provide consultancy and mentoring on business intelligence
(BI), with a particular specialization in the Microsoft technologies related to
BI. They have written several books and papers about these topics, with a
 particular mention of “SQLBI methodology,” which is a complete methodology
for designing and implementing the back end of a BI solution; and “The
Many-to-Many Revolution,” which is a paper dedicated to modeling patterns
using many-to-many dimension relationships in SQL Server Analysis Services
and PowerPivot.

Marco and Alberto are also regular speakers at major international conferences, such as
TechEd, PASS Summit, SQLRally, and SQLBits.

	Contents at a Glance
	Contents
	Introduction
	Chapter 3: Introducing DAX
	Understanding DAX calculations
	DAX syntax
	DAX data types
	DAX operators
	DAX values

	Understanding calculated columns and fields
	Calculated columns
	Calculated fields

	Handling errors in DAX expressions
	Conversion errors
	Arithmetical operations
	Intercepting errors

	Formatting DAX code
	Common DAX functions
	Aggregate functions
	Logical functions
	Information functions
	Mathematical functions
	Text functions
	Conversion functions
	Date and time functions
	Relational functions

	Using basic DAX functions

	Index
	About the Authors

