Programming Programming Microsoft”

Microsoft’

SQL Server 2008 SQL Server® 2008

Leonard Lobel,
Andrew J. Brust,
Stephen Forte

(twentysix new york)

Leonard Lobel
Andrew J. Brust
Stephen Forte

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12753.aspx

Microsoft
9780735625990 Press

© 2009 Leonard Lobel, Andrew J. Brust, and Stephen Forte. All rights reserved.

Table of Contents

Acknowledgments. e XXi

INtrodUuction i e XXV

Part| Core Fundamentals

1 OVeIVIeW ..ottt e 3
Just How Big s [, . oo oo 3
A Book for Developers 5
A BoOk by DeVvelopers. 6
A Book to Show YoutheWay. 6

Core Technologies 7
Beyond Relational 8
Reaching Out o 9
Business Intelligence Strategies. i i 10
SUMMATY . . 12
2 T-SQLEnhancements 13
Common Table EXPressions 14
Creating Recursive Querieswith CTEso oL, 18
The PIVOT and UNPIVOT Operators.ou e 21
Using UNPIVOT ... 22
Dynamically Pivoting Columns o i 23
The APPLY Operatoro 25
TOP ENhancements e 26
Ranking FUNCHIONS 28
The ROW_NUMBER Function 28
The RANK Function. ... 32
The DENSE_RANK and NTILE Functionsc.oiuon... 34

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

vii

viii

Table of Contents

Using All the Ranking Functions Together 36
Ranking over Groups Using PARTITION BY 37
Exception Handling in Transactions ..., 40
The varchar(max) Data Type.t 42
The WAITFOR Statementt 43
DL TrggeIS . o oo 43
SNAPSHOT [s01ation ...ttt 45
Table-Valued Parameters ... i 45
More than Just Another Temporary Table Solution.................. 46
Working with a Multiple-Row Set................................. 48
Using TVPs for Bulk Inserts and Updates. 49
Working with a Single RowofData 51
Creating Dictionary-Style TVPs o i 54
Passing TVPs Using ADO.NET 56
TVP Limitations 59
New Date and Time Data Types 59
Separation of Datesand Times, 59
More Portable Datesand Times, 60
Time Zone AWAreNeSSttt ettt ettt e 61
Date and Time Accuracy, Storage, and Format...................... 62
New and Changed Functions. 65
The MERGE Statement e 68
Defining the Merge Sourceand Target, 70
The WHEN MATCHED Clauseuuutiii i 71
The WHEN NOT MATCHED BY TARGET Clause 72
Using MERGE for Table Replication 73
The WHEN NOT MATCHED BY SOURCE Clause..................... 74
MERGE OULPUL. . . oo e e 76
Choosing aJoin Method. 78
MERGE DML Behavior. 79
Doing the “Upsert” 81
The INSERT OVER DML Syntax.ot 90
Extending OUTPUT..INTO 90
Consuming CHANGES. 94
The GROUPING SETS OpPerator.ottt 97
Rolling Up by Level 99
Rolling Up All Level Combinations 101

Returning Justthe Top Level 103

Table of Contents

Mixing and Matching 104
Handling NULL Values. 105

New T-SQL Shorthand Syntaxo 109
SUMMATY .« .o 110
3 Exploring SQLCLR i i i e e 111
Getting Started: Enabling CLR Integration. 112
Visual Studio/SQL Server Integrationo i 113
SQL Server Projects in Visual Studio. 114
Automated Deployment. ... 117

SQL CLR Code Attributes i 117

Your First SQL CLR Stored Procedure 118
CLR Stored Procedures and Server-Side Data Access 120
Piping Data with Sq/DataRecord and Sq/MetaData 123
Deployment ... 125
Deploying Your Assembly 125
Deploying Your Stored Procedures. ..., 127
Testing Your Stored Procedures i 129

CLR FUNCHIONS . . o oo e 131
CLR THQQerS ot 136
CLR AQgregatesttt 140
SQL CLR TYPES. . v ettt et et e e e e e e e 145
S UMY o 150
Examining and Managing SQL CLR Types in a Database 152
Best Practices for SQLCLR Usage ...t 159
SUMIMIAIY .« ettt e e e e e 160
4 ServerManagement............... . i 161
What Is SMO? . ..o 161
What About SQL-DMO?o 162
Latest Features in SMO 166
Working with SMO in Microsoft Visual Studio 167
Iterating Through Available Servers............... 169
Retrieving Server Settings 171
Creating Backup-and-Restore Applications 175
Performing Programmatic DBCC Functions with SMO.............. 181
Policy-Based Management. ... 183
ASimple Policy. ... 184

SUMIMIATY et 188

Table of Contents

5 Security in SQLServer2008 i, 189
Four Themes of the Security Framework 189
Secure by Design . ..ot 189
Secureby Default. o 190
Secure by Deployment 190
Secure CommuUNICatioNS.ot 190

SQL Server 2008 Security OVerviewttt 191
SQL Server Loginsouuuiii ittt 192
Database Users. 193

The guest User Account e 194
Authentication and Authorization. ... 195
How Clients Establish a Connection.............................. 195
Password Policies. 197
User-Schema Separation. i 198
Execution Context 200
Encryption Supportin SQL Server. 203
Encrypting DataontheMove i i 204
Encrypting DataatRest i i 206
Transparent Data Encryption in SQL Server 2008. 211
Creating Keys and Certificates., 211
Enabling TDE. oo 213
Querying TDE Views 213
Backing Up the Certificate i 214
Restoring an Encrypted Database. 215

SQL Server Audit 216
Creatingan AuditObject o 216
Auditing OptioNnso 217
Recording Audits to the File System........ 219
Recording Audits to the Windows EventLog...................... 220
Auditing Server EVents 220
Auditing Database Events. o i 221
Viewing Audited Events 222
Querying Audit Catalog Views, 224

How Hackers Attack SQL Server i 225
Direct Connection to the Internet. 225
Weak System Administrator Account Passwords 226

SQL Server Browser Service 226

Table of Contents

SQLINJECtiON. ..\t 226
Intelligent Observation......... i i 227
SUMMANY .« . e 228

pPartII Beyond Relational

6 XML and the Relational Database 231
XML in SQL Server 2000 o 233
XML in SQL Server 2008—the xm/ Data Type. 234

Working with the xm/ Data Type asa Variable..................... 234
Working with XMLin Tables. i, 235
XML Schemaso 237
XMLIN@XES . . o oo 244
FOR XML Commands.ttt e 247
FORXML RAW .. 248
FORXMLAUTO ..o 248
FORXML EXPLICIT . ..o e 250
FOR XML Enhancements.t e e 253
OPENXML Enhancements in SQL Server 2008 261
XMLBulk Load 262
Querying XML Data Using XQUeryooiiiiiiiiinn 263
Understanding XQuery Expressionsand XPath 263
SQL Server 2008 XQuery in Action. 266
SQL Server XQuery Extensions i 275
XML DML, o 276
Convertinga Columnto XML i 278
SUMIMATY o e 280

7 Hierarchical Data and the Relational Database 281
The hierarchyid Data Type 282
Creating a Hierarchical Table 283

The GetLevel Method 284
Populating the Hierarchy i 285
The GetRoot Method. 286
The GetDescendant Method i i, 286
The ToString Method. 288

The GetAncestor Method 293

xi

xii Table of Contents

Hierarchical Table Indexing Strategies 296
Depth-First Indexing 297
Breadth-First Indexing i i 298

Querying Hierarchical Tables......... i i 299
The IsDescendantOf Method 299

Reordering Nodes Within the Hierarchy, 301
The GetReparentedValue Method. 301
Transplanting Subtrees 303

More hierarchyid Methods. i i 305

SUMIMIAY o 306

8 Using FILESTREAM for Unstructured Data Storage 307

BLOBs inthe Database ... 307

BLOBs in the File System 309

What's inan Attribute? 309

Enabling FILESTREAM . ..o e 310
Enabling FILESTREAM for the Machine 311
Enabling FILESTREAM for the Server Instance 312
Creating a FILESTREAM-Enabled Database........................ 313
Creating a Table with FILESTREAM Columns. 315

The OpenSglFilestream Native Client APl 318
File-Streaming in NET. 319
Understanding FILESTREAM Data AcCessc.coouiiiiiinin. 321
The Payoff. 331
Creating a Streaming HTTP Service ..., 333
Buildingthe WPF Client 338

SUMMAIY .« .t e e 340

9 Geospatial DataTypescoviiiiiniin i, 341

SQL Server 2008 Spaces OUt ittt 341

Spatial Models 342
Planar (Flat-Earth) Model 342
Geodetic (Round-EarthyModel. 343

Spatial Data TyYPes oottt 344

Defining Space with Well-Known Text. 344

Working with geometry. 345
The Parse Method 346

The STintersects Method 347

Table of Contents

The ToString Method. 349
The STintersection Method. o .. 350
The STDimension Method 350
Working with geography. 351
ONYoUr Mark 352
The STArea and STLength Methods 355
Spatial Reference IDs. 355
Building Out the EventLibrary Database 355
Creating the Event Media Client Application 357
The STDistance Method i, 363
Integrating geography with Microsoft Virtual Earth 364
SUMIMIATY ettt e e e e e 374

Part Il Reach Technologies

10 The Microsoft Data Access Machine 377
ADO.NET and Typed DataSets., 378
Typed DataSet BasiCs.o 378
TableAdapter Objects 380
Connection String Management. i 381
Using the TableAdapter Configuration Wizard. 382
More on Queries and Parameters. 385
DBDirect Methods and Connected Use of Typed DataSet Objects . ..387
“Pure” ADO.NET: WorkinginCode ..., 387
Querying 101 388
LINQ: A New Syntactic Approach to Data Access.coovvei... 392
LINQtoDataSet. e 392

LINQ Syntax, Deconstructedt 393

LINQ to SQL and the ADO.NET Entity Framework: ORM Comes to .NET....395
Why Not Stick with ADO.NET? 396
Buildingan L2SModel o 397

The Entity Framework: Doing ORM the ADO.NETWay 402

XML Behind the Scenes. 405
Querying the L2Sand EF Modelst 406
Adding Custom Validation Code., 410

Web Services for Data: Using ADO.NET Data Services Against EF Models . . 411
Creating the Service i 412

xiii

xiv Table of Contents

Testing the Service. ... 414
Building the User Interface....... i i i i 414

Data as a Hosted Service: SQL Server Data Services 415
Summary: So Many Tools, So Little Time........... 417
11 The Many Facets of .NET Data Binding.................... 419
Windows Forms Data Binding: The Gold Standard 420
Getting Ready. 420
Generatingthe Ul 421
Examining the Qutput. 423
Convertingto LINQ to SQL 424
Converting to Entity Framework...................... . oL, 425
Converting to ADO.NET Data Services., 426

Data Binding on the Web with ASP.NET. 427
L2Sand EF Are Easy.o 428
Beyond Mere Grids i 429

Data Binding Using Markup.o i i i i 430
Using AJAX for Easy Data ACCESS 430
ASPNET DynamicData. 435

Data Binding for Windows Presentation Foundation 438
Design Time Quandary. 439
Examining the XAML. 441
Grand Finale: Silverlight. 445
SUMIMAIY ot e e e e 447
12 Transactions.ouiiiiiiiiiii i, 449
What Is a Transaction?. 450
Understanding the ACID Properties. ..o, 450

Local Transaction Support in SQL Server 2008. 453
Autocommit Transaction Mode., 453
Explicit TransactionMode i 453
Implicit Transaction Mode i 456
Batch-Scoped TransactionMode 457
Using Local Transactions in ADO.NET, 459
Transaction Terminology. 461
[solation Levels 462
Isolation Levels in SQL Server 2008 462

Isolation Levels in ADO.NET. 467

13

Table of Contents

Distributed Transactions............ ... i 468
Distributed Transaction Terminology................. 469
Rules and Methods of Enlistment................................ 470
Distributed Transactions in SQL Server 2008 472
Distributed Transactions in the .NET Framework................... 473
Writing Your Own Resource Manager ..., 477
Using a Resource Manager in a Successful Transaction 481
Transactions in SQL CLR (CLR Integration)............... 485
Putting It All Together. 489
SUMMAIY .« .o e e e 490
Developing Occasionally Connected Systems 491
Comparing Sync Services with Merge Replication....................... 492
Components of an Occasionally Connected System 493
Merge Replication 494
Getting Familiar with Merge Replication.......................... 494
Creating an Occasionally Connected Application with
Merge Replication 496
Configuring Merge Replication......... ..., 499
Creating a Mobile Application Using Microsoft Visual Studio 2008. . .520
Sync Services for ADO.NET. 533
Sync Services Object Model. 534
Capturing Changes for Synchronization 538
Creating an Application Using Sync Services 543
Additional Considerations, 557
SUMIMIATY et e e e e 560

Part IV Business Intelligence

14

DataWarehousingc.o i iiiiiiiiiininn... 563
Data Warehousing Defined o i 563

The Importance of Data Warehousing. ..., 564
What Preceded Data Warehousing. ..., 566

Lack of Integration Across the Enterprise 567

Little or No Standardized ReferenceData......................... 568

Lack of Historyo 568

Data Not Optimized for Analysis. i, 568
AsaResult... ... 569

Data Warehouse Design 570

Xvi Table of Contents

The Top-Down Approach of Inmon.............................. 572

The Bottom-Up Approach of Kimball 574
What Data Warehousing IsNot. i i, 580
OLAP 580

Data MiniNg 581
Business Intelligence 582
Dashboards and Scorecards. o i i 583
Performance Management ...t 585
Practical Advice About Data Warehousing 585
Anticipating and Rewarding Operational Process Change........... 586
Rewarding Giving Up Control o i i, 586

A Prototype Might Not Work to Sell the Vision.................... 586
Surrogate Key ISsueso 587
Currency Conversion ISSUESot 587
Events vs. Snapshots 588

SQL Server 2008 and Data Warehousing. ..., 589
T-SQL MERGE Statement 589
Change Data Captureooiiiiiii e 592
Partitioned Table Parallelism oo i 600
Star-Join Query Optimization 603
SPARSE Columns 604

Data Compression and Backup Compression...................... 605
Learning More 610
SUMMIATY .« .t e e e 610
15 BasiC OLAP.o i i e e 611
Wherefore BI?. ... 611
OLAP L0%. . oot 613
OLAP Vocabulary.c 614
Dimensions, Axes, Stars, and Snowflakes. 615
Building Your First Cube 617
Preparing Star Schema Objects. i i i, 617

A Tool by Any Other Name 618
Creating the Project. o 619
Adding a Data Source View 621
Creating a Cube with the Cube Wizard 625
Using the Cube Designer 626

Using the Dimension Wizard i, 629

Table of Contents

Using the Dimension Designer ..., 632
Working with the Properties Window and Solution Explorer 634
Processing the Cube 635
RUNNINg QUENIES. . ..o o 636
SUMIMAIY e 637
16 Advanced OLAP ittt 639
What We'll Cover in This Chapter ... 640
MDX in Contexto 640
And Now a Word from Our Sponsor.... 640
Advanced Dimensions and Measures., 641
Keysand Names. o 641
Changing the All Member 644
Adding a Named Query to a Data Source View. 645
Parent/Child Dimensions 647
Member Grouping.o oo 651

User Table Time Dimensions, Attribute Relationships,
Best Practice Alerts, and Dimension/Attribute Typing 652
Server Time DIMensions 660
Fact DIMeNsions. 661
Role-Playing Dimensionst 664
Advanced Measurest 665
Calculations. 667
Calculated Members. 668
Named Sets.o 673
More on Script View 674
Key Performance Indicators. 677
KPI Visualization: Statusand Trend. 678
AConcrete KPl ... 679
Testing KPIs in Browser View, 681
KPI Queries in Management Studio 683
Other Bl Tricks in Management Studio 688
ACHIONS . o o 689
Actions Simply Defined. 690
Designing ACtiONSot 690
Testing ACtiONSo ottt 692
Partitions, Storage Settings, and Proactive Caching 693

Editing and Creating Partitions 694

xvii

xviii

Table of Contents

Partition Storage Options. 696
Proactive Caching 697
Additional Featuresand Tips. ..., 699
Aggregations. 700
Algorithmic Aggregation Design i, 700
Usage-Based Aggregation Design ..., 701
Manual Aggregation Design (and Modification) 702
Aggregation Design Management., 704
Aggregation Design and Management Studio..................... 705
PerspeCtiVes. . . . 705
Translations 707
ROIES . 712
SUMIMIANY .« et e e e e e e 715
17 OLAP Queries, Tools, and Application Development 717
Using EXcel oo 719
Connecting to Analysis Services, 719
Building the PivotTable. 723
Exploring PivotTable Data, 725
SCOrECANdS. . .\ttt 727
Creating and Configuring Charts 729
In-Formula Queryingof Cubes i 732
Visual Studio Tools for Office and Excel Add-Ins................... 737

EXcel Services 738
Beyond Excel: Custom OLAP Development with NET.................... 743
MDX and Analysis Services APIs 744
Moving to MDXo 744
Management Studio asan MDX Client 745
OLAP Development with ADO MD.NET. 758
Using Analysis Management Objects. 769
XMLA at Your (Analysis) Service ..., 771
Analysis Services CLR Support: Server-Side ADO MD.NET........... 782
SUMMIATY .ttt e e e e 792
18 Expanding Your Business Intelligence with Data Mining 793
Why Mine Your Data? 793
SQL Server 2008 Data Mining Enhancements. 797
Getting Started. 798

Preparing Your SourceData. i 798

Table of Contents Xix

Creating an Analysis Services Project....................... 800
Using the Data Mining Wizard and Data Mining Structure Designer. 802
Creating a Mining Structure.o 804
Creatinga Mining Model 805
Editing and Adding MiningModels 810
Deploying and Processing Data Mining Objects 816
Viewing Mining Models 818
Validating and Comparing Mining Models........................ 827
Nested Tables. ... o 830
Using Data Mining Extensions. 836
Data Mining Modeling Using DMX 837

Data Mining Predictions Using DMX s, 848
DMX Templateso 856

Data Mining Applied 856
Data Mining and APl Programming................ 857
Using the Windows Forms Model Content Browser Controls 858
Executing Prediction Queries with ADO MD.NET 860
Model Content Queries ... 860

ADO MD.NET and ASP.NETo 861
Using the Data Mining Web Controls. 862
Developing Managed Stored Procedures 863
XMLA and Data Mining 865

Data Mining Add-ins for Excel 2007........ ..., 866
SUMMATY . .o 877
19 ReportingServicesottt 879
Using the Report Designer. 880
CreatingaBasicReport. ... 883
Applying Report Formattingo o i i 887
Adding a Report Group 890
Working with Parameters 892
Writing Custom ReportCode ...t 897
Creating an OLAP Report. ... 900
Creating a Report with a Matrix Data Region...................... 906
Tablix Explained 910
Adding a Chart DataRegion, 915
Making a Report Interactive i 917
Delivering Reports 919

Deploying to the Report Servero .. 919

XX Table of Contents

Accessing Reports Programmatically 928
Administering Reporting Services.o 937
Using Reporting Services Configuration Manager.................. 937

Using Report Manager and Management Studio 940
Integrating with SharePoint.......... 949

SUMMAIY .« .t e e e e 951
INdeX. ..o e 953

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Chapter 8

Using FILESTREAM for
Unstructured Data Storage

—Leonard Lobel

Applications today commonly work with unstructured data much more frequently than they
did in the past. The accelerating data explosion of our times—relentlessly driven by dropping
storage costs and rising storage capacities—continues to generate more and more unstruc-
tured data for us to handle. While applications of the past required little more than mapping
data entry screens into rows and columns in the database and being able to perform fairly
simple queries, today you also have data like audio, video, and other multimedia-type files
to cope with. You might have to store employee photos, surveillance videos, recorded con-
versations, e-mail messages (including embedded attachments), trend analysis spreadsheets,
content in proprietary formats, or other related artifacts with your database records. These
unstructured types hold binary streams of information, commonly referred to as binary large
object (BLOB) data. This BLOB data needs to be associated with the structured data that lives
in your relational database.

Traditionally, there have been two solutions for combining structured table data with un-
structured BLOB data in Microsoft SQL Server: either keep BLOBs in the database with all
your structured relational data or store them outside the database (in either the file system
or a dedicated BLOB store) with path references in the database that link to their external
locations. Each of these strategies has pros and cons with respect to storage, performance,
manageability, and programming complexity that we'll talk about—Dbut neither of them is
intrinsically native to the core database engine.

FILESTREAM is a major new feature in SQL Server 2008 that provides native support for
efficiently handling BLOBs in the database. By improving the way we can now store and man-
age BLOB data, FILESTREAM offers a more efficient solution over traditional strategies. First
we'll examine the pros and cons of storing BLOB data inside or outside the database, and
then you'll learn how to enhance the storage and manipulation of BLOB data by leveraging
FILESTREAM in SQL Server 2008.

BLOBs in the Database

Your first option, of course, is to store BLOB data directly in the table columns of your data-
base. Do this by declaring a column as a varbinary(max) data type, which can store a single
BLOB up to 2 gigabytes (GB) in size.

307

308

Part Il Beyond Relational

Important You should no longer use the image data type that was used to store BLOBs prior to
SQL Server 2005. The varbinary(max) data type should now be used instead of image, which has
been deprecated and may be removed from future versions of SQL Server.

Because BLOB data is stored inline with all the other structured table data, it is tightly inte-
grated with the database. No effort is required on your part to link the relational data with its
associated BLOB data. Management is therefore simplified, because everything is contained
together within the file groups of a single database. Backup, restore, detach, copy, and attach
operations on the database files encompass all structured and BLOB data together as a single
entity. Transactional consistency is another important benefit of this approach. Because BLOB
data is a physical part of the tables in the database, it is eligible to participate in transactions.
If you begin a transaction, update some data, and then roll back the transaction, any BLOB
data that was updated is also rolled back. Overall, the mixture of structured and BLOB data is
handled quite seamlessly with this model.

Despite all these advantages, however, physically storing BLOBs in the database often results
in a significant (and unacceptable) performance penalty. Because BLOB content (which tends
to contain large amounts of data) is stored inline with structured data, it can consume a dis-
proportionately large percentage of space in the database relative to the structured data.
Query performance suffers greatly as a result, because the query processor needs to sift
through much larger amounts of data in your tables that are holding inline BLOB content.
The BLOBs also don't stream nearly as efficiently with varbinary(max) as they would if they
were held externally in the file system or on a dedicated BLOB store. And last, varbinary(max)
columns can store a maximum size of 2 GB. While this might not represent a limitation for
handling typical documents, it can pose an obstacle for scenarios requiring much larger
BLOB support (for example, where each row in a table of software products has a BLOB con-
taining a distributable International Organization for Standardization [ISO] image of the soft-
ware that can easily exceed 2 GB).

Note If you have modest storage requirements for BLOBs, where they are each typically

1 megabyte (MB) or smaller, you should consider keeping them in the database using the
varbinary(max) data type instead of using the file system. Matters are simplified by storing the
BLOBs inline with your tables rather than externally, and doing so will typically not affect per-
formance when you are working with very few or very small BLOBs. Furthermore, you should
consider caching small, frequently accessed BLOBs rather than repeatedly retrieving them from
the database.

Chapter 8 Using FILESTREAM for Unstructured Data Storage 309

BLOB:s in the File System

To address these performance bottlenecks, you can instead store BLOBs outside the database
as ordinary files in the file system. With this approach, structured data in your relational ta-
bles merely contains path information to the unstructured BLOB data held in the file system.
Applications use this path information as a link reference for tracking and locating the BLOB
content associated with rows in the database tables. Because they are physically held in the
file system, any BLOB can exceed 2 GB. In fact, their size is limited only by the host file system
and available disk space. They also deliver much better streaming performance, since the file
system provides a native environment optimized for streaming unstructured data, whereas
the varbinary(max) column in the database does not. And because the physical database is
much smaller without the BLOBs inside it, the query processor can continue to deliver opti-
mal performance.

While physically separating structured and unstructured content this way does address the
performance concerns of BLOBs, it also raises new issues because the data is now separated
not only physically but logically as well. That is, SQL Server has absolutely no awareness of
the association between data in the database and files stored externally in the file system
that are referenced by path information in the database tables. Their coupling exists solely at
the application level. Backup, restore, detach, copy, and attach operations on the database
files therefore include only structured table data without any of the BLOB data that's in the
file system. The integrated management benefits you get when storing BLOBs in the data-
base are lost, and the administrative burden is increased by having to manage the file system
separately.

Application development against this model is also more complex because of the extra effort
required for linking between the database and the file system. The database offers no as-
sistance in establishing and maintaining the references between its structured data and the
external BLOBs, so it's up to the database designer and application developer to manage all
of that on their own. And last, although perhaps most significant, there is no unified transac-
tional control across both the database and the file system.

What's in an Attribute?

Of course, this discussion has been leading toward the new FILESTREAM feature, which com-
bines the best of both worlds (and then some) in SQL Server 2008. First, to be clear, this is
not technically a new data type in SQL Server. Instead, FILESTREAM is implemented as an
attribute that you apply to the varbinary(max) data type. It might look innocent enough, but
merely applying this attribute unleashes the FILESTREAM feature—an extremely efficient
storage abstraction layer for managing unstructured data in the database. With this attribute
applied, we continue to treat the varbinary(max) column as though its contents were stored

310

Part Il Beyond Relational

inline with our table data. Under the covers, however, the data is stored externally from the
database in the server’'s NTFS file system.

With FILESTREAM, structured and unstructured data are logically connected but physically
separated. The unstructured data is configured as just another file group in the database, so
it participates in all logical database operations, including transactions and backup/restore.
On disk, however, the BLOBs are stored as individual physical files in the NTFS file system
that are created and managed automatically behind the scenes. SQL Server establishes and
maintains the link references between the database and the file system. It knows about the
unstructured BLOB data in the file system and considers the files holding BLOB data to be an
integral part of the overall database. But the unstructured data doesn't impede query perfor-
mance because it is not physically stored inline with table data. It's stored in the file system,
which is highly optimized for streaming binary data. Logically, however, the database encom-
passes both the relational tables and the BLOB files in the file system. We therefore continue
to treat BLOB data as though we were storing it inside the database itself, from both a devel-
opment and an administrative perspective. For example, backing up the database includes all
the BLOB data from the file system in the backup automatically.

Note Because the BLOB data is contained in its own database file group, you can easily exclude
it from backups if desired or as needed.

The end result is that SQL Server 2008 uses the appropriate storage for structured and
unstructured data—storing relational (structured) data in tables and BLOB (unstructured)
data in files—in order to deliver the best possible performance all around. Because it does
this completely transparently, we enjoy integrated management benefits over the database.
The database engine handles the link references between the relational tables and their
associated BLOB data in the file system for us. So we also enjoy simplified application de-
velopment because we don’t need to worry about the additional complexities of manually
associating the database with the file system and keeping the two in sync, as we did in the
past. Last, by leveraging the transactional capabilities of the NTFS file system, BLOB updates
participate seamlessly with database transactions. If you're starting to get excited by all this,
that's the idea! We're ready to dive in to some real code now that puts FILESTREAM to work
for us.

Enabling FILESTREAM

Like many other features, FILESTREAM is disabled by default in SQL Server 2008, and you
must first enable it before the feature can be used. Enabling FILESTREAM is slightly more
involved than configuring other SQL Server features because it requires two distinct steps.
First the feature needs to be enabled for the machine (Microsoft Windows service), and then
it needs to be enabled for the server instance. These two FILESTREAM configuration layers

Chapter 8 Using FILESTREAM for Unstructured Data Storage 311

are by design, in order to draw a separation of security responsibilities between the roles of
Windows administrator and SQL Server administrator.

Enabling FILESTREAM for the Machine

The first step is to enable FILESTREAM for the machine by setting an access level. This step
can actually be performed at the time that SQL Server is initially installed by choosing a
FILESTREAM access level during setup. The default access level, as already mentioned, is
disabled. To enable FILESTREAM for the machine after SQL Server has been installed, the
Windows administrator uses the SQL Server Configuration Manager to set the access level.
(This tool can be launched from the Configuration Tools folder of the Microsoft SQL Server
2008 program group on the Start menu.)

The SQL Server Configuration Manager opens with a list of services displayed in the

main panel. In the list of services, right-click the SQL Server instance that you want to en-
able FILESTREAM for, and then choose Properties. In the Properties dialog box, select the
FILESTREAM tab. The three check boxes on the FILESTREAM tab allow you to select the vari-
ous levels of FILESTREAM access. Figure 8-1 shows the Properties dialog box with all three
check boxes selected.

SOL Server (MSSOLSERVER) Properties 21xl

Log On I Service FILESTREAM |Advanced I

V¥ Enable FILESTREAM For Transact-50L access

V¥ Enable FILESTREAM For file IfQ streaming access

‘Windows share name: | MSSQLSERVER

[+ allows remote clients ko have streaming access to
FILESTREAM data

Cancel | Apply | Help |

FIGURE 8-1 Enabling FILESTREAM for the machine to support file I/O streaming access by remote clients

When all three check boxes are cleared, FILESTREAM is completely disabled. Selecting the
first check box enables FILESTREAM, but only for Transact-SQL (T-SQL) access. This provides a
completely transparent FILESTREAM implementation, but it doesn’t let you take advantage of
streamed file access between the database and your client applications.

312

Part Il Beyond Relational

The real power of FILESTREAM comes into play when you enable direct file 1/O streaming,
which delivers the best possible performance for accessing BLOB data in the file system with
SQL Server. You enable direct file /0 streaming access by selecting the second check box.
Streamed file access also creates a Windows share name that is used to construct logical
Universal Naming Convention (UNC) paths to BLOB data during FILESTREAM access, as we'll
see further on when we use the OpenSqlFilestream function in our sample .NET applications.
The share name is specified in a text box after the second check box and is set by default to
the same name as the server instance (MSSQLSERVER, in this example).

In most cases, client applications will not be running on the same machine as SQL Server,

so you will usually also need to select the third check box to enable FILESTREAM for remote
client file 1/0 streaming access. One exception to this general practice might be when using
Microsoft SQL Server 2008 Express edition as a local data store for a client application with
everything running on the same machine. In this case, you would use the more secure setting
and leave the third check box cleared. Doing so would enable file I/O streaming access for
the local client application but deny such access to remote clients.

Throughout the rest of this chapter, we'll be building several sample .NET applications that
work with FILESTREAM. These applications will demonstrate how to use OpenSqlFilestream
for file 1/0 streaming access, so at least the first two check boxes must be selected for the

sample code to work. If you are running the applications on a different machine than SQL

Server, you will also need to select the third check box to allow remote access.

More Info There is no T-SQL equivalent script that can set the FILESTREAM access level for the
machine. However, Microsoft posts a VBScript file available over the Internet that allows you to
enable FILESTREAM from the command line as an alternative to using SQL Server Configuration
Manager. At press time, the download page for this script is http.//www.codeplex.com/
SQLSrvEngine/Wiki/View.aspx?title=FileStreamEnable&referringTitle=Home. An Internet short-
cut to this URL is included with this chapter’s sample code on the book’s companion Web site.
Alternatively, try running a Web search on “How to enable FILESTREAM from the command line.”

Enabling FILESTREAM for the Server Instance

The second step is for the SQL Server administrator to enable FILESTREAM for the server in-
stance. The concept here is similar to the first step in that varying levels of access are defined.
FILESTREAM can be enabled for the server instance with a simple call to the sp_configure sys-
tem stored procedure, as follows:

EXEC sp_configure filestream_access_level, n
RECONFIGURE

In the preceding code, replace n with a number from 0 to 2 to set the access level. The
value 0 disables the FILESTREAM feature completely. Setting the access level to 1 enables

Chapter 8 Using FILESTREAM for Unstructured Data Storage 313

FILESTREAM for T-SQL access only, and setting it to 2 enables FILESTREAM for full access
(which includes local or remote file I/O streaming access as enabled for the machine in the
first step). To support our sample .NET applications that will demonstrate file /O streaming
access using OpenSqlFilestream, you'll need to select level 2 (full access).

Note Naturally, the access level defined for the server instance must be supported by the access
level defined for the machine. Typically, therefore, the access levels between the machine and the
server instance should be set to match each other.

You can also set the FILESTREAM access level for the server instance in SQL Server
Management Studio from the Advanced Server Properties dialog box. Right-click any server
instance in Object Explorer, choose Properties, and then select the Advanced page. The vari-
ous levels are available as choices in the Filestream Access Level drop-down list, as shown in
Figure 8-2.

-l

L5 seript ~ [Help
2 General
2 Memory
2 Processors
2 Secuity
7 Comnections evel
12 Datsbase Settings B Miscellaneous

1 hdvanced Allows Triggers to Firs Dtiers
& Pemissions Blocked Process Threshold
Cursor Threshold

Default Full Test Languags
Default Language

Full access enabled
Disabled
Transact-S0L sccess enabled

-
1033
English

FIGURE 8-2 Selecting the FILESTREAM configuration level in SQL Server Management Studio

Creating a FILESTREAM-Enabled Database

Once FILESTREAM is enabled for both the machine and the server instance, any database
running on the server instance can support unstructured data by defining a file group with
the new FILEGROUP...CONTAINS FILESTREAM clause of the CREATE DATABASE statement. For
example, the statement in Listing 8-1 creates a PhotoLibrary database that can store pictures
using FILESTREAM.

LISTING 8-1 Creating a FILESTREAM-enabled catabase with FILEGROUP...CONTAINS FILESTREAM

CREATE DATABASE PhotoLibrary
ON PRIMARY
(NAME = PhotoLibrary_data,
FILENAME = 'C:\PhotolLibrary\PhotoLibrary_data.mdf'),
FILEGROUP FileStreamGroupl CONTAINS FILESTREAM
(NAME = PhotoLibrary_group2,
FILENAME = 'C:\PhotoLibrary\Photos')
LOG ON
(NAME = PhotolLibrary_log,
FILENAME = 'C:\PhotoLibrary\PhotolLibrary_log.1df")

314

Part Il Beyond Relational

The FILEGROUP...CONTAINS FILESTREAM clause in this otherwise ordinary CREATE DATABASE
statement enables the FILESTREAM feature for the PhotoLibrary database.

A few simple but important things warrant mention at this point. To begin, as when creat-
ing any database, the directory (or directories) specified for the primary and log file groups
must exist at the time the database is created. In our example, the C:\PhotoLibrary directory
specified by FILENAME in the ON PRIMARY and LOG ON clauses must exist, or the CREATE
DATABASE statement will fail.

Interestingly, and somewhat oddly, the FILENAME specified in the new FILEGROUP...
CONTAINS FILESTREAM clause does not actually specify the name of a file but instead speci-
fies the name of a directory. And unlike the primary and log file group directories, this direc-
tory must not exist at the time that the database is created (although the path leading up to
the final directory must exist), or the CREATE DATABASE statement will fail as well. Instead,
SQL Server takes control of creating and managing this directory, much as it does for creat-
ing and managing the .mdf and .Idf files in the other file groups. In our example, SQL Server
will automatically create the C:\PhotoLibrary\Photos folder when the CREATE DATABASE
statement is executed and will then use that folder for storing all BLOB data—photos, in our
example—in the PhotoLibrary database.

When we execute this CREATE DATABASE statement with an empty C:\PhotoLibrary directory,
SQL Server creates the usual .mdf and .Idf files for us and also creates the Photos subdirec-
tory for the FILESTREAM group, as shown in Figure 8-3.

@ PhotoLibrary =101
Fle Edit View Favorites Toos Help | i
Qrack ~) - B | O search [Foders | |3 30 X 9 | @~

Address |E. C:iPhotoLibrary - Be
Folders x | [Name_~ [Siee [Type [Date Madified

@ peskion [ZiPhotos | File Folder 12/15/2007 10:41 PM
) My Documents | Arhotolibrary_data.mdf 2,176 KB SGL Server Datahass Primary Data Fle 12/15(2007 10:41 P

2 9 My Computer [Photolibrary_log.ldf 1,024 KB SGL Server Database Transaction Log File 12/15/2007 10:41 PM

L 3% Floppy (81
El % Local Disk (C2)
I3 Documents and Settings
I Inetpub
1) MsoCache
= | PhotoLibrary
= [2) Photos
I3 $FaLoG
I Program Files
1) wINDOWS
1) wpub
b DD Drive (D)
@ Cantral Panel
W My Hetwark Places
2/ Recycle Bin

3 objects (Disk free space: 56.6 GE) 3.12MB | 4 My Computer v

FIGURE 8-3 FILESTREAM storage in the file system

Behind the scenes, SQL Server will store all our pictures as files in the Photos subdirectory
and track the references between those picture files and the relational tables that they logi-
cally belong to in database columns defined as varbinary(max) FILESTREAM. Unless we ex-
plicitly exclude the FileStreamGroup1 file group from a backup or restore command, all our

Chapter 8 Using FILESTREAM for Unstructured Data Storage 315

picture files in the Photos subdirectory will be included with the relational database in the
backup or restore operation.

Creating a Table with FILESTREAM Columns

We're now ready to create the PhotoAlbum table. SQL Server requires that any table using
FILESTREAM storage have a uniqueidentifier column that is not nullable and that specifies the
ROWGUIDCOL attribute. You must also create a unique constraint on this column. Only one
ROWGUIDCOL column can be defined in any given table, although defining one then allows
you to declare any number of varbinary(max) FILESTREAM columns in the table that you
want for storing BLOB data. The statement in Listing 8-2 creates the PhotoAlbum table with a
Photo column declared as varbinary(max) FILESTREAM.

LISTING 8-2 Creating a FILESTREAM-enabled table

CREATE TABLE PhotoATbum(

PhotoId int PRIMARY KEY,

RowId uniqueidentifier ROWGUIDCOL NOT NULL UNIQUE DEFAULT NEWSEQUENTIALID(Q),
Description varchar(max),

Photo varbinary(max) FILESTREAM DEFAULT(0x))

With this statement, we satisfy the FILESTREAM requirement for the ROWGUIDCOL column,
yet we won't actually have to do anything to maintain that column. By declaring the Rowld
column with its DEFAULT value set to call the NEWSEQUENTIALID function, we can just pre-
tend this column doesn't even exist—simply not providing values for it will cause SQL Server
to automatically generate an arbitrary globally unique identifier (GUID) for the column that it
needs to support FILESTREAM on the table. The column is set to not accept NULL values and
is defined with the required unique constraint.

We have also declared an integer Photold column for the table’s primary key value. We'll

use the Photold column to identify individual photos in the aloum, and SQL Server will

use the Rowld column to track and cross-reference photos in the file system with rows in

the PhotoAlbum table. The Photo column holds the actual BLOB itself, being defined as a
varbinary(max) data type with the FILESTREAM attribute applied. This means that it gets
treated like a regular varbinary(max) column, but we know that its BLOB is really being stored
in the file system by SQL Server internally. For now, just take note that we've defined a de-
fault Ox binary value for the Photo column. This will come into play when we start streaming
content with client code, but we're not there yet.

Manipulating BLOB data is not something that is easily or practically done in T-SQL. Of
course, you can specify small binary streams inline directly in your T-SQL code, or embed and
extract binary streams using byte arrays as you could with an ordinary varbinary(max) col-
umn. But the proper (and fastest) way to get data into and out of FILESTREAM columns is by

316

Part Il Beyond Relational

using a native or managed client that calls the OpenSqiFilestream function provided by the
SQL Server 2008 native client API.

With OpenSgqlFilestream, native or managed code applications can use either the ReadFile
and WriteFile Microsoft Win32 application programming interface (API) functions or the .NET
FileStream class to deliver high-performance streaming of BLOB data. In the next section,
you'll see exactly how to use the managed FileStream class in C# for storing and retrieving
pictures in the Photo column. But right now, we're going to do something rather contrived
instead and use T-SQL to cast string data into and out of the varbinary(max) data type in the
Photo column. We're doing this so that you can come to understand FILESTREAM one step
at a time, and the first thing we want to do is observe the effects on the NTFS file system as
SQL Server uses it to store BLOB data in varbinary(max) FILESTREAM columns. So we'll begin
modestly with the following INSERT statement that adds our first row to the PhotoAlbum
table:

INSERT INTO PhotoAlbum(Photold, Description, Photo)
VALUES(1, 'First pic', CAST('BLOB' As varbinary(max)))

This INSERT statement reads no differently than it would if we were using a regular
varbinary(max) column for the Photo column without the FILESTREAM attribute. It appears to
store the unstructured Photo column data inline with the rest of the relational columns, and it
appears the same way when returning the data back with a SELECT query, as shown here:

SELECT *, CAST(Photo AS varchar) AS PhotoText FROM PhotoAlbum

GO
PhotoId RowId Description Photo PhotoText
1 c04a7930-89ab-dc11-91e3-0003ff399330 First pic 0x424C4F42 BLOB

(1 row(s) affected)

However, if we peek beneath the covers, we can see that SQL Server is actually storing the
Photo column outside the database in the file system. Because everything is tracked inter-
nally for us, we don't really need to understand the precise manner in which files and folders
are named, organized, and cross-referenced back to the relational database. But just by drill-
ing down and probing the subfolders beneath the Photos directory, we discover that there is
in fact a new file stored in the file system created as a result of the INSERT statement that we
can view by right-clicking the file name and then choosing Open, as shown in Figure 8-4.

Chapter 8 Using FILESTREAM for Unstructured Data Storage 317

% 503169ac-8316-4d6f-970f-7f062efab 7B -1o] x|
Ele Edt View Favorites Tools Help ‘;'n

Qeack ~) - T |2 search [roders | [2 X 9 [@
Agdress [\Photolibrary\Photosib16798aa-Fef4-4554-80b-6Fe3b0AeF 71015031 69ac-B3 1 6-4def-970F-TFszefac7ra =) [Go

size [Type | Date Modified
| KR File 12/15/2007 10:44 P
Open

Folders x
@ Dasktop =
153 My Documents
= ' My Computer Send To »
A 3% Floppy (A1) =
El % Local Disk (C2)
I3 Documents and Settings

aut
Copy

I Inetpub Create Shortouk
123 Msocache Delate
= 53 Photalibrary Rename
= [2) Photos
& treL06 Properties

=) 1) b16798aa-faf4-45
[s03169ac-831
I Program Files
15 WINDOWS
153 wmpub

2k DD Drive (D7) -
4| | »

Open 4

FIGURE 8-4 Exploring the FILESTREAM file system

If we select Notepad to open the file, we get proof positive that the unstructured content of
the Photo column is stored outside the database and in the file system. In this example, the
text BLOB that was inserted into the Photo column is stored in the file that we've just opened
in Notepad, as shown in Figure 8-5.

-ioix

File Edit Format Wiew Help

BLOE =]

-

A d

FIGURE 8-5 Examining unstructured FILESTREAM content in Notepad

This clearly demonstrates how FILESTREAM data is logically connected to—but physically
separated from—the database. Because the unstructured data is stored entirely in the file
system, we can easily alter its content by directly updating the file itself in Notepad without
even involving the database. To prove the point further, let's change the text in the file from
BLOB to Cool and save the changes back to the file system, as shown in Figure 8-6.

-ioix

File Edit Format Wiew Help

Cool =]

-

A d

FIGURE 8-6 Changing FILESTREAM content directly in the file system

318 Part Il Beyond Relational

The changed FILESTREAM data is reflected in the same SELECT statement we ran earlier, as
shown here:

SELECT *, CAST(Photo AS varchar) AS PhotoText FROM PhotoAlbum

GO
PhotoId RowId Description Photo PhotoText
1 c04a7930-89ab-dc11-91e3-0003ff399330 First pic 0x436F6F6C Cool

(1 row(s) affected)

v Important We performed this exercise to demonstrate and verify that the file system is being
used to store FILESTREAM data. Having said that, you should never tamper directly with files in
the file system this way. With respect to FILESTREAM, consider the file system as part of the data-
base file groups (mdf and .Idf files); it gets managed by SQL Server exclusively.

The OpenSqlFilestream Native Client API

With an understanding and appreciation of how FILESTREAM is implemented internally by
SQL Server, we're ready now to move forward and store real binary picture data in the Photo
column. As we mentioned earlier, this is best achieved by writing client code that calls the
OpenSgqlFilestream function provided by the SQL Server native client API.

When you work with OpenSglFilestream, you always work with transactions (even for read
access). There is no way to avoid them, since FILESTREAM by design coordinates transactional
integrity across structured and unstructured data access between SQL Server and the NTFS
file system. (However, we should stress that you normally should try not to read while in a
transaction when you're not working with OpenSqlFilestream.)

Here's how it works. We first start an ordinary database transaction, after which we perform
any number of normal data manipulation language (DML) operations (such as inserts or up-
dates) on the database. When we access a varbinary(max) FILESTREAM column, SQL Server
automatically initiates an NTFS file system transaction and associates it with the database
transaction. SQL Server also ensures that both the database transaction and the file system
transaction will either commit or roll back together.

To then stream BLOBs in and out, there are two key pieces of information we need to obtain.
First, we need the file system transaction context, which is returned by the GET_FILESTREAM_
TRANSACTION_CONTEXT function. (This function returns NULL if a transaction has not
yet been established.) Second, we need a logical UNC path to the file holding the BLOB
on the server, which is returned by the PathName method invoked on a varbinary(max)
FILESTREAM value instance. These two pieces of information are then passed as inputs to the
OpenSgqlFilestream function, which returns a file handle back to us that we can use to perform

Chapter 8 Using FILESTREAM for Unstructured Data Storage 319

efficient streaming 1/0 operations directly against the BLOB data stored in the file system on
the server. Only when the database transaction is committed does SQL Server permanently
save changes both to the database (from the DML operations) and to the file system (from
the streaming 1/O operations). Similarly, rolling back the transaction undoes changes to both
the database and the file system.

Note The UNC reference returned by the PathName method is not a real path to the

physical file system on the server. Rather, PathName returns a fabricated path to be used by
OpenSgqlFilestream to enable direct streaming between the file system and client applications.
(The share name in this UNC path is based on the share name specified when FILESTREAM was
enabled for the machine, as described earlier in this chapter.) The file system itself is secured on
the server no differently than the data and transaction file groups (mdf and .Idf files) are secured.
Users should never be granted direct access to the file system on the server. Normal SQL Server
column-level security permissions apply to varbinary(max) FILESTREAM columns.

The handle returned by OpenSgqlFilestream can be used with the Win32 ReadFile and
WriteFile API functions for client applications written in native code, such as C++. The handle
can also be used by the FileStream class in .NET for client applications written in managed
code, such as C# or Visual Basic .NET. Continuing with our photo library example, we'll pro-
ceed to create a Windows Forms application in C# that implements all of the key pieces that
bring a FILESTREAM application together—nothing more, nothing less. Our application will
allow the user to create a new photo in the database that streams the BLOB into the Photo
column and to select a photo that streams the BLOB back out from the Photo column into

a PictureBox control for display. OpenSqlFilestream will provide us with the handle we need
to read and write the binary picture data using the ordinary FileStream class defined in the
System./O namespace.

File-Streaming in .NET

We'll begin with the Windows user interface (Ul), which is very simple. Start Visual Studio
2008, and then create a new C# Windows Forms application. Design a form with two sepa-
rate group boxes: one at the top of the form for inserting photos and another beneath it

for selecting photos. Provide labels and text boxes for entering a photo ID, file name, and
description in the top group box, along with a link label to invoke a save operation. In the
bottom group box, provide a text box and label for entering a photo ID and a link label to in-
voke a load operation. Include a label to display the description returned from the database
and a picture box to display the photo BLOB returned via FILESTREAM. After performing
some aesthetic alignment and formatting, your form should appear something like the one
shown in Figure 8-7.

320

Part Il Beyond Relational

PhotoForm 10l =|
—Insert Phato
PhotoID: | E2iC

Filenarme: I
Description: I

—Select Phato

PhotoID: | Load

Description: [blDescription

Irnage:

]

FIGURE 8-7 Simple FILESTREAM Windows Ul form

We'll write only a very small amount of code behind this Windows form, and we’ll implement
the FILESTREAM logic in a separate data access class that can be reused across a variety of
user interface technologies, including Windows Forms, ASP.NET, and Windows Presentation
Foundation (WPF). Let’s add the code behind the click events for this form's Save and Load
link labels that hooks into the data access class named PhotoData (which we'll create right
after the Ul), as shown in Listing 8-3.

LISTING 8-3 Ul calls into FILESTREAM data access class for saving and loading image files

private void 1nkSave_LinkClicked(object sender, LinkLabellLinkClickedEventArgs e)
i

int photold = int.Parse(this.txtSavePhotold.Text);

string desc = this.txtDescription.Text;

string filename = this.txtFilename.Text;

PhotoData.InsertPhoto(photold, desc, filename);
private void TnkLoad_LinkClicked(object sender, LinkLabellLinkClickedEventArgs e)
i

int photold = int.Parse(this.txtLoadPhotold.Text);

string desc;
Image photo = PhotoData.SelectPhoto(photoId, out desc);

this.lb1Description.Text = desc;
this.picImage.Image = photo;

When the user clicks Save, the code retrieves the new photo ID, description, and file name
from the three text boxes and passes them to the InsertPhoto method of the PhotoData class.

Chapter 8 Using FILESTREAM for Unstructured Data Storage 321

When the user specifies a photo ID and clicks Load, the code calls the SelectPhoto method of
the PhotoData class to retrieve the requested description and image for display.

Understanding FILESTREAM Data Access

All the magic happens inside the PhotoData class, which is a Ul-agnostic data access class.
This design draws a clear separation between data access and the Ul, with only a minimal
amount of Ul-specific code to maintain. Listing 8-4 shows the complete source code for the
PhotoData class.

Note The PhotoData class takes a minimalist approach for proof-of-concept purposes only. The
connection string is defined as a hard-coded constant; a real-world application should encrypt
and store the connection string elsewhere (such as a configuration settings file). The code also
employs the using construct in C# to ensure that all objects that allocate unmanaged resources
such as database connections and file handles are disposed of properly even if an exception oc-
curs, without including any additional error handling logic. Once again, real-world applications
should implement a robust and reliable exception handling strategy that includes the use of
try/catch/finally blocks, error logging, and validation.

LISTING 8-4 Implementing a FILESTREAM data access managed client class

using System;

using System.Data;

using System.Data.SqlClient;
using System.Drawing;

using System.IO;

using Microsoft.Win32.SafeHandles;

namespace PhotoLibraryApp
i
pubTlic class PhotoData

{
private const string ConnStr =
"Data Source=.;Integrated Security=True;Initial Catalog=PhotoLibrary;";

#region "Insert Photo"

pubTlic static void InsertPhoto(int photold, string desc, string filename)
{
const string InsertCmd =
"INSERT INTO PhotoAlbum(PhotoId, Description)" +
" VALUES (@PhotoId, @Description)";

using (SqlConnection conn = new SqlConnection(ConnStr))

{

conn.Open();

322 Part Il Beyond Relational

using (SqlTransaction txn = conn.BeginTransaction())

{
using (SqlCommand cmd = new SqlCommand(InsertCmd, conn, txn))
{
cmd.Parameters.Add("@PhotoId", SqlDbType.Int).Value = photold;
cmd.Parameters.Add("@Description", Sq1DbType.VarChar).Value = desc;
cmd . ExecuteNonQuery () ;
}

SavePhotoFile(photoId, filename, txn);
txn.Commit();

}

conn.Close();
}
}

private static void SavePhotoFile

(int photold, string filename, SqlTransaction txn)
{

const int BlockSize = 1024 * 512;

FileStream source = new FileStream(filename, FileMode.Open, FileAccess.Read);

SafeFileHandle handle = GetOutputFileHandle(photoId, txn);
using (FileStream dest = new FileStream(handle, FileAccess.Write))
d
byte[] buffer = new byte[BlockSize];
int bytesRead;
while ((bytesRead = source.Read(buffer, 0, buffer.Length)) > 0)
{
dest.Write(buffer, 0, bytesRead);
dest.Flush(Q);
}
dest.Close();
}

source.Close();

}

private static SafeFileHandle GetOutputFileHandle
(int photold, SqlTransaction txn)
{
const string GetOutputFileInfoCmd =
"SELECT Photo.PathName(), GET_FILESTREAM_TRANSACTION_CONTEXTQ" +
" FROM PhotoATbum" +
" WHERE PhotoId = @PhotoId";

Sq1Command cmd = new SqlCommand(GetOutputFileInfoCmd, txn.Connection, txn);
cmd.Parameters.Add("@PhotoId", Sq1DbType.Int).Value = photold;

string filePath;
byte[] txnToken;

Chapter 8 Using FILESTREAM for Unstructured Data Storage

using (SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.SingleRow))
{

rdr.Read();

filePath = rdr.GetSqlString(0).Value;

txnToken = rdr.GetSqlBinary(1l).Value;

rdr.Close();
}

SafeFileHandle handle =
NativeSqlClient.GetSqlFilestreamHandle
(filePath, NativeSqlClient.DesiredAccess.ReadWrite, txnToken);

return handle;

#endregion
#region "Select Photo"

public static Image SelectPhoto(int photoId, out string desc)
d
const string SelectCmd =
"SELECT Description, Photo.PathName(), GET_FILESTREAM_TRANSACTION_CONTEXTQ" +
" FROM PhotoAlbum" +
" WHERE PhotoId = @PhotoId";

Image photo;

using (SqlConnection conn = new SqglConnection(ConnStr))
d

conn.Open();

using (SqlTransaction txn = conn.BeginTransaction())
{

string filePath;

byte[] txnToken;

using (SqlCommand cmd = new SqglCommand(SelectCmd, conn, txn))
{
cmd.Parameters.Add("@PhotoId", SqlDbType.Int).Value = photold;

using (SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.SingleRow))
{

rdr.Read();

desc = rdr.GetSql1String(0).Value;

filePath = rdr.GetSql1String(l).Value;

txnToken = rdr.GetSqlBinary(2).Value;

rdr.Close();

323

324

Part Il Beyond Relational

photo = LoadPhotoImage(filePath, txnToken);

txn.Commit();
}

conn.Close();

}

return photo;

b

private static Image LoadPhotoImage(string filePath, byte[] txnToken)
{
Image photo;

SafeFileHandle handle =
NativeSqglClient.GetSqlFilestreamHandle
(filePath, NativeSqlClient.DesiredAccess.Read, txnToken);

using (FileStream fs = new FileStream(handle, FileAccess.Read))
d
photo = Image.FromStream(fs);

fs.Close(Q);
}

return photo;

}

#endregion
3
}

There is also a small source file in our application named NativeSq/Client that encapsu-
lates the Component Object Model (COM) Interop and native code call interface details
for invoking OpenSgqlFilestream from our managed code. It's this NativeSqlClient class that
actually calls OpenSgqlFilestream, whereas our managed code client applications call into
NativeSqlClient for issuing all OpenSgqlFilestream requests. We'll begin our in-depth code
coverage with the PhotoData class and then look at the supporting NativeSqlClient class at
the point that we call into it.

We'll start at the top with some required namespace inclusions. The one to take notice

of is Microsoft. Win32.SafeHandles, which defines the SafeFileHandle object returned by
OpenSgqlFilestream that we'll be using to stream BLOBs. (No special assembly reference is
required to use the Microsoft.Win32.SafeHandles.SafeFileHandle class, because it is provided
by the core .NET library assembly mscorlib.dll.) We also define a connection string as a hard-
coded constant, which of course is for demonstration purposes only. A real-world application
would encrypt and store the connection string elsewhere (such as a configuration settings
file), but we're keeping our example simple.

Chapter 8 Using FILESTREAM for Unstructured Data Storage 325

The first method defined in the class is InsertPhoto, which accepts a new photo integer ID,
string description, and full path to an image file to be saved to the database, as shown here:

public static void InsertPhoto(int photold, string desc, string filename)
{
const string InsertCmd =
"INSERT INTO PhotoAlbum(PhotoId, Description)" +
" VALUES (@PhotoId, @Description)";

using(SqlConnection conn = new SqlConnection(ConnStr))

{
conn.Open();
using(SqlTransaction txn = conn.BeginTransaction())
{
using(Sql1Command cmd = new SglCommand(InsertCmd, conn, txn))
{
cmd.Parameters.Add("@PhotoId", SqlDbType.Int).Value = photold;
cmd.Parameters.Add("@escription", SqlDbType.VarChar).Value = desc;
cmd. ExecuteNonQuery () ;
}
SavePhotoFile(photoId, filename, txn);
txn.Commit();
}
conn.Close();
}

}

The method first creates and opens a new Sg/Connection and then initiates a database
transaction using the Sq/Transaction class against the open connection. Next it creates a
SglCommand object associated with the open connection and initiated transaction, and pre-
pares its command text with an INSERT statement (defined in the InsertCmd string constant)
that stores the photo ID and description values in a new PhotoAlbum record. Our INSERT
statement does not provide a value for Rowld and instead allows SQL Server to automatically
generate and assign a new uniqueidentifier ROWGUID value by default just as before, when
we used T-SQL to insert the first row. We also do not provide a value for the Photo column—
and now is exactly when the default Ox value that we defined earlier for the Photo column
comes into play. After executing the INSERT by invoking ExecuteNonQuery, the transaction

is still pending. Although the row has been added, it will roll back (disappear) if a problem
occurs before the transaction is committed. Because we didn't provide a BLOB value for the
Photo column in the new row, SQL Server honors the default value Ox that we established for
it in the CREATE TABLE statement for PhotoAlbum. Being a varbinary(max) column decorated
with the FILESTREAM attribute, this results in an empty file being added to the file system
that is linked to the new row. And like the new row, this new empty BLOB file will disappear if
the database transaction does not commit successfully.

326

Part Il Beyond Relational

Important You cannot open a file handle to a NULL column value. If you want to use
OpenSglFilestream, a binary Ox value should always be used with varbinary(max) FILESTREAM
columns when inserting new rows. This will result in the creation of a zero-length file that can be
streamed to (overwritten) by calling OpenSqlFilestream, as we're doing now.

It is precisely at this point that we call the SavePhotoFile method to stream the specified im-
age file into the Photo column of the newly inserted PhotoAlbum row, overwriting the empty
file just added by default. When control returns from SavePhotoFile, the transaction is finally
committed and the connection is closed. This permanently updates both the database and
the file system with the structured and unstructured content for a new PhotoAlbum row.

The SavePhotoFile method reads from the source file and writes to the database FILESTREAM
storage in 512-KB chunks using an ordinary FileStream object, as shown here:

private static void SavePhotoFile(int photold, string filename, SqlTransaction txn)

{
const int BlockSize = 1024 * 512;

FileStream source = new FileStream(filename, FileMode.Open, FileAccess.Read);

SafeFileHandle handle = GetOutputFileHandle(photoId, txn);
using(FileStream dest = new FileStream(handle, FileAccess.Write))

{
byte[] buffer = new byte[BlockSize];
int bytesRead;
while((bytesRead = source.Read(buffer, 0, buffer.Length)) > 0)
{
dest.Write(buffer, 0, bytesRead);
dest.Flush();
}
dest.Close();
}

source.Close();

}

The method begins by defining a BlockSize integer constant that is set to a reasonable value
of 512 KB. Picture files larger than this will be streamed to the server in 512-KB pieces. The
local source image file is first opened on a read-only FileStream. In order to obtain a writable
FileStream on the output file in SQL Server, we call the GetOutputFileHandle method, passing
in the photo ID and pending transaction and receiving back a SafeFileHandle object (defined
in the Microsoft. Win32.SafeHandles namespace imported with a using statement at the top
of the source file). The FileStream class offers a constructor that accepts a SafeFileHandle ob-
ject, which we use to gain write access to the destination BLOB on the database server’s NTFS
file system. Remember that this output file is enlisted in an NTFS transaction and will not be
permanently saved until the database transaction is committed by the code that is calling
SavePhotoFile.

Chapter 8 Using FILESTREAM for Unstructured Data Storage 327

The rest of the SavePhotoFile method implements a simple loop that reads from the source
FileStream and writes to the destination FileStream until the entire source file is processed
and then closes both streams.

Let's now examine the GetOutputFileHandle method, which is called by SavePhotoFile to ob-
tain the destination handle for streaming to the BLOB file:

private static SafeFileHandle GetOutputFileHandle(int photoId, SqlTransaction txn)

{
const string GetOutputFileInfoCmd =
"SELECT GET_FILESTREAM_TRANSACTION_CONTEXT(), Photo.PathName()" +
" FROM PhotoAlbum" +
" WHERE PhotolId = @PhotoId";

Sq1Command cmd = new SqlCommand(GetOutputFileInfoCmd, txn.Connection, txn);
cmd.Parameters.Add("@PhotoId", Sq1DbType.Int).Value = photold;

string filePath;
byte[] txnToken;

using(SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.SingleRow))
{

rdr.Read();

txnToken = rdr.GetSqlBinary(0).Value;

filePath = rdr.GetSqlString(1).Value;

rdr.Close();
}

SafeFileHandle handle =
NativeSqlClient.GetSqlFilestreamHandle
(filePath, NativeSqlClient.DesiredAccess.ReadWrite, txnToken);

return handle;

}

This code is the key to using FILESTREAM. To reiterate, it is called at a point in time after a
new row has been added to the PhotoAlbum table and a new, empty related BLOB file has
been added to the file system but before the transactions that those actions are enlisted on
have been committed. This is precisely the time for us to hook into the process and stream
BLOB data into the database using OpenSgqlFilestream. Recall from our discussion earlier that
in order to do that, we need two pieces of information: a transactional context token and a
logical UNC path name to the file itself. We therefore obtain both these items in a single-row
SglDataReader using a SELECT statement that returns GET_FILESTREAM_TRANSACTION_
CONTEXT and Photo.PathName.

Because we began the database transaction before running the INSERT statement, SQL
Server initiated a file system transaction in NTFS over the FILESTREAM data in the new row’s
Photo column. The GET_FILESTREAM_TRANSACTION_CONTEXT function returns a handle
to that NTFS transaction. SQL Server will automatically commit this NTFS transaction when

328

Part Il Beyond Relational

we commit the database transaction or roll back the NTFS transaction if we roll back the da-
tabase transaction. When we obtain the transaction context, which is a Sq/Binary value, we
store it in a byte array named txnToken.

The second value returned by our SELECT statement is Photo.PathName, which returns a fab-
ricated path (in UNC format, including the file name) to the BLOB for the selected Photold.
What we're essentially doing with the WHERE clause is reading back the same row we have
just added (but not yet committed) to the PhotoAlbum table in order to get the full path
name to the BLOB stored in the new file that was just created (also not yet committed) in the
file system. We're then storing it in a string variable named filePath.

Armed with both the FILESTREAM transaction context and the full path name to the BLOB
file, we have what we need to call the native OpenSqlFilestream SQL client function and ob-
tain a handle to the output file for streaming our content. However, we don't actually call
OpenSgqlFilestream directly from our data access class (although we certainly could). Instead,
we call GetSqlFilestreamHandle, defined in our supporting NativeSq/Client class, which in turn
calls OpenSgqlFilestream, as shown in Listing 8-5.

LISTING 8-5 Calling OpenSqlFilestream

using System;
using System.Runtime.InteropServices;

using Microsoft.Win32.SafeHandles;

namespace PhotoLibraryFilestreamDemo

{
public class NativeSqlClient
{
public enum DesiredAccess : uint
{
Read,
Write,
ReadWrite,
}

[D11Import("sqinclil0.d11", SetLastError = true, CharSet = CharSet.Unicode)]
private static extern SafeFileHandle OpenSqlFilestream(

string path,

uint access,

uint options,

byte[] txnToken,

uint txnTokenLength,

Sq164 allocationSize);

Chapter 8 Using FILESTREAM for Unstructured Data Storage 329

[StructLayout(LayoutKind.Sequential)]
private struct Sql64

{
public Int64 QuadPart;
pubTlic Sq164(Int64 quadPart)
{
this.QuadPart = quadPart;
}
}

public static SafeFileHandle GetSqlFilestreamHandle
(string filePath, DesiredAccess access, byte[] txnToken)
{
SafeFileHandle handle = OpenSqlFilestream(
filePath,
(uint)access,
0.
txnToken,
(uint) txnToken.Length,
new Sq164(0));

return handle;

As you can see, the GetSqlFilestreamHandle method merely wraps the native
OpenSgqlFilestream function, which is defined with an external reference to sqincli10.dll

(SQL Native Client version 10) by using the Dllimport attribute. GetSqlFilestreamHandle ac-
cepts the transaction context token and the full path to the BLOB file obtained by the GET_
FILESTREAM_TRANSACTION_CONTEXT function and the PathName method. It also accepts
an enumeration value that specifies the desired access mode, which can be Read, Write, or
ReadWrite. The OpenSgqlFilestream function requires other parameters that are not generally
applicable for standard FILESTREAM usage, such as the unsigned 32-bit options and 64-bit
allocation size arguments. These simply get passed in as 0.

Tip Of course, PhotoData could have called OpenSqlFilestream directly. The purpose of our
NativeSqlClient client class is to keep the COM Interop and 64-bit SQL integers out of our data
access code, drawing a separation between managed and native code concerns. The result is
neater and more maintainable code. We are exposing a simple GetSql/FilestreamHandle managed
code method wrapper around the native OpenSgqlFilestream function, so our PhotoData class and
any other managed code data access classes need no awareness of the native code details.

330

Part Il Beyond Relational

That covers inserting new photos. Returning now to the PhotoData class, the remaining
methods query by Photold and stream the selected photo file content from the database into
an Image object for display. If you've been following along so far, you'll find the rest of our
code to be understandable and intuitive since it follows a very similar pattern.

The SelectPhoto method accepts a photo ID that is located in the database and returns the
string description from the database in an output parameter. The method's return value is
a System.Drawing.Image object that we will populate with the BLOB streamed in from the

database server’'s NTFS file system using OpenSgqlFilestream, as shown here:

public static Image SelectPhoto(int photold, out string desc)

{

const string SelectCmd =
"SELECT Description, Photo.PathName(), GET_FILESTREAM_TRANSACTION_CONTEXTQ" +
" FROM PhotoATbum" +
" WHERE PhotoId = @PhotoId";

Image photo;

using(SqlConnection conn = new SqlConnection(ConnStr))

{

conn.Open();

using(SqlTransaction txn = conn.BeginTransaction())
{

string filePath;

byte[] txnToken;

using(Sq1Command cmd = new SqlCommand(SelectCmd, conn, txn))

{
cmd.Parameters.Add("@PhotoId", Sq1DbType.Int).Value = photold;

using(SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.SingleRow))
{

rdr.Read();

desc = rdr.GetSqlString(0).Value;

filePath = rdr.GetSql1String(1).Value;

txnToken = rdr.GetSqlBinary(2).Value;

rdr.Close();

}
photo = LoadPhotoImage(filePath, txnToken);

txn.Commit();
}

conn.Close();

}

return photo;

Chapter 8 Using FILESTREAM for Unstructured Data Storage 331

Once again, we start things off by opening a connection and initiating a transaction. We then
execute a simple SELECT statement that queries the PhotoAlbum table for the record speci-
fied by the photo ID and returns the description and full path to the image BLOB, as well

as the FILESTREAM transactional context token. And once again we use the path name and
transactional context to tie into the server's file system in the LoadPhotolmage method, as
shown here:

private static Image LoadPhotoImage(string filePath, byte[] txnToken)

{
Image photo;

SafeFileHandle handle =
NativeSqlClient.GetSqlFilestreamHandle
(filePath, NativeSqlClient.DesiredAccess.Read, txnToken);

using(FileStream fs = new FileStream(handle, FileAccess.Read))

{
photo = Image.FromStream(fs);

fs.Close(Q);
}

return photo;

}

Just as we did in the GetOutputFileHandle method for inserting new photos (only this time
using DesiredAccess.Read instead of DesiredAccess.ReadWrite), we get a SafefileHandle ob-
ject from our GetSqlFilestreamHandle method defined in NativeSql/Client. We just saw how
this method merely wraps and calls the native SQL client OpenSgqlFilestream function needed
to get the handle for streaming our BLOBs. With this handle, we once again create a new
FileStream, this time opened for read-only access.

Once we have our FileStream, we can deliver the highest streaming performance possible
by fire-hosing the BLOB content directly from the NTFS file system on the server into a new
System.Drawing.Image object by using the static Image.FromStream method. The populated
image is then passed back up to the form, where it is displayed by using the Image property
of the PictureBox control.

The Payoff

It's time to see all of this in action and give the application a run! To insert a new photo,
specify a unique (unused) photo ID, an image file, and a description in the top group box in
the PhotoForm window, as shown in Figure 8-8, and then click Save.

332

Part Il Beyond Relational

PhotoForm 10l =|
—Insert Phato
PhotoID: |2 E2iC

Filename: IC:\,Ascent.jpg
Description: IMountains

—3Select Phato

PhotoID: | Load

Description:

Irnage:

FIGURE 8-8 Inserting a new photo into FILESTREAM storage

To select and display the photo and its description back from the database, type its photo ID
in the bottom group box, and then click Load. The photo is displayed, as shown in Figure 8-9.

PhotoForm 10l =|
—Insert Phato
PhotoID: |2 E2iC

Filename: IC:'l,Ascent.jpg
Description: IMountains

—3Select Phato

PhotoID: |2 Load

Description: Mounkains

Irnage:

FIGURE 8-9 Retrieving a photo from FILESTREAM storage

This simple application might be small, but it does demonstrate everything needed to
leverage the power of FILESTREAM in your .NET client applications. The amount of code
required is minimal, and the small amount of code that you do need to write implements
fairly straightforward patterns that are easily adapted to various difference scenarios and
Uls. For example, in our next FILESTREAM application, we'll stream content from a Hypertext
Transfer Protocol (HTTP) service and consume it in a WPF client using the very same
FILESTREAM principles that we applied in this Windows Forms application.

Chapter 8 Using FILESTREAM for Unstructured Data Storage 333

Creating a Streaming HTTP Service

We'll now build a simple service as a normal Microsoft ASP.NET Web Application project
with a single PhotoService.aspx page. This page can be called by any HTTP client passing in a
photo ID value appended to the URL query string; it will stream back the binary content for
the specified photo from the database FILESTREAM storage in SQL Server to the client.

To build the service, follow these steps. Start Visual Studio, and then choose File,

New, Project. Create a Microsoft Visual C# ASP.NET Web Application project named
PhotolLibraryHttpService in a solution named PhotoLibraryFileStreamDemo, as shown in
Figure 8-10.

Bt s Tiemigletes: MET Framework 3.5 -] 88 B

visual Basic visual Studio installed templates
=) Wisual C#

Windows (Fweindows Forms Application (A Class Library

web SR NET Weh Application £, ASPNET Web Servics Applicstion

Smart Device [} WPF Application [WPF Erowser Application

Office W cConsole Application U’,“"Excel 2007 Workbook
Database [outloak 2007 Add-in SR WCF Service Application
({5 wiord 2007 Dacument (] windows Farms Control Library

Reparting

L Workflow
Distributed Systems
Gther Project Types

My Templates

.isearch online Templates. ..

A project For creating an application with a Web user interface [NET Framework 3.5)

Mame: | PhotaLibraryHttpServics

j Erowse...

Location: | Ci\Projects

¥ Create directory for salution

Solution Name: | PhokaLibraryFileStresmDeme

FIGURE 8-10 Creating the streaming HTTP service application

Delete the Default.aspx page created automatically by Visual Studio, and then add a new
Web Form named PhotoService.aspx. Unlike a typical .aspx page, this page will not return
HTML content. Instead, the page's code-behind class will stream out binary content from the
database directly through the Response object. For this reason, we delete the HTML markup,
leaving only the <@ Page %> directive that links the .aspx page with its code-behind class, as
shown in Figure 8-11.

334

Part Il Beyond Relational

9§ PhotoL ibraryFileStreamDemo - Microsoft Yisual Studio Y] |
Fle Edt Wew Project Buld Dsbug Dats Tools Test Analyze Window Hsip
H-iE-SH e % 2R -0 - S5 b Debug = Any CPU
=J= 3= 5| = 2 |[RHTML 1.0 Transitional { ~ _ i Style Application:
Ik 2 | @ v appicaton: [T]
X PhotoService.aspr® _Start Page - X plor
=5 NS B ¥
& ||client Dbjects & Events - | |{ho Events) - 2R =3 @
E [Solution ‘PhatalibraryFileStream
2 P

<40 Page Language="CH" hutoEventWirzup='true" Codeenind="PhT|| 2% 2 pnoroLibraryHttpServic
=l Properties

-al References

PhotoService.aspx File Propert =

Sz 31

Build Action Content -
Copy ka OUtpt Do nok copy
Custom Tol

— Custam Tool b =

—'LI Build Action
1] | ’ o ths Fls relates £0 e bUd and

3 Design | O splt | @ Source | deployment processes.

Ready

A

FIGURE 8-11 Creating the PhotoService.aspx page

Make this the default startup page by right-clicking PhotoService.aspx in Solution Explorer
and then choosing Set As Start Page. Next, switch to the code-behind class file by right-click-
ing again on the PhotoService.aspx node in Solution Explorer and then choosing View Code.

Replace the starter code provided by Visual Studio with the code shown in Listing 8-6.

LISTING 8-6 Implementing code for the streaming photo service

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using System.IO;

using Microsoft.Win32.SafeHandles;

namespace PhotolLibraryHttpService

{
public partial class PhotoService : System.Web.UI.Page
{

private const string ConnStr =

"Data Source=.;Integrated Security=True;Initial Catalog=PhotoLibrary;"

protected void Page_Load(object sender, EventArgs e)

{

int photoId = Convert.ToInt32(Request.QueryString["photoId"]);

if (photold == 0)
{

return;

Chapter 8 Using FILESTREAM for Unstructured Data Storage

const string SelectCmd =
"SELECT Photo.PathName(), GET_FILESTREAM_TRANSACTION_CONTEXT(" +

" FROM PhotoATlbum" +
" WHERE PhotoId = @PhotoId";

using (SgqlConnection conn = new SqlConnection(ConnStr))

{

conn.Open();

using (SqlTransaction txn = conn.BeginTransaction())
{

string filePath;

byte[] txnToken;

using (SqlCommand cmd = new SqlCommand(SelectCmd, conn, txn))

{
cmd.Parameters.Add("@PhotoId", SqlDbType.Int).Value = photold;

using (SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.SingleRow))

{
rdr.Read();
filePath = rdr.GetSql1String(0).Value;
txnToken = rdr.GetSqlBinary(1).Value;
rdr.Close();
}
}

this.StreamPhotoImage(filePath, txnToken);

txn.Commit();
}

conn.Close();
}
b

private void StreamPhotoImage(string filePath, byte[] txnToken)
{

const int BlockSize = 1024 * 512;

const string JpegContentType = "image/jpeg";

SafeFileHandle handle =
NativeSqlClient.GetSqlFilestreamHandle
(filePath, NativeSqlClient.DesiredAccess.Read, txnToken);

using (FileStream source = new FileStream(handle, FileAccess.Read))
{

byte[] buffer = new byte[BlockSize];

int bytesRead;

Response.BufferQutput = false;

Response.ContentType = JpegContentType;

335

336

Part Il Beyond Relational

while ((bytesRead = source.Read(buffer, 0, buffer.Length)) > 0)

{
Response.OutputStream.Write(buffer, 0, bytesRead);
Response.FlushQ);

}

source.Close();

}
}
}
}

This code bears a strong resemblance to the code in our earlier Windows Forms application.
The Page_Load method first retrieves the photo ID passed in via the photold query string
value. If no value is passed, the method returns without streaming anything back. Otherwise,
as before, the photo file name and transaction context are obtained after establishing a
connection and transaction on the database and invoking a SELECT statement calling the
PathName method and the GET_FILESTREAM_TRANSACTION_CONTEXT function against the
photo ID specified in the WHERE clause.

With these two key pieces of information in hand, the StreamPhotolmage method is called.
The method begins by defining a BlockSize integer constant that is set to the reasonable val-
ue of 512 KB. As before, picture files larger than this will be streamed to the client in 512-KB
pieces. Once again, an indirect call to OpenSgqlFilestream is made through our NativeSq/Client
wrapper class to obtain a SafeFileHandle that can be used to open an ordinary FileStream
object and read the BLOB data from SQL Server. This means that you'll also need to create
the NativeSqlClient.cs class file in this project as you did for the Windows application example
(see Listing 8-5). Because this code is executing under the auspices of a Web server, you
might also need to grant access to the photo storage directory for the account executing the
Web page. This might be ASPNET or NETWORK SERVICE if you're using Internet Information
Services (IIS) or your user account if you're executing the page using Visual Studio’s develop-
ment server.

Note As with all code in this book, the full FILESTREAM demo code in this chapter is available
on the book’s companion Web site.

Before streaming the binary photo content, we need to change two properties of the
Response object. In an .aspx page, by default, the Response object’s BufferOutput property is
set to true and the ContentType is set to text/html. Here you'll change BufferOutput to false
to deliver optimal streaming performance and inform the client that we're sending a JPEG
image by changing the ContentType property to image/jpeg.

Using a FileStream object opened against SafeFileHandle, the code then reads from the
database FILESTREAM storage in 512-KB chunks and streams to the client using the Reponse.
OutputStream.Write and Response.Flush methods. This is implemented with a simple loop

Chapter 8 Using FILESTREAM for Unstructured Data Storage 337

that reads content from the FileStream and sends it to the client via the Response object until
the entire file is processed.

This completes our service application. Before moving on to build our WPF client, let's first
test the service. Press F5 to start the application.

Note Visual Studio may prompt that debugging is not enabled for the application and offer to
modify the Web.config file to enable debugging. If this dialog box appears, click OK and allow
Visual Studio to modify Web.config for server-side debugging. You might also receive a second
dialog box informing you that script debugging is disabled in Internet Explorer. If this dialog box
appears, click Yes to continue without client-side debugging enabled.

When Internet Explorer launches PhotoService.asp, it displays an empty page because no
photo ID is present in the URL's query string. In the Address bar, append ?photold=2 to the
URL and reload the page. The code-behind class retrieves photo ID 2 from the database and
streams it back for display in the browser, as shown in Figure 8-12.

/7 http:/ /localhost: 1045,/ Photoservice. aspr?photald=2 - Windows Internet Explorer —1oi x|
6@; ~ [] httpifflocahost: 1045 Phataservice aspxiphototd=z x| | #9 /| X | [Live search 2]
Fle Edb View Favorbes Tooks Help

S = »
V¢ ¢ @ hitpijjlocahost:1045/PhotoService. aspx7photold=2 | | T3 v B - v sbPage v (O Took -

7|
Done [T T T Ndiocalintranet S

FIGURE 8-12 Streaming a photo over HTTP to Internet Explorer

We've created a functioning HTTP service application that streams pictures from the
database to any HTTP client. It's now incredibly easy to build a small WPF client applica-
tion that calls the service and displays photos. All that's needed is the proper URL with the
desired photo ID specified in the query string, as you've just seen. We're using the ASP.NET
Development Server provided by Visual Studio, which by default randomly assigns a port
number on localhost (port 1045 was assigned this time, as indicated in Figure 8-12). We'll
need to establish a fixed port number instead so that our WPF client can reliably construct a
URL for calling the service. Any unused port number will suffice, so we'll just pick 22111 for
this application. To set the port number, right-click the PhotoLibraryHttpService project in

338 Part Il Beyond Relational

Solution Explorer, and then choose Properties. Select the Web tab, select the Specific Port
option, and then type 22111 for the port number, as shown in Figure 8-13.

9§ PhotoLibraryFileStreamDema - Microsoft Yisual Studio -0l x|
Fle Edt Wew Project Buld Debug Dgta Tools Test Amalyze Window Help
@A-E@-E5da B9 - -@-5 b pebg - Any CPU - | E
3| PhataLibraryHttpService® | photoService.aspc” | Start Page | x5
g g
z =
g Application 5
= Configuration: [rja =] Platform: [min 2 o
Build 5
Nl
Build Events Servers 1
¥ apply server settings to allusers (store in project fil) L
Resources £
% Use Yisual Studio Development Servar %
Settings =
~_Auto-assign Port 15 |
Reeference Paths [(= specific port Jez1u]]
Signing Virkal path: I
™ NTLM Authentication
reb® I Enable Edit and Continue
Cade Analysis " Use Local I15 Wb ssrver
Project Url: Create
™| Gverride application rogt URL =
4 | 3
Ready 4

FIGURE 8-13 Setting a specific port number for the HTTP service application

Building the WPF Client

To build the WPF client, follow these steps. In Visual Studio, choose File, New, Project.
Create a new Visual C# WPF Application project named PhotolLibraryWpfClient. Be sure
to select Add To Solution in the Solution drop-down list, as shown in Figure 8-14, so that
the project is added to the same PhotoLibraryFileStreamDemo solution that contains the
PhotolLibraryHttpService project.

Mew Project
Project bypes: Templates: (WET Framework 3.5 =

(=) Wisual Basic ~|| visual Studio installed templates
- Windows
-Weh (& windows Forms Application (] Class Library
- Smart Device (Z%A5P.NET Web Application 1, ASP.NET Web Service Application
- Office A o 25| WiPF Birowsser Application
- Database |2® Console Application [Excel 2007 Workbook
~Reporting [outlook 2007 Add-in FRWCF Service Application
- WICE {5 word 2007 Dacument []windows Farms Control Library
Workflow
=] Wisual C# My Templates
Windows
web (d5earch Online Templates. ..
Smart Device
[Office
Database
Renevtinn =]

windows Presentation Foundation client application { NET Framework 3.5)

Mame: | PhokaLibrarypfClient
Location: | Ci\Projects | Browse..
Solution: [add to Salution =l T create direstony for soltion

Solution Mame: |

FIGURE 8-14 Creating the streaming WPF client application

Chapter 8 Using FILESTREAM for Unstructured Data Storage 339

Drag Label, TextBox, Button, and MediaElement controls from the toolbox, and drop them
onto the Windowl.xaml design surface. Adjust the control formatting and layout so that the
window appears similar to that shown in Figure 8-15.

Fle Edt Yiew FProject Buld Dsbug Data Format Tools Test Apalyze Window Help |I=Ful Seresn

Window1.xaml - %[5
0% all|y
100% o
&
g
El
Phato ID Download Phato =
g
El
G Design ¢ A — n[=]5]
<[EREEN x:Class="PhotoLibraryWpfClient.Windowl" =
xmlns="http://schewas wicrosofs. com winfx/ 2006/ xaml/ presentacion” =
xwlns:x="http://schemas.microsoft. com/ winfx/ 2006/ xeml"”
Title="Windowl” Height="300" Widch="300":
<Grids |
<Label Name="labell” Height="2&" Verticallligrwent="Top"” Horizontallligmoenc=rLefr
<TextBox Neme="txtPhotold" Height="23" Margin="56,5,0,0" Verticalilignment="Top" H
<Button Nawe="htnDownlosd” Height="23" Margin="117,5.639,56,0" Verticalllignmenc=""
HMediaElement Neme="mediaElementl" Hargin="0,39,0,0" />
</ Grids &
4 | »

Window Window

Ready nt Col2 chz

FIGURE 8-15 Simple FILESTREAM WPF Ul window

The MediaElement control in WPF is a scaled-down media player that is capable of rendering
a variety of multimedia types, including images and video, from any source. All we need to
do is set its Source property to a URL that it can stream its content from. Double-click the
Button control, and then insert the following code in the button’s event handler:

private void btnDownload_Click(object sender, RoutedEventArgs e)

{
string url =
"http://localhost:22111/PhotoService.aspx?photold=" +
this.txtPhotold.Text;
this.mediaElementl.Source = new UriCurl);
}

This code simply constructs a URL to the PhotoService.aspx page that we know to be run-
ning on localhost port 22111, passing the desired photo ID in the query string. When the
MediaElement control’s Source property is set to that URL, the control automatically calls the
service and renders the photo that is streamed from the database to the service and then
from the service to the WPF client over HTTP.

340

Part Il Beyond Relational

To see it work, run the application, and request photo ID 2 for display, as shown in
Figure 8-16.

[T -]

Photo 1D |2

FIGURE 8-16 Streaming a photo from the database over HTTP to a WPF client application

Summary

For applications that work with BLOB data, the new FILESTREAM feature in SQL Server 2008
greatly enhances the storage and performance of unstructured content in the database by
leveraging the NTFS file system. It does this while maintaining logical integration between
the database and file system that includes transactional support. As a result, we no longer
need to make compromises in efficiency and complexity as we did in the past when making
the choice between storing BLOB data inside or outside the database.

You also learned how to use the OpenSqlFilestream native client API function to deliver high-
performance streaming of BLOB content between the file system managed by SQL Server
and your Windows, Web, and WPF applications. You can apply the concepts you learned in
this chapter across a wide range of applications that require integration between the rela-
tional database and a streaming file system.

	Cover
	Table of Contents
	Chapter 8: Using FILESTREAM for Unstructured Data Storage
	BLOBs in the Database
	BLOBs in the File System
	What’s in an Attribute?
	Enabling FILESTREAM
	Enabling FILESTREAM for the Machine
	Enabling FILESTREAM for the Server Instance
	Creating a FILESTREAM-Enabled Database
	Creating a Table with FILESTREAM Columns

	The OpenSqlFilestream Native Client API
	File-Streaming in .NET
	Understanding FILESTREAM Data Access
	The Payoff
	Creating a Streaming HTTP Service
	Building the WPF Client

	Summary

