

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12859.aspx

9780735626041

© 2009 Mike Hotek. All rights reserved.

Microsoft® SQL Server®
2008 Step by Step

Mike Hotek

A05T6260A05T6260
Table of Contents

 14 Triggers. 213
DML Triggers. 213

DDL Triggers . 215

Chapter 14 Quick Reference. 218
 vii

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

41.indd vii41.indd vii 10/10/2008 10:04:59 AM10/10/2008 10:04:59 AM

C14626041C14626041
Chapter 14

Triggers
 After completing this chapter, you will be able to

■ Create DML triggers

 ■ Create DDL triggers

 Triggers provide a means to allow you to automatically execute code when an action occurs.
Two types of triggers are available in Microsoft SQL Server 2008: DML and DDL. In this
 lesson, you will learn how to create DML triggers that execute when you add, modify, or
 remove rows in a table. You will also learn how to create DDL triggers that execute when DDL
commands are executed or users log in to an instance.

DML Triggers
 Although functions and stored procedures are stand-alone objects, you can’t directly execute
a trigger. DML triggers are created against a table or a view, and are defi ned for a specifi c
event—INSERT, UPDATE, or DELETE. When you execute the event a trigger is defi ned for,
SQL Server automatically executes the code within the trigger, also known as “fi ring” the
trigger.

 The generic syntax for creating a trigger is:

CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [,...n]]
{ FOR | AFTER | INSTEAD OF }
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[WITH APPEND]
[NOT FOR REPLICATION]
AS { sql_statement [;] [,...n] | EXTERNAL NAME <method specifier [;] > }

 When a trigger is defi ned as AFTER, the trigger fi res after the modifi cation has passed all
constraints. If a modifi cation fails a constraint check, such as a check, primary key, or foreign
key, the trigger is not executed. AFTER triggers are only defi ned for tables. You can defi ne
multiple AFTER triggers for the same action.

 A trigger defi ned with the INSTEAD OF clause causes the trigger code to be executed as a
replacement for INSERT, UPDATE, or DELETE. You can defi ne a single INSTEAD OF trigger for
a given action. Although INSTEAD OF triggers can be created against both tables and views,
INSTEAD OF triggers are almost always created against views.

 Regardless of the number of rows that are affected, a trigger only fi res once for an action.
 213

.indd 213.indd 213 10/10/2008 10:55:21 AM10/10/2008 10:55:21 AM

214 Part IV Designing Advanced Database Objects

C14626041.indd 2C14626041.indd 2
As explained in Chapter 10, “Data Manipulation,” SQL Server makes a pair of tables named
inserted and deleted available when changes are executed.

In the following exercise, you will create a DML trigger that populates the FinalShipDate
 column in the Orders.OrderHeader table when the ShipDate column has been populated
for all rows in the Orders.OrderDetail table for an OrderID.

Create a DML Trigger

1. Execute the following code against the SQL2008SBS database (the code is from the
Chapter14\code1.sql fi le in the book’s accompanying samples):

CREATE TRIGGER tiud_orderdetail ON Orders.OrderDetail
FOR INSERT, UPDATE, DELETE
AS

UPDATE a
SET a.FinalShipDate = c.FinalShipDate
FROM Orders.OrderHeader a INNER JOIN
 (SELECT od1.OrderID, MAX(od1.ShipDate) FinalShipDate
 FROM Orders.OrderDetail od1 INNER JOIN
 (SELECT od2.OrderID
 FROM Orders.OrderDetail od2 INNER JOIN inserted i ON od2.OrderID = i.OrderID
 WHERE od2.ShipDate IS NOT NULL
 EXCEPT
 SELECT od3.OrderID
 FROM Orders.OrderDetail od3 INNER JOIN inserted i ON od3.OrderID = i.OrderID
 WHERE od3.ShipDate IS NULL) b
 ON od1.OrderID = b.OrderID
 GROUP BY od1.OrderID) c
ON a.OrderID = c.OrderID
GO

2. Validate your newly created trigger by setting the ShipDate column for all order detail
rows for an order.

In the following exercise, you will create a DML trigger that enforces referential integrity
 between the SQL2008SBS and SQL2008SBSFS databases.

Create a DML Trigger

1. Execute the following code against the SQL2008SBS database (the code is from the
Chapter14\code2.sql fi le in the book’s accompanying samples):

USE SQL2008SBSFS
GO

CREATE TRIGGER tiu_productdocuments ON Products.ProductDocument
FOR INSERT, UPDATE
AS
IF EXISTS (SELECT 1 FROM SQL2008SBS.Products.Product a
 INNER JOIN inserted b ON a.ProductID = b.ProductID)

Create a DML Trigger

Create a DML Trigger
1414 10/10/2008 10:55:21 AM10/10/2008 10:55:21 AM

 Chapter 14 Triggers 215

C14626041.indd C14626041.indd
BEGIN
 RETURN
END
ELSE
BEGIN
 ROLLBACK TRANSACTION
 RAISERROR('Violation of foreign key',16,1)
END
GO

USE SQL2008SBS
GO

CREATE TRIGGER td_product ON Products.Product
FOR DELETE
AS
IF EXISTS (SELECT 1 FROM SQL2008SBSFS.Products.ProductDocument a
 INNER JOIN deleted b ON a.ProductID = b.ProductID)
BEGIN
 ROLLBACK TRANSACTION
 RAISERROR('You must first delete all documents for this product',16,1)
END
ELSE
BEGIN
 RETURN
END
GO

 2. Validate your newly created trigger by attempting to insert a document with a
ProductID that does not exist.

DDL Triggers
 DDL triggers execute under the following circumstances:

■ DDL is executed.

■ A user logs into an instance.

 The general syntax for creating a DDL trigger is as follows:

CREATE TRIGGER trigger_name
ON { ALL SERVER | DATABASE }
[WITH <ddl_trigger_option> [,...n]]
{ FOR | AFTER } { event_type | event_group } [,...n]
AS { sql_statement [;] [,...n] | EXTERNAL NAME < method specifier > [;] }

<ddl_trigger_option> ::=
 [ENCRYPTION] [EXECUTE AS Clause]

<method_specifier> ::=
 assembly_name.class_name.method_name
 215 215 10/10/2008 10:55:21 AM10/10/2008 10:55:21 AM

216 Part IV Designing Advanced Database Objects

C14626041.C14626041.
 DDL triggers can be scoped at either the database or instance level. To scope a DDL trigger
at the instance level, you utilize the ON ALL SERVER option. To scope a DDL trigger at the
database level, you utilize the ON DATABASE option.

The following is an example of a DDL trigger:

CREATE TRIGGER tddl_tabledropalterprevent
ON DATABASE
FOR DROP_TABLE, ALTER_TABLE
AS
 PRINT 'You are attempting to drop or alter tables in production!'
 ROLLBACK;

 Note Almost all DDL commands run within the context of a transaction. Since a DDL trigger
also runs within the same transaction context, any DDL statement running in the context of
a transaction can be rolled back. ALTER DATABASE is one of the commands which does not
 execute in the context of a transaction, because the command affects objects outside of SQL
Server that do not obey transactional semantics. Therefore an ALTER DATBASE command cannot
be rolled back.

 The value for the event type is derived from the DDL statement being executed, as listed
in Table 14-1.

 TABLE 14-1 DDL Trigger Event Types

 DDL Command Event Type

 CREATE DATABASE CREATE_DATABASE

 DROP TRIGGER DROP_TRIGGER

 ALTER TABLE ALTER_TABLE

 Event types roll up within a command hierarchy called event groups. For example,
the CREATE_TABLE, ALTER_TABLE, and DROP_TABLE event types are contained within the
DDL_TABLE_EVENTS event group. Event types and event groups allow you to create fl exible
and compact DDL triggers.

 More Info The events and associated event groups that are valid for a DDL triggers can be
found in the Books Online article, “Event Groups for Use with DDL Triggers.”

 Although DML triggers have access to the inserted and deleted tables, DDL triggers have
access to the EVENTDATA() function which returns the following XML document that can be
queried by using the value() method available through XQUERY:

<EVENT_INSTANCE>
 <EventType>type</EventType>
 <PostTime>date-time</PostTime>

DDL Command Event Type
indd 216indd 216 10/10/2008 10:55:21 AM10/10/2008 10:55:21 AM

 Chapter 14 Triggers 217

C14626041.indd 217C14626041.indd 217
 <SPID>spid</SPID>
 <ServerName>name</ServerName>
 <LoginName>name</LoginName>
 <UserName>name</UserName>
 <DatabaseName>name</DatabaseName>
 <SchemaName>name</SchemaName>
 <ObjectName>name</ObjectName>
 <ObjectType>type</ObjectType>
 <TSQLCommand>command</TSQLCommand>
</EVENT_INSTANCE>

You can retrieve the database, schema, object, and command that you executed, through the
following query:

SELECT EVENTDATA().value
 ('(/EVENT_INSTANCE/DatabaseName)[1]','nvarchar(max)'),
EVENTDATA().value
 ('(/EVENT_INSTANCE/SchemaName)[1]','nvarchar(max)'),
EVENTDATA().value
 ('(/EVENT_INSTANCE/ObjectName)[1]','nvarchar(max)'),
EVENTDATA().value
 ('(/EVENT_INSTANCE/TSQLCommand)[1]','nvarchar(max)')

 In the following exercise, you create a DDL trigger to prevent accidentally dropping tables in
a production environment.

Create a Database Level DDL Trigger

1. Execute the following code against the SQL2008SBS database (the code is from the
Chapter14\code3.sql fi le in the book’s accompanying samples):

CREATE TRIGGER tddl_preventdrop
ON DATABASE
FOR DROP_TABLE
AS
 PRINT 'Please disable DDL trigger before dropping tables'
 ROLLBACK TRANSACTION
GO

2. Validate your trigger by attempting to drop a table in the SQL2008SBS database.

In the following exercise, you create a logon trigger to limit the number of concurrent
 connections to a user.

Create an Instance Level DDL Trigger

1. Execute the following code (the code is from the Chapter14\code4.sql fi le in the book’s
accompanying samples):

CREATE TRIGGER tddl_limitconnections
ON ALL SERVER
FOR LOGON

Create a Database Level DDL Trigger

Create an Instance Level DDL Trigger
10/10/2008 10:55:21 AM10/10/2008 10:55:21 AM

218 Part IV Designing Advanced Database Objects

C14626041C14626041
AS
BEGIN
IF (SELECT COUNT(*) FROM sys.dm_exec_sessions
 WHERE is_user_process = 1 AND
 login_name = suser_sname()) > 5

 PRINT 'You are only allowed a maximum of 5 concurrent connections'
 ROLLBACK
END
GO

 2. Validate your trigger by attempting to create more than fi ve concurrent connections.

Note You have to be careful with a logon trigger, especially one that prevents logging on to the
instance. In the exercise above, you had the trigger apply to all logins. You should always exclude
logins that are members of the sysadmin role, because you do not want to cause a sysadmin to
not be able to log in to an instance.

Chapter 14 Quick Reference

 To Do This

 Execute code when a DML command is executed Create a DML trigger

 Execute code when a DDL command is executed Create a DDL trigger

To Do This
.indd 218.indd 218 10/10/2008 10:55:21 AM10/10/2008 10:55:21 AM

	Cover
	Table of Contents
	Chapter 14: Triggers
	DML Triggers
	DDL Triggers
	Chapter 14 Quick Reference

