

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12753.aspx

9780735625990

© 2009 Leonard Lobel, Andrew J. Brust, and Stephen Forte. All rights reserved.

Programming Microsoft
®

SQL Server
®
 2008

Leonard Lobel,
Andrew J. Brust,
Stephen Forte
(twentysix new york)

 vii

Table of Contents

Acknowledgments .xxi

Introduction . xxv

Part I Core Fundamentals

 1 Overview . 3

Just How Big Is It?. 3

A Book for Developers . 5

A Book by Developers . 6

A Book to Show You the Way. 6

Core Technologies . 7

Beyond Relational . 8

Reaching Out . 9

Business Intelligence Strategies . 10

Summary . 12

 2 T-SQL Enhancements . 13

Common Table Expressions . 14

Creating Recursive Queries with CTEs . 18

The PIVOT and UNPIVOT Operators. 21

Using UNPIVOT . 22

Dynamically Pivoting Columns . 23

The APPLY Operator . 25

TOP Enhancements . 26

Ranking Functions . 28

The ROW_NUMBER Function . 28

The RANK Function . 32

The DENSE_RANK and NTILE Functions . 34

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

A05C625990.indd 7 10/6/2008 11:17:43 AM

viii Table of Contents

Using All the Ranking Functions Together . 36

Ranking over Groups Using PARTITION BY . 37

Exception Handling in Transactions . 40

The varchar(max) Data Type. 42

The WAITFOR Statement . 43

DDL Triggers . 43

SNAPSHOT Isolation . 45

Table-Valued Parameters . 45

More than Just Another Temporary Table Solution. 46

Working with a Multiple-Row Set . 48

Using TVPs for Bulk Inserts and Updates. 49

Working with a Single Row of Data . 51

Creating Dictionary-Style TVPs . 54

Passing TVPs Using ADO.NET . 56

TVP Limitations . 59

New Date and Time Data Types . 59

Separation of Dates and Times . 59

More Portable Dates and Times . 60

Time Zone Awareness . 61

Date and Time Accuracy, Storage, and Format. 62

New and Changed Functions. 65

The MERGE Statement . 68

Defining the Merge Source and Target . 70

The WHEN MATCHED Clause . 71

The WHEN NOT MATCHED BY TARGET Clause . 72

Using MERGE for Table Replication . 73

The WHEN NOT MATCHED BY SOURCE Clause . 74

MERGE Output . 76

Choosing a Join Method. 78

MERGE DML Behavior . 79

Doing the “Upsert” . 81

The INSERT OVER DML Syntax. 90

Extending OUTPUT…INTO . 90

Consuming CHANGES. 94

The GROUPING SETS Operator . 97

Rolling Up by Level . 99

Rolling Up All Level Combinations . 101

Returning Just the Top Level . 103

A05C625990.indd 8 10/6/2008 11:17:43 AM

 Table of Contents ix

Mixing and Matching . 104

Handling NULL Values. 105

New T-SQL Shorthand Syntax . 109

Summary . 110

 3 Exploring SQL CLR . 111

Getting Started: Enabling CLR Integration. 112

Visual Studio/SQL Server Integration . 113

SQL Server Projects in Visual Studio . 114

Automated Deployment. 117

SQL CLR Code Attributes . 117

Your First SQL CLR Stored Procedure . 118

CLR Stored Procedures and Server-Side Data Access . 120

Piping Data with SqlDataRecord and SqlMetaData 123

Deployment . 125

Deploying Your Assembly . 125

Deploying Your Stored Procedures. 127

Testing Your Stored Procedures . 129

CLR Functions . 131

CLR Triggers . 136

CLR Aggregates . 140

SQL CLR Types. 145

Security . 150

Examining and Managing SQL CLR Types in a Database 152

Best Practices for SQL CLR Usage . 159

Summary . 160

 4 Server Management . 161

What Is SMO? . 161

What About SQL-DMO? . 162

Latest Features in SMO . 166

Working with SMO in Microsoft Visual Studio . 167

Iterating Through Available Servers . 169

Retrieving Server Settings . 171

Creating Backup-and-Restore Applications . 175

Performing Programmatic DBCC Functions with SMO 181

Policy-Based Management. 183

A Simple Policy . 184

Summary . 188

A05C625990.indd 9 10/6/2008 11:17:43 AM

x Table of Contents

 5 Security in SQL Server 2008 . 189

Four Themes of the Security Framework . 189

Secure by Design . 189

Secure by Default. 190

Secure by Deployment . 190

Secure Communications . 190

SQL Server 2008 Security Overview . 191

SQL Server Logins . 192

Database Users. 193

The guest User Account . 194

Authentication and Authorization. 195

How Clients Establish a Connection . 195

Password Policies . 197

User-Schema Separation. 198

Execution Context . 200

Encryption Support in SQL Server. 203

Encrypting Data on the Move . 204

Encrypting Data at Rest . 206

Transparent Data Encryption in SQL Server 2008. 211

Creating Keys and Certificates . 211

Enabling TDE. 213

Querying TDE Views . 213

Backing Up the Certificate . 214

Restoring an Encrypted Database. 215

SQL Server Audit . 216

Creating an Audit Object . 216

Auditing Options . 217

Recording Audits to the File System. 219

Recording Audits to the Windows Event Log . 220

Auditing Server Events . 220

Auditing Database Events. 221

Viewing Audited Events . 222

Querying Audit Catalog Views . 224

How Hackers Attack SQL Server . 225

Direct Connection to the Internet. 225

Weak System Administrator Account Passwords 226

SQL Server Browser Service . 226

A05C625990.indd 10 10/6/2008 11:17:43 AM

 Table of Contents xi

SQL Injection. 226

Intelligent Observation . 227

Summary . 228

Part II Beyond Relational

 6 XML and the Relational Database . 231

XML in SQL Server 2000 . 233

XML in SQL Server 2008—the xml Data Type. 234

Working with the xml Data Type as a Variable . 234

Working with XML in Tables. 235

XML Schemas . 237

XML Indexes . 244

FOR XML Commands. 247

FOR XML RAW . 248

FOR XML AUTO . 248

FOR XML EXPLICIT . 250

FOR XML Enhancements. 253

OPENXML Enhancements in SQL Server 2008 . 261

XML Bulk Load . 262

Querying XML Data Using XQuery . 263

Understanding XQuery Expressions and XPath . 263

SQL Server 2008 XQuery in Action . 266

SQL Server XQuery Extensions . 275

XML DML. 276

Converting a Column to XML . 278

Summary . 280

 7 Hierarchical Data and the Relational Database 281

The hierarchyid Data Type . 282

Creating a Hierarchical Table . 283

The GetLevel Method . 284

Populating the Hierarchy . 285

The GetRoot Method. 286

The GetDescendant Method . 286

The ToString Method. 288

The GetAncestor Method . 293

A05C625990.indd 11 10/6/2008 11:17:43 AM

xii Table of Contents

Hierarchical Table Indexing Strategies . 296

Depth-First Indexing . 297

Breadth-First Indexing . 298

Querying Hierarchical Tables . 299

The IsDescendantOf Method . 299

Reordering Nodes Within the Hierarchy . 301

The GetReparentedValue Method . 301

Transplanting Subtrees . 303

More hierarchyid Methods . 305

Summary . 306

 8 Using FILESTREAM for Unstructured Data Storage 307

BLOBs in the Database . 307

BLOBs in the File System . 309

What’s in an Attribute? . 309

Enabling FILESTREAM . 310

Enabling FILESTREAM for the Machine . 311

Enabling FILESTREAM for the Server Instance . 312

Creating a FILESTREAM-Enabled Database. 313

Creating a Table with FILESTREAM Columns. 315

The OpenSqlFilestream Native Client API. 318

File-Streaming in .NET. 319

Understanding FILESTREAM Data Access . 321

The Payoff . 331

Creating a Streaming HTTP Service . 333

Building the WPF Client . 338

Summary . 340

 9 Geospatial Data Types . 341

SQL Server 2008 Spaces Out . 341

Spatial Models . 342

Planar (Flat-Earth) Model . 342

Geodetic (Round-Earth) Model . 343

Spatial Data Types .344

Defining Space with Well-Known Text .344

Working with geometry. 345

The Parse Method . 346

The STIntersects Method . 347

A05C625990.indd 12 10/6/2008 11:17:43 AM

 Table of Contents xiii

The ToString Method. 349

The STIntersection Method. 350

The STDimension Method . 350

Working with geography. 351

On Your Mark … . 352

The STArea and STLength Methods . 355

Spatial Reference IDs. 355

Building Out the EventLibrary Database . 355

Creating the Event Media Client Application . 357

The STDistance Method . 363

Integrating geography with Microsoft Virtual Earth 364

Summary . 374

Part III Reach Technologies

 10 The Microsoft Data Access Machine . 377

ADO.NET and Typed DataSets . 378

Typed DataSet Basics. 378

TableAdapter Objects . 380

Connection String Management. 381

Using the TableAdapter Configuration Wizard. 382

More on Queries and Parameters . 385

DBDirect Methods and Connected Use of Typed DataSet Objects . . . 387

“Pure” ADO.NET: Working in Code . 387

Querying 101 . 388

LINQ: A New Syntactic Approach to Data Access. 392

LINQ to DataSet . 392

LINQ Syntax, Deconstructed . 393

LINQ to SQL and the ADO.NET Entity Framework: ORM Comes to .NET. . . . 395

Why Not Stick with ADO.NET? . 396

Building an L2S Model . 397

The Entity Framework: Doing ORM the ADO.NET Way 402

XML Behind the Scenes. 405

Querying the L2S and EF Models . 406

Adding Custom Validation Code. 410

Web Services for Data: Using ADO.NET Data Services Against EF Models . . 411

Creating the Service . 412

A05C625990.indd 13 10/6/2008 11:17:43 AM

xiv Table of Contents

Testing the Service. 414

Building the User Interface. 414

Data as a Hosted Service: SQL Server Data Services . 415

Summary: So Many Tools, So Little Time . 417

 11 The Many Facets of .NET Data Binding . 419

Windows Forms Data Binding: The Gold Standard . 420

Getting Ready. 420

Generating the UI . 421

Examining the Output. 423

Converting to LINQ to SQL . 424

Converting to Entity Framework . 425

Converting to ADO.NET Data Services. 426

Data Binding on the Web with ASP.NET. 427

L2S and EF Are Easy. 428

Beyond Mere Grids . 429

Data Binding Using Markup. 430

Using AJAX for Easy Data Access . 430

ASP.NET Dynamic Data . 435

Data Binding for Windows Presentation Foundation . 438

Design Time Quandary . 439

Examining the XAML. 441

Grand Finale: Silverlight. 445

Summary . 447

 12 Transactions . 449

What Is a Transaction?. 450

Understanding the ACID Properties . 450

Local Transaction Support in SQL Server 2008 . 453

Autocommit Transaction Mode. 453

Explicit Transaction Mode . 453

Implicit Transaction Mode . 456

Batch-Scoped Transaction Mode . 457

Using Local Transactions in ADO.NET . 459

Transaction Terminology. 461

Isolation Levels . 462

Isolation Levels in SQL Server 2008 . 462

Isolation Levels in ADO.NET. 467

A05C625990.indd 14 10/6/2008 11:17:43 AM

 Table of Contents xv

Distributed Transactions . 468

Distributed Transaction Terminology . 469

Rules and Methods of Enlistment . 470

Distributed Transactions in SQL Server 2008 . 472

Distributed Transactions in the .NET Framework 473

Writing Your Own Resource Manager . 477

Using a Resource Manager in a Successful Transaction 481

Transactions in SQL CLR (CLR Integration) . 485

Putting It All Together . 489

Summary . 490

 13 Developing Occasionally Connected Systems 491

Comparing Sync Services with Merge Replication . 492

Components of an Occasionally Connected System . 493

Merge Replication . 494

Getting Familiar with Merge Replication . 494

Creating an Occasionally Connected Application with

Merge Replication . 496

Configuring Merge Replication .499

Creating a Mobile Application Using Microsoft Visual Studio 2008 . . . 520

Sync Services for ADO.NET. 533

Sync Services Object Model. 534

Capturing Changes for Synchronization . 538

Creating an Application Using Sync Services . 543

Additional Considerations . 557

Summary . 560

Part IV Business Intelligence

 14 Data Warehousing . 563

Data Warehousing Defined . 563

The Importance of Data Warehousing . 564

What Preceded Data Warehousing. 566

Lack of Integration Across the Enterprise . 567

Little or No Standardized Reference Data . 568

Lack of History . 568

Data Not Optimized for Analysis. 568

As a Result… . 569

Data Warehouse Design . 570

A05C625990.indd 15 10/6/2008 11:17:44 AM

xvi Table of Contents

The Top-Down Approach of Inmon . 572

The Bottom-Up Approach of Kimball . 574

What Data Warehousing Is Not . 580

OLAP . 580

Data Mining . 581

Business Intelligence . 582

Dashboards and Scorecards. 583

Performance Management . 585

Practical Advice About Data Warehousing . 585

Anticipating and Rewarding Operational Process Change. 586

Rewarding Giving Up Control . 586

A Prototype Might Not Work to Sell the Vision . 586

Surrogate Key Issues . 587

Currency Conversion Issues . 587

Events vs. Snapshots . 588

SQL Server 2008 and Data Warehousing. 589

T-SQL MERGE Statement . 589

Change Data Capture . 592

Partitioned Table Parallelism . 600

Star-Join Query Optimization . 603

SPARSE Columns . 604

Data Compression and Backup Compression . 605

Learning More . 610

Summary . 610

 15 Basic OLAP . 611

Wherefore BI? . 611

OLAP 101. 613

OLAP Vocabulary . 614

Dimensions, Axes, Stars, and Snowflakes. 615

Building Your First Cube . 617

Preparing Star Schema Objects . 617

A Tool by Any Other Name . 618

Creating the Project. 619

Adding a Data Source View . 621

Creating a Cube with the Cube Wizard . 625

Using the Cube Designer . 626

Using the Dimension Wizard . 629

A05C625990.indd 16 10/6/2008 11:17:44 AM

 Table of Contents xvii

Using the Dimension Designer . 632

Working with the Properties Window and Solution Explorer 634

Processing the Cube . 635

Running Queries. 636

Summary . 637

 16 Advanced OLAP . 639

What We’ll Cover in This Chapter .640

MDX in Context .640

And Now a Word from Our Sponsor… .640

Advanced Dimensions and Measures . 641

Keys and Names. 641

Changing the All Member .644

Adding a Named Query to a Data Source View. 645

Parent/Child Dimensions . 647

Member Grouping. 651

User Table Time Dimensions, Attribute Relationships,

Best Practice Alerts, and Dimension/Attribute Typing 652

Server Time Dimensions . 660

Fact Dimensions . 661

Role-Playing Dimensions . 664

Advanced Measures . 665

Calculations . 667

Calculated Members . 668

Named Sets. 673

More on Script View . 674

Key Performance Indicators . 677

KPI Visualization: Status and Trend . 678

A Concrete KPI . 679

Testing KPIs in Browser View . 681

KPI Queries in Management Studio . 683

Other BI Tricks in Management Studio . 688

Actions . 689

Actions Simply Defined. 690

Designing Actions . 690

Testing Actions . 692

Partitions, Storage Settings, and Proactive Caching . 693

Editing and Creating Partitions . 694

A05C625990.indd 17 10/6/2008 11:17:44 AM

xviii Table of Contents

Partition Storage Options. 696

Proactive Caching . 697

Additional Features and Tips . 699

Aggregations. 700

Algorithmic Aggregation Design . 700

Usage-Based Aggregation Design . 701

Manual Aggregation Design (and Modification) 702

Aggregation Design Management . 704

Aggregation Design and Management Studio. 705

Perspectives. 705

Translations . 707

Roles . 712

Summary . 715

 17 OLAP Queries, Tools, and Application Development 717

Using Excel . 719

Connecting to Analysis Services . 719

Building the PivotTable . 723

Exploring PivotTable Data . 725

Scorecards . 727

Creating and Configuring Charts . 729

In-Formula Querying of Cubes . 732

Visual Studio Tools for Office and Excel Add-Ins 737

Excel Services . 738

Beyond Excel: Custom OLAP Development with .NET. 743

MDX and Analysis Services APIs . 744

Moving to MDX . 744

Management Studio as an MDX Client . 745

OLAP Development with ADO MD.NET. 758

Using Analysis Management Objects . 769

XMLA at Your (Analysis) Service . 771

Analysis Services CLR Support: Server-Side ADO MD.NET 782

Summary . 792

 18 Expanding Your Business Intelligence with Data Mining 793

Why Mine Your Data? . 793

SQL Server 2008 Data Mining Enhancements. 797

Getting Started . 798

Preparing Your Source Data. 798

A05C625990.indd 18 10/6/2008 11:17:44 AM

 Table of Contents xix

Creating an Analysis Services Project .800

Using the Data Mining Wizard and Data Mining Structure Designer. 802

Creating a Mining Structure. .804

Creating a Mining Model . 805

Editing and Adding Mining Models . 810

Deploying and Processing Data Mining Objects 816

Viewing Mining Models . 818

Validating and Comparing Mining Models . 827

Nested Tables . 830

Using Data Mining Extensions . 836

Data Mining Modeling Using DMX . 837

Data Mining Predictions Using DMX . 848

DMX Templates . 856

Data Mining Applied . 856

Data Mining and API Programming . 857

Using the Windows Forms Model Content Browser Controls 858

Executing Prediction Queries with ADO MD.NET 860

Model Content Queries . 860

ADO MD.NET and ASP.NET . 861

Using the Data Mining Web Controls. 862

Developing Managed Stored Procedures . 863

XMLA and Data Mining . 865

Data Mining Add-ins for Excel 2007. 866

Summary . 877

 19 Reporting Services . 879

Using the Report Designer . 880

Creating a Basic Report. 883

Applying Report Formatting . 887

Adding a Report Group . 890

Working with Parameters . 892

Writing Custom Report Code . 897

Creating an OLAP Report .900

Creating a Report with a Matrix Data Region. 906

Tablix Explained . 910

Adding a Chart Data Region . 915

Making a Report Interactive . 917

Delivering Reports . 919

Deploying to the Report Server . 919

A05C625990.indd 19 10/6/2008 11:17:44 AM

xx Table of Contents

Accessing Reports Programmatically . 928

Administering Reporting Services . 937

Using Reporting Services Configuration Manager. 937

Using Report Manager and Management Studio 940

Integrating with SharePoint . 949

Summary . 951

 Index . 953

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

A05C625990.indd 20 10/6/2008 11:17:44 AM

 563

Chapter 14

Data Warehousing

—Mark Frawley

This chapter is all about data warehousing. If you’ve been avoiding this topic—dismissing it

perhaps as being too advanced, esoteric, or abstract to be applicable—this chapter will help

you cast those excuses aside and embrace data warehousing. The practical advice and guid-

ance we give will empower you and your end users to glean more useful information and

intelligence from your data. We will begin with an explanation of exactly what data ware-

housing is and why you should care about it, and then we’ll show how to take advantage of

specific Microsoft SQL Server 2008 data warehousing features.

Data Warehousing Defined

You’re in good company if you wonder exactly what is meant by data warehousing—and

 indeed you might even wonder whether it has any precise meaning at all. The term has ex-

isted for almost two decades, and you might have seen a variety of definitions. Here is ours:

Data warehousing is both a vision of and a methodological approach toward organizing and

managing enterprise data for the purpose of providing a trustworthy, consistent, integrated,

and comprehensive data foundation for an enterprise’s data-driven requirements and

applications, both tactical and strategic.

Why does our definition not include any technical references? Well, that’s just the point!

While technology is essential to actually realizing the vision, data warehousing is not—or

should not be—fundamentally about technology. It is about laying the data foundation

needed to run an enterprise. Run as in making informed decisions. And enterprise rather than

business because data warehousing is equally relevant whether the work is for-profit, not-for-

profit, or in the public sector (a subtle distinction resulting from the unfortunate fact that the

word business is embedded in the term business intelligence, or BI)—and, increasingly, wheth-

er the entity is small, medium, or large. Compared with what was true in the past, Microsoft’s

data warehousing–related offerings under the SQL Server product umbrella have made it

particularly feasible for data warehousing goals to be attainable by small and medium-size

enterprises. Of course, Microsoft continues to deliver industrial-strength data warehousing

performance for the largest enterprises—especially with the 2008 release of SQL Server.

C14625990a.indd 563 10/2/2008 9:31:47 AM

564 Part IV Business Intelligence

The Importance of Data Warehousing

Today, data warehousing in some form has become a given, a must, for running an enterprise

of any significant size. At its best, it enables actual competitive advantage, but even when

focused more tactically or departmentally, it is now considered essential to being competi-

tive—as basic and essential as the general ledger or payroll system. While it is often difficult

to quantify the benefits of data warehousing in terms of return on investment (ROI), no one

these days seriously questions its value and necessity. As a database developer, you are likely

to be involved with data warehousing in one way or another—if not directly, at least in inter-

facing to a data warehouse. So it’s important for you to understand what data warehousing

is all about.

Developing a data warehouse is in some ways a very different undertaking from traditional

online transactional processing (OLTP) database development, with which you are probably

more familiar. Two of the most notable differences are that data warehousing essentially

emphasizes data and its relationships—as opposed to the emphasis on process found in

the typical OLTP application—and that hard experience by practitioners has evolved spe-

cialized ways of modeling data that are particularly useful in achieving the goals of data

warehousing.

Even if your role is primarily technical, you will be able to do a much better job of building or

interfacing to a data warehouse if you know something about these differences from OLTP

and the reasons for them. This will also help you appreciate the perspective of decision mak-

ers who rely on accurate data storage and analysis (see the next chapter), which will be very

likely different from that of typical OLTP application stakeholders.

Data warehousing is an essential foundation for what has come to be known as business in-

telligence (BI). We’ll learn more about the close relationship between data warehousing and

BI later in this chapter, but for now, appreciate that they are not synonymous. At the same

time, in keeping with our earlier observation, mentally substitute enterprise when you hear

business.

The remainder of this chapter consists of five sections that build upon one another as we

progress through our treatment of data warehousing. Instead of immediately focusing on

technical details and step-by-step procedures in SQL Server 2008, we review the history lead-

ing up to why data warehousing is today a distinct practice and how SQL Server 2008 repre-

sents an excellent data warehousing platform.

The first section, “What Preceded Data Warehousing,” focuses on the origins of data ware-

housing to help you appreciate why data warehousing emerged as a distinct practice re-

sponding to industry issues. The second section, “Data Warehouse Design,” describes the two

principal approaches to data warehouse design. The third section, “What Data Warehousing

C14625990a.indd 564 10/2/2008 9:31:47 AM

 Chapter 14 Data Warehousing 565

Is Not,” considers various terms often confused with data warehousing and gives them

 distinct definitions. The fourth section, “Practical Advice About Data Warehousing,” alerts you

to various common but nonobvious issues that you might encounter when building a data

warehouse. Last, the fifth section, “SQL Server 2008 and Data Warehousing,” discusses SQL

Server 2008–specific details as they relate to data warehousing.

With this ambitious agenda to cover in just a single chapter, we will not actually tell you

much about “how” to build the perfect data warehouse—dozens of entire books are avail-

able for that. Rather, what we aim to provide is a unique combination of background, clari-

fication of terms, identification of tricky spots, and finally some technical details about the

specific data warehousing platform offered by SQL Server 2008.

Data vs. Information
At the risk of sounding pedantic, fully appreciating why data warehousing is valuable

requires drawing the distinction between data and information. Data consists of re-

corded, characterized “facts”—for example, sale amounts initiated by customer A at

store B on date C, paid for with credit card D. These facts are the amounts of the sale

(numbers), while the characteristics give these numbers meaning or context. This is the

sort of transactional data typically captured by an operational application.

Such characterized facts are essential, but information involves interpreting facts, iden-

tifying the relationships between them, and finding the more abstract “meaning” (if it

exists) implied by them. Each characteristic, such as customer, store, date, and so on,

could serve as a predicate in a query. For example, what is the pattern of sales vs. store

for this customer? Or what stores have the highest sales by date? Of course, there are

countless others. These sorts of questions are higher order, or value adding, because

their answers enable informed decision making for the future, as opposed to mere

question answering of the sort that a customer service representative might do from

the facts themselves (for example, when answering the question, “what is this charge

on my statement that I don’t recognize?”).

This might not seem an important distinction, but historically, it often simply wasn’t

technically feasible to assemble the available data in a form suitable for informed deci-

sion making. Often, what passed for that instead was instinct and educated guesswork.

In contrast, data warehousing emphasizes organizing, standardizing, and formatting

facts in such a way as to enable deriving such “information” from them. Building on

that, BI is then concerned with defining, extracting, delivering, and acting on that

information.

C14625990a.indd 565 10/2/2008 9:31:47 AM

566 Part IV Business Intelligence

What Preceded Data Warehousing

Depending on your experience, you might remember the term electronic data processing,

also known as EDP or DP, which was used to describe the use of computers in enterprise ap-

plications for much of the 55+ years of computing history. Over the last 15 to 20 years, the

term has morphed into today’s information technology, commonly referred to simply as IT.

Although unintentional, the timing of the change and the implication of the two terms could

also stand for “pre–data warehousing” and “post–data warehousing.”

Until the early to mid-1990s (when the client/server architectural paradigm reached its peak),

the application of computers to enterprise needs had a strong emphasis on streamlining or

automating manual clerical processes and relatively simple, repetitive high-volume tasks such

as billing, payroll, inventory, and maintaining the general ledger (GL). Such applications were

obvious initial targets for the application of computers in the business environment for at

least three reasons:

 Their repetitive, highly constrained nature (making them relatively easy to model and

suitable for automation)

 The presumed cost savings associated with that automation

 The technical feasibility given the state of the art at the time

Early input and output formats were very crude. For a long time, batch-mode processing—

based on input via punched cards and output on green-bar lined printer paper—was the

norm. Eventually, the state of the art advanced to allow interactive activities (giving us the

now quaint and superfluous but persistent adjective online). Still, the application of com-

puters to the enterprise remained largely driven by the aforementioned factors. A natural

consequence was that each DP-targeted application was closely aligned with the operational

process it supported, and marginally if at all with other processes. DP was about recording

the basic facts of enterprise transactions while ensuring data integrity and then summarizing

the results in fixed reports. The well-known term online transaction processing (OLTP) devel-

oped as a label for all of this.

Electronic data processing was an apt description of what computers and their users were do-

ing during the pre–data warehousing period—processing data as transactions electronically

(as opposed to manually)—and also what they were frequently not doing—turning data into

information (as previously defined).

While this focus in many cases addressed operational needs adequately, it also led to a host

of issues that impeded extracting a higher level of value from the data being collected. Data

warehousing evolved, among other things, as a way of addressing these impediments. Let’s

explore how.

C14625990a.indd 566 10/2/2008 9:31:47 AM

 Chapter 14 Data Warehousing 567

Lack of Integration Across the Enterprise

The emphasis on operational processes inevitably created nonintegrated, stand-alone appli-

cations. From both enterprise and technical perspectives, each application defined essential

entities as it saw fit—not just the entities unique to itself but also those “master data” entities

such as customers and products that exist across the enterprise. There was typically no com-

mon understanding of what was meant by these key entities, so each application kept its own

version, leading to lots of data duplication.

With this state of affairs, it was difficult or impossible to create a meaningful enterprise-wide

view of just about anything. When attempted, such views were necessarily at a high level of

summarization, time-consuming, and expensive to create and therefore were created only

infrequently. Enterprise decision making, especially at the operational and tactical level, still

depended greatly on intuition, experience, and instinct. It often simply wasn’t possible to

base decisions on hard, accurate, up-to-date information. Late in the pre–data warehous-

ing age, there were attempts to address this in the form of applications known as executive

information systems (EIS) and decision support systems (DSS). These were generally ineffec-

tive because relative to their cost, they didn’t deliver enough value to their small, high-level

audience.

Management Reporting and the GL

The one application that typically was enterprise-wide was the general ledger (GL).

Every other major application concerned with financial information (which was many, if

not most applications) had to feed accounting entries to the GL. As a result, the GL of-

ten was the single point of integration between applications because it existed and had

those connections already. Also, it was accepted as an enterprise-wide single version of

“the truth” by its very nature. For these reasons, most early attempts at enterprise-wide

reporting were driven from the GL.

There was value in this, but there were grave limitations as well. A GL is not well suited

to “management reporting,” except possibly at the highest aggregated levels, such as

annual report line items. Management reporting is mostly focused on measurements of

enterprise performance at much lower levels, levels which are irrelevant to the concerns

of a GL—such as the profitability of specific customers. Yet once the GL became the

single point of integration and thereby the source of management reporting, it started

getting abused. All sorts of accounts and subledgers to support detailed manage-

ment reporting proliferated in the GL, and modifications to the GL interface of source

systems were made to feed them. Over time, this situation had a tendency to collapse

under its own maintenance weight, especially when the GL chart of accounts needed

to be restructured in the event of a merger. One of the impetuses of data warehousing

was to address all this by providing a separate, appropriate environment for manage-

ment reporting.

C14625990a.indd 567 10/2/2008 9:31:47 AM

568 Part IV Business Intelligence

Little or No Standardized Reference Data

Closely related to lack of integration, there typically existed no single, agreed-upon “system

of record” for key or master referential data across the enterprise, such as customer and

product. Problems that stemmed from this included incomplete and inaccurate data, dupli-

cated data entry (and resultant errors), and wasted effort synchronizing multiple versions

from different applications. Most important of all was the inability to derive, except possibly

at great effort, a consistent, comprehensive, and up-to-date view of the enterprise. In addi-

tion to these obvious consequences were some less obvious ones—for example, the embar-

rassment of severing a relationship with a customer who is unprofitable in one region but is

overall very profitable, because you could not see the “big picture” of all your relationships

with the customer across all regions, products, and organizational units.

To be sure, these problems and the reasons behind them were well recognized by the DP

 department and by the operational level of the enterprise almost from the beginning, and

this led to attempts to create “master file” versions of the most important referentials—

typically, customers, rates, products, and the organizational hierarchy. But technical limita-

tions, political turf battles, and a lack of recognition at senior management levels of the costs

of this fragmentation generally kept such efforts suboptimal.

Lack of History

Operational applications (let’s call them “OpApps”) by their very nature tend to neither

 require nor maintain historical data going back very far—often not more than a year or two.

There are exceptions of course, such as an application that manages mortgage loans at a

bank or life insurance at an insurer. These are certainly operational in nature and must also

retain historical activity going back even decades perhaps. But in most cases, OpApps main-

tain a minimum of history in order to optimize their OLTP performance and minimize storage

cost, and because there is simply no requirement to do more.

In any case, within the same enterprise, OpApps differ in the length of history maintained, its

periodicity (that is, hourly, daily, weekly, monthly, and so on), and the way changes in referen-

tial data over time are handled (that is, whether a history of changes is maintained, and if so,

on which attributes, and how many versions; for example, is the history of marital status or

address of a customer maintained). These differences make integrating the historical data of

multiple OpApps difficult, to say the least.

Data Not Optimized for Analysis

There are more significant differences between OpApps and analytical applications (”AApps,”

for short). As described so far, OpApps—especially in the pre–data warehousing era—were

and still are concerned mainly with reliably recording the facts of current transactions. They

C14625990a.indd 568 10/2/2008 9:31:47 AM

 Chapter 14 Data Warehousing 569

have limited concern with past history or with other OpApps, which is why they came to be

referred to as “islands of automation.”

In contrast, AApps are concerned with “digesting” OpApp data to provide actionable insights,

predictions, and an apples-to-apples view of the entire enterprise. Sometimes such appli-

cations even combine internal and external data, such as benchmarks regarding competi-

tors, providing a view of how the enterprise looks in a larger context. Achieving these goals

requires solving all kinds of problems that OpApps do not need to be concerned with. In

 addition to these general differences, here are some more specific ones:

 Given their uses, OpApps are physically optimized for insert, update, and delete

 operations, while AApps require read or query optimization.

 The amount of data required to answer a typical OpApps query is quite small, while the

amount required to answer a typical AApp query can be huge. Imagine the amount of

atomic data that must be digested to answer a query such as “Who were the top 5 cus-

tomers by purchases for 2007, and what were the top 5 products purchased by each of

them?”

 Among the various OpApps that must be integrated for an enterprise-wide view, there

are many impediments to integration, in addition to those mentioned earlier. Here are

a few:

 Entities that mean the same thing but that are named differently

 Entities that mean different things but that are named the same

 Different encodings of the same thing (for example, country codes)

 Different scale and precision of measures

 Different lengths of descriptive text for the same thing

 Different conventions for the primary key of the same entity

 “Smart keys”—where information is encoded in primary keys

As a Result…

 Creating any particular view of enterprise data, especially one integrated across multi-

ple applications, was a very technical undertaking that only the DP staff could perform.

Usually, there was a large backlog of requests for such views or reports.

 Many such requests (the fulfillment of which might have helped run the enterprise

better) never materialized in the first place. That was because users knew that by the

time the DP department could fulfill them, it would be too late to meet the business

opportunity.

C14625990a.indd 569 10/2/2008 9:31:47 AM

570 Part IV Business Intelligence

 Each request that was fulfilled was usually implemented through a new report or

extract, even if its requirements varied only slightly from an existing one. Given the

technology of the time, even something as simple (as we would consider it today) as

aggregating the data at a different level—say, quarterly rather than monthly—resulted

in a new report. Further, even when a report already existed that could fulfill a request,

there was typically no way to know that because no effective metadata was maintained

about existing reports—and so a new one would be created.

 Every report or extract would become permanently enshrined in the system

 infrastructure, forever. There was often no way to track who was using what report for

what purpose (if it was being used at all), so once a report was running, it was easier

and safer to just keep supporting it.

 Eventually, there were extracts of extracts—one “report” would become the source for

another. Keeping track of the dependencies became difficult if not impossible.

It should be obvious how all this represented a huge maintenance nightmare. But up through

the early 1990s, this situation was all too common in the average “DP shop,” and it just kept

getting worse. It became increasingly evident that this was a crisis in the making, and what

we today call data warehousing was born in response.

In fairness, it should be noted that there were efforts to build what effectively were data

warehouses long before the term was coined. But in those days, such efforts essentially re-

invented the wheel each time. They could not benefit from what is available today now that

techniques have matured and become codified and, thanks to the advent of the Internet,

shared. It is also true that hardware advances in the form of drastically lower storage costs

and fantastically improved CPU capacities have had a profound impact on the practice of

data warehousing and are essential to its viability today.

Data Warehouse Design

The preceding discussion gives you an idea of the issues that data warehousing evolved

to address. In this section, we only scratch the surface of design considerations in bring-

ing a data warehouse into existence and hope that will whet your appetite to learn more.

Fortunately, it has never been easier to learn more about data warehousing than it is today.

Note The value of data warehousing was not always widely accepted. In its early days, it was

viewed suspiciously and considered to be just a fad or an expensive waste of time by many IT

practitioners. At best it was thought of as “nice to have” and something that only the largest,

best funded, and mostly for-profit enterprises could consider. Fortunately, none of this is true

any longer.

C14625990a.indd 570 10/2/2008 9:31:47 AM

 Chapter 14 Data Warehousing 571

Building a data warehouse requires addressing a myriad of technical and nontechnical issues,

including the following:

 Determination of enterprise goals and objectives to be served by the data warehouse

and gaining organizational buy-in for them.

 Identification of the various audiences for the data and their varying requirements.

 Addressing of latency requirements with the appropriate data architecture.

 Extract, transform, and load (ETL)—the process and tools by which data is extracted

from source OpApps, cleaned and otherwise transformed as needed, and then loaded

into the data warehouse. SQL Server Integration Services (SSIS) is Microsoft’s primary

ETL tool for data warehousing.

 Design of entitlement, backup, mobility, scalability, delivery, and training schemes.

 Methods of end-user access to the information, including the distinction often made

between reporting and analysis. The tools and products for this usually receive a dis-

proportionate amount of attention in a data warehousing project because they are so

visible.

 The embedding of an organizational ethos that the data warehouse will constantly

evolve with the ever-changing needs it supports. The effort is never “done.”

The primary goal of any data warehouse is to integrate data from disparate sources into a

centralized store (at least logically speaking), in a form that can be used across the enterprise

for decision support by all who need it. Merely dumping all the data from various stand-

alone applications into a common database is not the sort of integration we mean. Rather,

a data warehouse requires a schema of some sort to which all the data brought in is made

to conform. The data also needs to be “clean”—meaning that all the different ways of repre-

senting the “same” thing in the various source systems have been converted to a single con-

sistent form. Both of these tasks are ETL responsibilities, as previously mentioned.

Based on what we’ve said so far, the 35,000-foot view of a data warehouse is shown in

Figure 14-1.

C14625990a.indd 571 10/2/2008 9:31:47 AM

572 Part IV Business Intelligence

OpApps Data Warehouse

FIGURE 14-1 The generic data warehouse architecture

With this background in place, we can now consider the two predominant data warehousing

architectures guiding practice today.

The Top-Down Approach of Inmon

William Inmon is recognized as “the father of data warehousing,” having invented the term

in 1990. The data warehousing features he characterized can seem self-evident today, but no

one had codified them previously as he did. According to his definition, the essential charac-

teristics of data in a data warehouse are as follows:

 Subject-oriented Major entities are common across multiple OpApps. Customer,

Product, Shipment, and Account are typical subject areas.

 Integrated Data sources are consistent with one another along common themes.

 Nonvolatile Data, once loaded, is usually never changed (updated or deleted).

 Time-variant Time is part of the key to everything—“as it was at this point in time,”

also known as “history,” is preserved.

These features enable the previously stated goals of any data warehouse.

While an oversimplification, the Inmon style of data warehousing presumes that an enter-

prise data model has been or will be created—one that identifies all the “subject-oriented”

entities common across multiple OpApps, the required numeric measures, the required detail

level of each, and the relationships between them. It is posited that the logical data model

representing this within the data warehouse is a normalized relational model of the sort as-

sociated with OLTP applications. Inmon refers to this as the “enterprise data warehouse” and

to the data as being “architected.” The emphasis is on a centralized, normalized data store.

Since the typical complexity of a normalized model does not lend itself to direct query from

ease of use and performance perspectives, this architecture also posits various datamarts,

C14625990a.indd 572 10/2/2008 9:31:47 AM

 Chapter 14 Data Warehousing 573

which are additional derived databases whose structure is optimized for query, and which

generally contain only aggregated data derived from the data warehouse. The key point is

that their architecture is secondary and separate from the data warehouse proper. A refine-

ment of Figure 14-1 that represents Inmon’s datamart concept is shown Figure 14-2.

OpApps ETL Queries

Datamart

Datamart

Datamart

Data Warehouse

FIGURE 14-2 An Inmon-inspired data warehouse

Because this approach generally insists that a large-scale model already exists or will be

created before construction of the data warehouse begins, it is usually characterized as top-

down.

Inmon has written several books elaborating the principles and refinements of this architec-

ture, and along with Claudia Imhoff (a long-term associate), he has elucidated an even larger

architecture, the Corporate Information Factory (CIF), of which data warehousing is only a

part. Space constraints preclude us from delving into further detail about the Inmon and CIF

approaches. We do want to make two points before moving on, however.

The first you are probably already thinking—that requiring the existence or creation of an

enterprise data model is impractical in many organizations. It has been successfully done,

typically in larger enterprises, but many would find it impossible to justify the time and ex-

pense required to develop the model (with nothing to show at the end but documentation).

No doubt when it can be done, it lays a very powerful foundation for informational applica-

tions, but in many cases, it is not feasible.

The second point is that many find this approach relatively abstract—useful in articulating

high-level architecture but less helpful with practical details during actual development.

The next approach to data warehousing that we’ll discuss, at the other end of the design

 spectrum, evolved to address both these realities.

C14625990a.indd 573 10/2/2008 9:31:47 AM

574 Part IV Business Intelligence

The Bottom-Up Approach of Kimball

From the mid 1990s to the present, Ralph Kimball has publicized an alternative to the Inmon

approach to data warehousing, the heart of which he called the Dimensional Model. If the

Inmon approach can be called top-down, Kimball’s is definitely bottom-up, although both

advocate a step-by-step approach. Just as Inmon articulated and formalized concepts that

were already in use by practitioners, Kimball codified several practices already in use but

lacking an integrative vision.

The first is the Dimensional Model, held to represent the most elegant tradeoffs between

end-user intelligibility, ease of use, good performance for both predefined and ad hoc que-

ries, and easy extensibility. The second is the idea of building the data warehouse incremen-

tally, something most enterprises find much more palatable than the all-at-once, “big bang”

approach implied by Inmon’s architecture. A key part of this is the concept of “conformed

dimensions” (which we’ll define in a moment) to ensure that each new incremental data

warehouse development could be integrated with what was already built, as opposed to each

effort becoming the next-generation “island of automation,” or as it is usually called today,

“stovepipe,” application. Third, Kimball emphasizes implementation practicality, with very

specific advice on a host of data design issues advanced through his books, Web site, regular

seminars, and training offerings.

Many indeed seem to find this approach desirable, as evidenced by the fact that most data

analysis tools on the market today, including Microsoft SQL Server Analysis Services (which

we cover in Chapters 15 through 18), have a definite affinity for the Dimensional Model. For

this reason, as well as because it is less abstract, we will devote the rest of this section to an

overview of this approach.

Important Inmon and Kimball are by far the best-known data warehousing pundits. For better

or worse, because their approaches are often seen as so different, each has developed a “camp”

of supporters who criticize each others’ views of data warehousing best practices with sometimes

religious zeal. Nonetheless, both share an emphasis on adhering to an architecture for the data

warehousing design and on a step-by-step approach to design and construction. Most data

warehousing projects in fact combine elements of the two approaches, which is as it should be,

because each has excellent ideas to contribute. This is why it is prudent for you to be aware of

them both.

This section does not purport to teach the Kimball approach. Space permits us merely to

expose you to a few key concepts associated with it. This should make your further investiga-

tions easier and more effective.

C14625990a.indd 574 10/2/2008 9:31:47 AM

 Chapter 14 Data Warehousing 575

Terminology

You should be aware of several useful data warehousing terms that—while closely associ-

ated with (if not always originated by) Kimball and the Dimensional Model—have come to be

more broadly understood due to their representation in many tools (especially OLAP tools).

You’ll see most of these terms again in the chapters that cover SQL Server Analysis Services

(Chapters 15 through 18).

 Measure A typically numeric value of interest in reporting and analysis, such as price,

balance, or inventory. As stored in a data warehouse, the relevant measures are defined

by the industry of the enterprise and come from the OpApps that are its data sources.

A measure is also characterized by grain, defined later in this list.

 Dimension The heart of the Dimensional Model, a dimension is variously described

as an “axis of analysis” or a “what” qualifier. A dimension helps qualify a measure and

give it context (discussed in the next section). In a query, a dimension can be part of the

query result and/or part of the query constraints. The most fundamental dimension is

Time, essential in almost any context. Others are industry-specific but typically include

at a minimum Customer, Product, and Geography. Dimensions are typically recognized

as referential or master data entities. A dimension is a collection of related values

called members—for example, 2008 might be a member of the Time dimension and

John Smith a member of the Customer dimension. In a Dimensional Model, the dimen-

sions are considered to be independent of one another, even if they really are not. For

example, Customer and Product are not independent, since not every customer buys

every product, but by modeling each as a dimension, we treat them as if they are inde-

pendent because doing so simplifies the conceptual model on which queries are based.

Few if any dimensions have zero correlation with any other dimensions.

 Hierarchy A particular parent-child organization of members within a dimension.

Each distinct set of parents is called a level of the hierarchy. For example, a Time dimen-

sion might have levels named Year and Month. The Year level might have members like

2007 and 2008, while the Month level might have members like Jan 2007 and Jan 2008,

with parent members at the Year level of 2007 and 2008. Hierarchies occur naturally in

a wide range of applications and are nothing more than a way of grouping members

for summarization. A hierarchy reflects the fact that different members of the same

 dimension represent different levels of detail.

 Dimension table A relational table containing (typically) one row per member of

the dimension (depending on what form of history, if any, is maintained in the dimen-

sion). A dimension table usually has a minimum of two columns, one representing the

key or identifier that uniquely defines members of the dimension and another giving a

 descriptive name for the member.

 Fact table A relational table that functions, from a data modeling perspective, as

an associative entity between various dimensions. It contains one or more measure

 columns, and key columns of all related dimensions. It is populated (by ETL) in such a

C14625990a.indd 575 10/2/2008 9:31:47 AM

576 Part IV Business Intelligence

way that the measure values are completely described by the related dimensional keys.

A fact table is also characterized by its grain (defined later in this list), and all measures

in the same fact table (should) have the same grain.

 Star schema Based on what an Entity Relationship (E/R) diagram of a fact table and

its related dimension tables look like, this has become a generic term for that pattern

(discussed later in this section).

 Grain A characteristic of a measure that is defined in terms of its related dimensions.

Grain has two properties: first, precisely those dimensions that define the context of the

measure; second, for each such dimension, the level within a hierarchy from the dimen-

sion that defines the level of detail of the measure. These two properties together de-

fine the measure’s grain. For example, if all measures in a fact table pertain to values of

the Month level of the Year-Month hierarchy of the Time dimension, the Time grain of

that fact table is Month. The overall grain of the fact table, referred to as its granularity,

is defined by such characteristics for all its dimensions.

 Conformed dimension A dimension, as previously defined, that has been designed

and built in such a way that each star schema that includes the dimension can be

meaningfully joined (logically) on such dimension. From a practical perspective, this

means that all occurrences of such dimension in various fact tables mean the same

thing—each includes exactly the same members, and each member has exactly the

same meaning in relation to the facts whose context it helps define. Kimball refers to

this state of affairs as the “Bus Architecture.”

It is not the case that each fact table using the dimension must use it at the same level

(if it has a hierarchy). For example, if one fact table is at the Year level of the Time di-

mension and another is at the Month level, data from the two can still be meaningfully

combined—it is simply necessary to aggregate the Month data to the level of Year

first. Without conformed dimensions, various star schemas cannot be meaningfully

combined along their common dimensions—in which case, the incremental approach

to building up the data warehouse is not possible. Creating conformed dimensions is

probably the most difficult part of the Dimensional Model approach, and where it most

intersects with the Inmon approach—it is here that organizational agreement about

which dimensions can be conformed, and what they will mean, must be secured. This is

also where a lack of needed data (that is, at the required grain) in source OpApps will

become apparent.

Note While the term conformed dimension concentrates on dimensions, the grain of the

 measures to be given context by such dimensions is equally important. To define conformed

 dimensions, there must exist measure definitions whose grain in the proposed conformed

 dimensions is the same in all existing or contemplated fact tables.

C14625990a.indd 576 10/2/2008 9:31:47 AM

 Chapter 14 Data Warehousing 577

Context and the Star Schema

As mentioned earlier, dimensions provide the context of a measure. Figure 14-3 depicts an

imaginary conversation that demonstrates how context is needed to make sense of data.

What does 492 mean?

Not much. Could be a count, or an amount…

How about 492.00?

Looks like it’s a financial amount…

It occurred on February 1, 2004.

Well…

The Central Division organization …?

OK, 492.00 on Feb 1, 2004 associated with Central Division---
what am I supposed to do with that?

Corporate Department …?

Yes, but …

Travel Lodging …?

OK, now we’re getting somewhere. That sounds like an expense.
So, on Feb 1, 2004, the Corporate department of the Central Division

incurred 492.00 in Travel Lodging expense. But wait a minute,
expenses can be actual or budgeted …

 It’s an Actual…

Now I know what 492.00 means!

FIGURE 14-3 Determining the context of a measure

Note Actually, do we really now know everything necessary to give 492.00 complete context? Not

unless we make a further assumption. Can you guess what? Of course—what currency is this in?

Now let’s diagram this conversation, as shown in Figure 14-4.

C14625990a.indd 577 10/2/2008 9:31:48 AM

578 Part IV Business Intelligence

Date

Department

Scenario Organization

Account

Corporate

February 1, 2004

Travel Lodging

Actual Central Division

492.00

FIGURE 14-4 A representation of what we know about 492.00 (currency is assumed)

We can examine an actual implementation of the preceding example. Run the code shown in

Listing 14-1 against the AdventureWorksDW2008 sample database to retrieve our exact case.

LISTING 14-1 Querying AdventureWorksDW2008 for the value of a particular measure

USE AdventureWorksDW2008

GO

SELECT

 dd.FullDateAlternateKey,

 do.OrganizationName,

 ddg.DepartmentGroupName,

 da.AccountDescription,

 ds.ScenarioName,

 ff.Amount

 FROM

 FactFinance ff

 INNER JOIN DimDate AS dd

 ON ff.DateKey = dd.DateKey

 INNER JOIN DimOrganization AS do

 ON ff.OrganizationKey = do.OrganizationKey

 INNER JOIN DimDepartmentGroup AS ddg

 ON ff.DepartmentGroupKey = ddg.DepartmentGroupKey

 INNER JOIN DimScenario AS ds

 ON ff.ScenarioKey = ds.ScenarioKey

 INNER JOIN DimAccount AS da

 ON ff.AccountKey = da.AccountKey

 WHERE

 dd.FullDateAlternateKey = '2/1/2004' AND

 do.OrganizationName = 'Central Division' AND

 ddg.DepartmentGroupName = 'Corporate' AND

 da.AccountDescription = 'Travel Lodging' AND

 ds.scenarioName = 'Actual'

 Note The sample AdventureWorksDW2008 database implements a schema that illustrates a

Kimball-inspired data warehouse. Refer to this book’s Introduction for instructions on locating

and downloading this sample database.

USE AdventureWorksDW2008

GO

SELECT

 dd.FullDateAlternateKey,

 do.OrganizationName,

 ddg.DepartmentGroupName,

 da.AccountDescription,

 ds.ScenarioName,

 ff.Amount

 FROM

 FactFinance ff

 INNER JOIN DimDate AS dd

 ON ff.DateKey = dd.DateKey

 INNER JOIN DimOrganization AS do

 ON ff.OrganizationKey = do.OrganizationKey

 INNER JOIN DimDepartmentGroup AS ddg

 ON ff.DepartmentGroupKey = ddg.DepartmentGroupKey

 INNER JOIN DimScenario AS ds

 ON ff.ScenarioKey = ds.ScenarioKey

 INNER JOIN DimAccount AS da

 ON ff.AccountKey = da.AccountKey

WHERE

 dd.FullDateAlternateKey = '2/1/2004' AND

 do.OrganizationName = 'Central Division' AND

 ddg.DepartmentGroupName = 'Corporate' AND

 da.AccountDescription = 'Travel Lodging' AND

 ds.scenarioName = 'Actual'

C14625990a.indd 578 10/2/2008 9:31:48 AM

 Chapter 14 Data Warehousing 579

From this query and the E/R diagram that represents the tables involved, we can see in

Figure 14-5 what is meant by a star schema.

FactFinance

DimDate

DimAccount

DimOrganizationDimScenario

DimDepartmentGroup

FIGURE 14-5 A star schema from AdventureWorksDW2008

Surrogate Keys

The surrogate key concept is not original to Kimball or the Dimensional Model, but it is

something they strongly advocate. A surrogate key is a system-assigned, typically integer,

primary key to a table. In SQL Server, the surrogate key would typically be an identity col-

umn, although sometimes a particular architecture might find it preferable to have a central

key generator that gives out surrogate keys as needed. Surrogate keys have two important

characteristics, as follows:

 They have no embedded encodings—that is, they are not “smart” keys. This makes

them immune to changes in the source data that would plague nonsurrogate primary

keys. One reasonable exception to this is the surrogate key of the Time dimension,

where making the surrogate integer key smart by representing YYYYMMDD (when

applicable to the grain of the fact tables) can make partitioning the fact tables much

easier.

 As integers, they are the most efficient possible primary keys, both from performance

and storage perspectives.

This concludes our brief review of the Kimball approach to data warehousing. You are strong-

ly encouraged to consult the references at the end of this section, as well as appropriate Web

searches, for a great deal more information. We’ll close here with Figure 14-6, which illus-

trates what a data warehouse built to Kimball principles looks like. An important aspect to

observe in this figure is that the data warehouse is the collection of star schemas—there are

no separate datamarts, as in the Inmon approach. (And by the way, in an Inmon data ware-

house, there is no objection to the datamarts following the Kimball architecture.) Although

not shown in this figure, it is assumed that the various star schemas are not disjoint, mean-

ing that wherever they share a functional dimension such as Customer or Product, they have

been constructed in such a way as to actually share a single version of the dimension. When

this is done, the data in the various star schemas can be validly combined along the common

C14625990a.indd 579 10/2/2008 9:31:48 AM

580 Part IV Business Intelligence

dimensions—a property derived from them having been constructed to be “conformable,” in

the parlance of the Dimensional Model.

Data
WarehouseOpApps ETL Queries

FIGURE 14-6 A Kimball-oriented data warehouse

What Data Warehousing Is Not

Much confusion exists in the literature and among practitioners because many terms are

regularly conflated with data warehousing, even now when the maturity of the field should

preclude this. A charitable view is that this was at least understandable in the past when the

field was evolving rapidly in theory, practice, and product. But today, there ought to be more

clarity, precision, and common understanding. In furtherance of this, we feel it is worth as-

serting that there are worthwhile distinctions still represented by certain overused and mis-

used terms. This section provides a brief summary of some of these terms.

OLAP

The term online analytical processing, or OLAP, was coined by Dr. E. F. Codd (the originator

of the relational model) in 1994 to distinguish a set of properties that analytical applications

should satisfy (in contrast with his famous 1985 publication of “12 Rules” that a relational da-

tabase management system should satisfy; see http://en.wikipedia.org/wiki/Codd’s_12_rules).

The term was intended to draw distinctions between the at-the-time well-known proper-

ties of OLTP applications and the less-well-defined properties of analytical applications. It

is probably most valuable simply for emphasizing that such a distinction should be made.

Today the term can be understood also as referring to a response to the limitations of

spreadsheet-based approaches. While not strictly part of the definition, as a practical matter,

cube-based technology is now usually associated with OLAP.

C14625990a.indd 580 10/2/2008 9:31:48 AM

 Chapter 14 Data Warehousing 581

Note As with data warehousing, there were OLAP-like efforts long before the term OLAP was

coined that were recognizable precursors, going back to the 1960s.

An OLAP application often, although not of necessity, draws its data from some form of star

schema. The various OLAP tools on the market today form a spectrum in the degree to which

they require a recognizable star schema as their data source. At one end, some tools can de-

liver OLAP functionality, with relatively simple calculations, from just about any data source

with any organization, while at the other end are tools that can use only cubes (a data struc-

ture designed to facilitate fast analysis, further described in Chapter 15) as their data source

(and hopefully can fully exploit their power). A data warehouse is very helpful as the source

anywhere on this spectrum and is a virtual necessity on the cube-oriented end of it.

More Info The Fast Analysis of Shared Multidimensional Information (FASMI) test is a more

precise, alternative definition of the properties that the term OLAP aspired to distinguish, devel-

oped by the authors of The OLAP Report. For a detailed definition of FASMI, as well as links to

a wealth of other excellent OLAP information (much of it free), see http://www.olapreport.com/

fasmi.htm.

In the context of SQL Server, Analysis Services is Microsoft’s full-featured OLAP engine; it is

covered in detail in Chapters 15 through 18.

Data Mining

The traditional way of extracting information from data requires a skilled analyst with a deep

understanding of the enterprise who formulates ad hoc queries, the answers to which he

or she think would be interesting—for example, “What was the impact of last month’s sales

promotion on sales?” or “Which stores in the top 10 by sales this year were also in the top 10

by sales last year?” In effect, the analyst forms hypotheses of cause and effect and then tests

them against the data. To be effective, this rather hit-or-miss style of information discovery

requires tools that permit easily formulating the queries and fast response so that the analyst

can maintain his or her train of thought. OLAP technology is ideally suited for this.

In contrast, data mining is an approach in which correlations that might exist in a data set are

automatically “discovered” using specialized data models and statistical algorithms. Because

it is automated, it is more thorough in finding correlations, and it is unaffected by the preju-

dices and blind spots that an analyst would have using an ad hoc approach. The analyst still

needs to evaluate each correlation found to determine whether it is meaningful or merely

correlative, however.

In principle, data mining does not require a data warehouse for its source data. However, a

well-crafted data warehouse with clean data could be an ideal source. The intended analysis

C14625990a.indd 581 10/2/2008 9:31:48 AM

582 Part IV Business Intelligence

and the allowable latency also affect whether a data warehouse as an analysis source is feasi-

ble. For example, in detecting credit card fraud, is the data warehouse updated often enough

to be useful?

Starting with SQL Server 2000, Microsoft has invested much effort in giving SQL Server

Analysis Services data mining capabilities that are much easier for relative nonspecialists to

use than what has previously been available on the market. These capabilities are covered in

detail in Chapter 18.

Business Intelligence

The term business intelligence (BI), coined by analyst Howard Dressner in 1989, has turned

out to be quite popular. Today it is applied in so many contexts that you would be right to

wonder whether it distinguishes anything anymore. Some argue that it doesn’t, but we think

that it still does. It is unfortunate that the business in BI obscures the fact that BI can be valu-

able in any enterprise, not just the for-profit ones implied by the B. So as suggested earlier,

think enterprise intelligence when you hear business intelligence.

The most important thing to be clear about is that BI, properly understood, is not about any

particular technology—although its implementation certainly depends on technology. BI

is fundamentally a management approach and philosophy. Like most good ideas, its basic

premise sounds so obvious when stated that it hardly seems worth noting: management

decisions should be based on facts, not on educated guesswork, politics, or other subjec-

tive bases. Of course, management of an enterprise has always been based at some level

on objective information—accounting being the most elemental form. But in the past, such

objective measures, especially at the enterprise level, were at a summary level, produced in-

frequently (if periodically), rigidly structured, and incapable of easily revealing the detail from

which they were derived.

BI aims to change all this by ensuring that information is accurate, reliable, updated as fre-

quently as necessary, and readily accessible to whoever needs it, regardless of their level

in the organization. One focus of BI is on the technologies required to achieve these goals,

which generally include some form of data warehouse—hence the association. But the tech-

nology focus, especially on user interfaces (UIs), tends to receive disproportionate attention.

An equally important focus should be on the vision of fact-based decision making that is

supported by senior management and influences the way the enterprise will be run.

Initially, BI often faced significant resistance in the enterprise. If knowledge is power, losing

control of knowledge feels like (and often is) losing power. BI threatened this with its empha-

sis on making information available to a much broader audience. Fortunately by now, the

value of BI is recognized in most enterprises.

Last, we must mention that historically, many BI projects and their supporting data ware-

house implementations have overpromised and underdelivered, giving BI a bad reputation

C14625990a.indd 582 10/2/2008 9:31:48 AM

 Chapter 14 Data Warehousing 583

for being expensive and risky. As a result, some are beginning to rethink the necessity of

creating a data warehouse to support BI and instead are using existing reports and other ex-

isting data sources directly as BI sources. While this approach has its appeal, only time will tell

whether it becomes an important theme in BI implementation.

Dashboards and Scorecards

The terms dashboard and scorecard are often used synonymously. They both represent in-

formation graphically, summarizing it with various elements showing relative magnitudes,

trends, and other meaningful relationships. But they are not synonymous.

Dashboards

A dashboard, like its automobile namesake, displays measures without the context of related

goals. It has a “just the facts” tactical orientation and is updated as often as necessary for the

(typically) operational process that it supports. It is more generic than a proper scorecard in

that it can display anything (including a scorecard). Figure 14-7 shows a typical dashboard.

FIGURE 14-7 A typical dashboard

C14625990a.indd 583 10/2/2008 9:31:48 AM

584 Part IV Business Intelligence

Scorecards

A scorecard displays base measures in the context of related goals, objectives, or target mea-

sures and provides at-a-glance visual cues as to whether each such base measure is lagging,

achieving, or surpassing its goal measure. Obviously, therefore, a scorecard is not possible

unless such goal measures exist in addition to the base measures. A strategy must be devised

for such goal measures to exist. It follows that a scorecard is strategic, whereas a dashboard is

tactical and operational.

The term key performance indicator (KPI) is closely associated with scorecards. The traffic

light and trend indicators in Figure 14-8 are KPIs. A KPI encapsulates a measure, a related

goal measure, a calculation about the relationship of the two, and a graphic that expresses a

“good or bad” indication based on the calculation.

FIGURE 14-8 A typical scorecard

Goal measures are usually not defined at lower levels of detail. Consider the difference in

grain between Actual and Plan measures—the former derive from individual transactions,

while the latter are created at a much more summarized level, at least in the Time dimen-

sion. For this reason, scorecards tend to report at a more summarized level than dashboards,

which is consistent with their strategic vs. tactical orientation. This in turn also means that

changes occur more slowly, so scorecards are usually refreshed less often than dashboards.

In a financial scorecard like the one shown in Figure 14-8, an Actual vs. Plan KPI exhibits all

C14625990a.indd 584 10/2/2008 9:31:48 AM

 Chapter 14 Data Warehousing 585

these principles and is seen as a traffic light in the Plan columns. Notice the Trend indicator,

which is also a KPI that uses some calculation between prior-period Actual and Plan values.

Since SQL Server 2005, Analysis Services provides KPI objects that can be stored in cubes.

They can be consumed and displayed by Microsoft Office Excel 2007, Microsoft Office

SharePoint Server, and Microsoft Performance Point, each of which also allows creating and

storing KPIs within its respective environment.

More Info See Chapter 16 for advanced OLAP coverage that includes KPIs.

Performance Management

Performance management is a relatively recent term that is a particular flavor of BI but rates

its own discussion because of its currency in the literature and market today as a distinct

entity. Performance management implies BI—but the converse is not true, because BI is the

more general term. As noted earlier, BI’s techniques can be focused in many different direc-

tions. Performance management is a specific application of BI. It is first about establishing

organizational goals and objectives and ways of measuring progress toward meeting them—

often using BI techniques to help determine what those goals and measures should be. Once

these goals are established, it is then about gathering past, current, and projected perfor-

mance, explicitly measuring these against the established goals, and widely disseminating

how well goals are being met. This is usually achieved in the form of scorecards, which are

again facilitated by BI tools and techniques.

The Balanced Scorecard (BSC) is a well-known example of performance management that

predates the term. It is worth becoming familiar with the BSC approach, not least because it

can help you better understand the factors driving enterprise strategy, and how to ensure

that the strategy is enacted.

More Info Start by reading the seminal book that originated the term: The Balanced Scorecard:

Translating Strategy into Action, by Robert S. Kaplan and David P. Norton (Harvard Business

School Press, 1996).

Practical Advice About Data Warehousing

A data warehousing effort requires both theory and discovery. Although the theory associ-

ated with building a data warehouse could be considered a rather well understood topic to-

day, practical experience still has much to offer. In this section, we’ll look at a few of the data

warehousing best practices that we have found most valuable.

C14625990a.indd 585 10/2/2008 9:31:48 AM

586 Part IV Business Intelligence

Anticipating and Rewarding Operational Process Change

It is almost certain that a data warehousing effort will identify data elements and relation-

ships essential to realizing the enterprise goals that are not currently captured in the op-

erational processes. It is also likely that those who would be most directly affected in their

day-to-day work by addressing this will feel that they have nothing to gain by doing so, and

often something to lose. For example, an enterprise goal might be to capture which sales

groups should get credit, and in what proportion, for working together to make a sale hap-

pen—the better to apportion the bonus pool of the sales force. Enabling this requires cap-

turing information about which sales groups were involved at the time the sales transaction is

recorded. This is information that is likely not currently available in the workflow of the back-

office staff who record the transaction, and moreover, even if it is (or is made to be), the extra

time it would take them to record it will reduce the number of transactions they can process

per hour. They will most likely resist, given the impact on their productivity, unless this effort

is officially recognized and proper incentives are put in place to motivate their cooperation.

Rewarding Giving Up Control

As suggested earlier in this chapter in the section ”Business Intelligence,” a successful data

warehousing/BI effort often requires those who have traditionally been in control of key data

to relinquish that control in the interest of the greater good. Any organizational change ef-

fort will threaten those who perceive themselves the losers in some way (often correctly), and

it is only natural for them to resist the change. If the enterprise recognizes this and provides

positive motivators to take this risk, the chances of success are increased. How feasible this is,

of course, depends greatly on the organizational culture. The BSC approach can be particu-

larly valuable in this regard.

A Prototype Might Not Work to Sell the Vision

Building a prototype or proof of concept (POC) for a data warehousing/BI approach is often

recommended as a way to achieve buy-in from important stakeholders. It is easy to assume

that a representative POC will do the trick. By representative, we mean that the important

technical capabilities are demonstrated as feasible (such as whether particular relation-

ships can be modeled successfully), even if this is illustrated with fictitious data such as the

AdventureWorksDW2008 database.

What you might not realize until it is too late is that stakeholders can find it difficult to ap-

preciate such an approach, particularly when the POC is not based on measures they recog-

nize or the values used are not realistic. If you hear people in your audience calling out “Hey,

that number isn’t right!” while you are demonstrating the POC, that’s exactly what’s hap-

pening. Logically, in a POC, it might not matter whether the data is accurate, but once your

C14625990a.indd 586 10/2/2008 9:31:49 AM

 Chapter 14 Data Warehousing 587

stakeholders lose interest or faith, it can be very difficult to regain. Focusing on such issues is

also a favored tactic of those who oppose the data warehouse for whatever reason.

For a POC to have the best chance of success, it should be as realistic and as attuned to the

work of the stakeholders who will be judging it as possible. This often runs counter to the

idea that a POC requires a minimal investment, which is exactly why we are making this

point. The data warehousing project can get shot down before it even gets off the ground

with an ill-conceived POC.

Surrogate Key Issues

The value of using integer surrogate keys in a data warehouse was discussed earlier in this

chapter in the section “Data Warehouse Design.” But their use is not without issues, as

 described here:

 In general, surrogate keys should not be “smart“—that is, they should not have any

significant meaning encoded in their values. However, an exception might be worth

considering for the Time dimension. At the physical level, there can be value in the

Time surrogate key taking the form YYYYMMDD, YYYYMM, or YYYYWW (where Y, M,

D, and W are year, month, day, and week values), all of which are easily represented

as an integer. Two reasons justify this violation of the normal best practice. First, if the

Time surrogate key column is the first in the composite primary key of the fact table (as

it usually should be) and the primary key has a clustered index, the fact data will be op-

timally organized for the Time constraint of the typical query—which is usually either

a point in time or a range. Second, such a smart Time key will make it much easier to

implement and maintain physical partitioning of the Time dimension at the relational

database level.

 Surrogate keys can be generated in several ways, two principal ones being IDENTITY

columns or a row-by-row assignment facility—for example, SELECT MAX(Id) + 1—us-

ing appropriate locking mechanisms. Regardless of the method, complications can arise

in the typical multienvironment setting—that is, development, quality assurance (QA),

and production. Assume that at the start of a development cycle, your development

environment is refreshed from production. Then you also copy over ETL input files from

production and run the ETL process in development (perhaps as part of a parallel test).

Depending on how surrogate keys are assigned, there can be a good chance that the

same data (from a business key perspective) is assigned different surrogate keys in de-

velopment and production. This can greatly complicate reconciliation between the two.

Currency Conversion Issues

Particularly in larger, multinational enterprises, financial applications usually require currency

conversion in order to compare similar items (apples to apples). Be aware that this is a subject

C14625990a.indd 587 10/2/2008 9:31:49 AM

588 Part IV Business Intelligence

fraught with business rule and design conundrums. Since SQL Server 2005, Analysis Services

has provided features that can make implementation of currency conversion calculations in

the cube easier.

But this does not address the issues we want to highlight here, which relate to the tension

between designing for ad hoc, not-known-in-advance queries and needing to know some-

thing, possibly a lot, about likely queries, if a suitable design is to be derived. Issues around

currency conversion illustrate this particularly well. There are no “right” answers to the fol-

lowing questions, but you would do well to consider all of them if currency conversion is in

any way a part of your business perspective:

 What flexibility is required? Will there be one master currency in which all comparisons

are expressed, several standard currencies, or in any existing currency?

 Closely related to the preceding questions, does it make sense to precalculate and store

converted amounts, or must this be done on the fly?

As with all rates and ratios, care must be taken where aggregation is involved to force

the currency conversion to be at the appropriate leaf level of detail, followed by aggre-

gation to the required summary level. The capabilities of your OLAP tool influence this

greatly.

 Are converted amounts to be at the rate in effect at their original point in time only, or

should amounts also be convertible based on the rates at any point in time?

 At what rates should future values (for example, Budget) be converted: the rates in

 effect when the budget is finalized, never after to be adjusted? Or should current

rates be used, adjusting the projections every period? Must you be able to distinguish

how much of a variance between Actual and Budget is due to currency conversion vs.

changes in the Budget measure itself?

The design driven by answers to these business questions has profound effects on both the

questions that can be answered later and the technical complexity required.

Events vs. Snapshots

There are two complementary approaches to data warehouse logical design: the event-driv-

en approach and the snapshot approach. Both involve tradeoffs in complexity and in the sort

of inquiries they can support.

On the one hand, it can be argued that everything of analytical interest in an enterprise can

be represented as an event. Events are items like a payment or an order being received or a

shipment getting delivered. Events by definition occur asynchronously at points in time. In

principle at least, if all relevant events can be identified and captured, it is possible to de-

duce the state of affairs at any point in time, as well as how that state came to be. For some

 informational applications, this is critical. Constructing the point in time from events can,

however, be exceedingly complex.

C14625990a.indd 588 10/2/2008 9:31:49 AM

 Chapter 14 Data Warehousing 589

On the other hand, a snapshot-based approach does not record events at all. Instead, it sim-

ply periodically records the aggregate effect of events. Answering queries about the points

in time where snapshots were taken is obviously much easier than it would be with a purely

event-based approach, where the state at the point in time would need to be reconstructed.

These approaches sometimes need to be combined. For example, with an Account entity,

often the only thing of interest is the account balance at periodic points in time, such as

month-end. On the other hand, it is also imperative to be able to query each and every event

(debit or credit) that affected the balance since the previous snapshot.

Events and snapshots have considerations in addition to which functional questions they sup-

port. There is the question of what the source system can provide in terms of either events

or snapshots, which has an impact on how much work must be done in the data warehouse

ETL to create one or the other. Also, a snapshot approach that takes a snapshot of every-

thing, regardless of how much or little has changed since the last snapshot can lead to data

proliferation and can be inefficient compared with an event-based approach when changes

are relatively few—although this can be addressed with techniques such as Change Data

Capture, detailed later in this chapter.

It is well worth spending considerable time during the design phase thinking through the

implications of both approaches before determining the best choices for your requirements.

SQL Server 2008 and Data Warehousing

Earlier versions of SQL Server had new features related to data warehousing, most notably

Analysis Services, Reporting Services, and in SQL Server 2005, certain features of SQL Server

Integration Services such as the Slowly Changing Dimensions task. But these earlier versions

had very little at the level of the relational engine specifically targeting the particular needs

of data warehousing. SQL Server 2008 delivers new features that squarely target data ware-

housing, particularly in relation to making very large databases more manageable and cost

effective. This section will review the most important of the data warehousing–oriented en-

hancements in SQL Server 2008, starting with the Transact-SQL (T-SQL) enhancements aimed

at working with data warehousing.

T-SQL MERGE Statement

The MERGE statement is covered in more depth in Chapter 2 and is applicable to many more

scenarios than data warehousing. We cover it here too because it is also very relevant to data

warehousing, specifically in the ETL context.

The MERGE statement provides what’s commonly referred to as upsert—meaning update the

row if it already exists; otherwise, insert it. But there is more as well. MERGE requires a target

table, which is joined in some relationship to a source table. The source table contains the

data to be merged or synchronized with the target table. The MERGE statement supports

C14625990a.indd 589 10/2/2008 9:31:49 AM

590 Part IV Business Intelligence

up to three types of clauses defining the row-by-row action to be taken on the target table

based on how it compares with the source table:

 WHEN MATCHED The row exists in both merge and target tables (performs an inner

join and allows UPDATE or DELETE).

 WHEN NOT MATCHED BY TARGET The row exists in the source table but not the

 target table (performs a left outer join and allows INSERT).

 WHEN NOT MATCHED BY SOURCE The row exists in the target table but not the

source table (performs a right outer join and allows UPDATE or DELETE).

More Info Each merge clause can also state constraints in addition to the implied join, such

as another condition comparing column values between source and target. However, there are

some very particular rules governing the use of multiple merge clauses and their various combi-

nations. We cover those in the full treatment given to the new MERGE statement in Chapter 2.

In the data warehousing context, the MERGE statement is particularly suited to the mainte-

nance of the dimension tables of star schemas. It is also very helpful in maintaining Type 1

slowly changing dimensions (SCDs), where changes simply overlay existing values, and Type 2

SCDs, where MERGE can do part of the job (a separate INSERT operation is still needed when

an existing row is updated, to create the new version of it.) See the section entitled “Data

Warehouse Design” earlier in this chapter for more details. (A full treatment of SCDs is be-

yond the scope of this chapter.)

In SQL Server 2008 Integration Services, MERGE can streamline and simplify the insert/up-

date pattern that would be required under SQL Server 2005 Integration Services. Previously,

the decision to insert or update in SQL Server 2005 Integration Services had to be based on a

lookup of the source row using a Lookup task that was loaded with the target rows and two

output data flows based on the failure or success of the lookup: one doing inserts and one

doing updates against the target. With MERGE, the Lookup task is no longer needed, which

simplifies the Integration Services package and avoids the performance, memory, and dead-

lock issues that can arise with the Lookup task if the target table is large.

Syntactically, MERGE requires two joinable tables or table-equivalents. (The target must be

either a table or an updatable view; the source can be any table-equivalent.) For Integration

Services, this means that the source table must exist or must be created in the package (as a

temporary table, common table expression [CTE], or other equivalent).

The code in Listing 14-2 shows a series of representative T-SQL expressions using MERGE

against the AdventureWorksDW2008 database. Run each statement by hand as direct-

ed by the comments, followed by running the MERGE statement at the end. Note that

GeographyKey is an identity column in DimGeography, so the column list must be explicit in

the INSERT statement in the MERGE statement’s WHEN NOT MATCHED BY TARGET clause.

Also note that the ending semicolon is required to terminate the MERGE statement.

C14625990a.indd 590 10/2/2008 9:31:49 AM

 Chapter 14 Data Warehousing 591

 More Info All the data manipulation language (DML) statements in T-SQL (INSERT, UPDATE,

DELETE, and MERGE) support an OUTPUT clause, which can be quite useful for archiving

changed data. In addition, the new INSERT OVER DML feature in SQL Server 2008 enhances the

OUTPUT clause with fi ltering capabilities. See Chapter 2 for details of the OUTPUT clause and

INSERT OVER DML.

LISTING 14-2 Using MERGE for a data warehousing update

USE AdventureWorksDW2008

GO

-- Make a copy of the table.

SELECT * INTO DimGeographyTest FROM DimGeography

-- Create "Changes" table as another copy of same data.

SELECT * INTO Changes FROM DimGeography

-- If you now run the MERGE statement below, no changes will be reported. Note

-- the condition on the UPDATE clause, which prevents unnecessary updates.

-- Now force some UPDATES (53):

UPDATE Changes

 SET SalesTerritoryKey = 11

 WHERE SalesTerritoryKey = 10

-- Now running MERGE reports 53 updates.

-- Now force DELETES (empty table will effectively delete every row in

-- DimGeographyTest):

DELETE Changes

-- Now running MERGE will delete all 653 rows in DimGeographyTest.

-- Testing INSERT is left as an exercise for the reader.

-- MERGE statement:

MERGE DimGeographyTest AS dg

 USING (SELECT * FROM Changes) AS c

 ON dg.GeographyKey = c.GeographyKey

 WHEN MATCHED and dg.SalesTerritoryKey <> c.SalesTerritoryKey THEN

 UPDATE SET dg.SalesTerritoryKey = c.SalesTerritoryKey

 WHEN NOT MATCHED BY TARGET THEN

 INSERT (City, StateProvinceCode, StateProvinceName,

 CountryRegionCode, EnglishCountryRegionName,

 SpanishCountryRegionName, FrenchCountryRegionName,

 PostalCode, SalesTerritoryKey)

USE AdventureWorksDW2008

GO

-- Make a copy of the table.

SELECT * INTO DimGeographyTest FROM DimGeography

-- Create "Changes" table as another copy of same data.

SELECT * INTO Changes FROM DimGeography

-- If you now run the MERGE statement below, no changes will be reported. Note

-- the condition on the UPDATE clause, which prevents unnecessary updates.

-- Now force some UPDATES (53):

UPDATE Changes

 SET SalesTerritoryKey = 11

 WHERE SalesTerritoryKey = 10

-- Now running MERGE reports 53 updates.

-- Now force DELETES (empty table will effectively delete every row in

-- DimGeographyTest):

DELETE Changes

-- Now running MERGE will delete all 653 rows in DimGeographyTest.

-- Testing INSERT is left as an exercise for the reader.

-- MERGE statement:

MERGE DimGeographyTest AS dg

 USING (SELECT * FROM Changes) AS c

 ON dg.GeographyKey = c.GeographyKey

 WHEN MATCHED and dg.SalesTerritoryKey <> c.SalesTerritoryKey THEN

 UPDATE SET dg.SalesTerritoryKey = c.SalesTerritoryKey

 WHEN NOT MATCHED BY TARGET THEN

 INSERT (City, StateProvinceCode, StateProvinceName,

 CountryRegionCode, EnglishCountryRegionName,

 SpanishCountryRegionName, FrenchCountryRegionName,

 PostalCode, SalesTerritoryKey)

C14625990a.indd 591 10/2/2008 9:31:49 AM

592 Part IV Business Intelligence

 VALUES (c.City, c.StateProvinceCode, c.StateProvinceName,

 c.CountryRegionCode, c.EnglishCountryRegionName,

 c.SpanishCountryRegionName, c.FrenchCountryRegionName,

 c.PostalCode, c.SalesTerritoryKey)

 WHEN NOT MATCHED BY SOURCE THEN

 DELETE

 OUTPUT $action, INSERTED.*, DELETED.*;

 The deletion possibilities of MERGE would be rare in a data warehousing scenario except in

single-instance fi xes of erroneous data, but it is worth knowing about for that purpose alone.

In general, beware of using DELETE with MERGE. If your source table is inadvertently empty

(as it is eventually in our example), MERGE with a WHEN NOT MATCHED BY SOURCE clause

specifying DELETE could unintentionally delete every row in the target (depending on what

other conditions were in the WHEN NOT MATCHED BY SOURCE clause).

Change Data Capture

Like one use of MERGE, the new Change Data Capture (CDC) feature in SQL Server 2008

targets the ETL component of data warehousing. CDC is available only in the Enterprise edi-

tion of SQL Server 2008 (and of course, the functionally equivalent Developer and Evaluation

editions).

 Note SQL Server 2008 provides a number of change tracking features—each one tailored for

a specifi c purpose. In particular, CDC addresses data warehousing, SQL Server Audit addresses

security (see Chapter 5), and SQL Server Change Tracking targets synchronization of occasionally

connected systems and mobile devices using ADO.NET Sync Services (see Chapter 13).

CDC is designed to effi ciently capture and record relevant changes in the context of a data

warehouse. Traditionally, detecting changes in an OpApp table that need to be applied to a

data warehouse has required relatively brute force methods such as the following:

 For updates, using the CHECKSUM function as a shortcut to detecting inequality of col-

umns between source and target rows (SQL Server only), or comparing time stamps.

 For inserts, outer-joining source and target rows and testing for NULL on the target.

 For inserts and updates, implementing triggers on the source table to detect changes

and take appropriate action against the target, or performing a lookup (perhaps using

an Integration Services Lookup task) to compare source against target and then driving

the update or insert by the success or failure of the lookup.

 For inserts and updates, using the OUTPUT clause (SQL Server 2005 and 2008) or

INSERT OVER DML (SQL Server 2008 only), which we cover in Chapter 2.

 VALUES (c.City, c.StateProvinceCode, c.StateProvinceName,

 c.CountryRegionCode, c.EnglishCountryRegionName,

 c.SpanishCountryRegionName, c.FrenchCountryRegionName,

 c.PostalCode, c.SalesTerritoryKey)

 WHEN NOT MATCHED BY SOURCE THEN

DELETE

 OUTPUT $action, INSERTED.*, DELETED.*;

C14625990a.indd 592 10/2/2008 9:31:49 AM

 Chapter 14 Data Warehousing 593

The CDC feature introduced in SQL Server 2008 provides a valuable new way of laying

the groundwork for maintaining changing data in a data warehouse. Without resorting to

 triggers or other custom code, it allows capturing changes that occur to a table into a sepa-

rate SQL Server Change Tracking table (the change table). This table can then be queried by

an ETL process to incrementally update the data warehouse as appropriate. Querying the

change table rather than the tracked table itself means that the ETL process does not affect

the performance of applications that work with the transactional tables of your database in

any way. CDC is driven by a SQL Server Agent job that recognizes changes by monitoring

the SQL Server transaction log. This provides much better performance than using triggers,

especially in bulk load scenarios typical in a data warehouse—and there’s no code to write or

maintain with CDC. The tradeoff is somewhat more latency, which in a data warehouse is of-

ten perfectly acceptable. Figure 14-9 depicts a high-level view of CDC architecture using an

illustration taken from SQL Server Books Online.

OLTP

Source
tables

Log

Capture
process

Change
tables

Data warehouse

Change data capture
query functions

Extraction, transformation,
and loading

FIGURE 14-9 High-level architecture of CDC

C14625990a.indd 593 10/2/2008 9:31:49 AM

594 Part IV Business Intelligence

Several new system stored procedures and table-valued functions (TVFs) are provided to

enable, monitor, and consume SQL Server Change Tracking output. To begin, you execute

the sp_cdc_enable_db procedure to enable CDC on the current database. (You must be in

the sysadmin role to do this.) When you run this procedure, a new cdc user, cdc schema, and

CDC_admin role are created. These names are hard-coded, so in the event that you already

have a user or schema named cdc, you will need to rename it before using CDC.

Once the database is CDC-enabled, you enable CDC on a given table by executing

sp_cdc_enable_table. (You must be in the db_owner role to do this.) When you do that, several

objects are created in the cdc schema: a change table and at least one (but possibly two)

TVFs. Let’s look at each of these objects in turn.

When CDC is enabled on a table, SQL Server creates a change table in the cdc schema cor-

responding to the table on which CDC is being enabled. The change table will be populated

with change data automatically by CDC and is assigned a name based on both the schema

and the table being tracked. For example, when you enable CDC on the Employee table in

the dbo schema (as we’ll do shortly), SQL Server creates a corresponding change table named

cdc.dbo_Employee_CT that will record all changes to the dbo.Employee table. The schema

of the tracked table (dbo in this case) is part of the change table name so that same-named

tables from different schemas can all be unambiguously tracked in the cdc schema. It is also

possible to explicitly name the change table, as long as it’s unique in the database.

The ETL process will query this change table for change data in order to populate your data

warehouse, but it will not normally do so by selecting directly from it. Instead, the ETL pro-

cess will call a special TVF to query the change table for you. This TVF is also created for you

by SQL Server automatically when the change table is created, and—like the change table—

the TVF is also created in the cdc schema with a name based on the schema and table name

of the tracked table. So again, if we’re tracking the dbo.Employee table, SQL Server creates a

TVF named cdc.fn_cdc_get_all_changes_dbo_Employee that accepts parameters to select all

changes that occur to dbo.Employee between any two desired points in time.

If you specify @supports_net_changes=1 when calling sp_cdc_enable_table, a second TVF is

created for the change table as well. Like the first TVF, this one allows you to select changes

between any two points in time, except that this TVF returns just the net (final) changes that

occurred during that time frame. This means, for example, that if a row was added and then

deleted within the time frame being queried using this second TVF, data for that row would

not be returned—whereas the first TVF would return data that reflects both the insert and

the delete. This second TVF is named in a similar fashion as the first, except using the word

net instead of all. For dbo.Employee, this TVF is named cdc.fn_cdc_get_net_changes_dbo_

Employee. Note that querying for net changes requires the tracked table to have a primary

key or unique index.

Neither of these TVFs accept start and end times directly but instead require the range to be

expressed as log sequence numbers (LSNs) by first calling sys.fn_cdc_map_time_to_lsn. So to

C14625990a.indd 594 10/2/2008 9:31:49 AM

 Chapter 14 Data Warehousing 595

query between two points in time, you call sys.fn_cdc_map_time_to_lsn twice—once for the

start time and once for the end time—and then use the LSN values returned by this function

as input values to the TVFs for querying change data. This might seem unnecessarily cum-

bersome, but in fact has good reason related to supporting two change tables on the same

table, one feeding the production systems and another supporting ongoing development.

Tip The start and end times this function is called with are not required to fall within the range

of time actually represented in the log. If either time falls outside the boundaries in the log, the

function “does the right thing”: it returns the earliest existing LSN if the specified start time is

prior to the earliest LSN, and it returns the latest existing LSN if the specified end time is after the

latest LSN. This will be implicitly illustrated shortly in Listing 14-3 for both start and end times.

The sp_cdc_enable_table stored procedure has several optional parameters that give you a

lot of flexibility. You can, among other options, specify your own name for the change table,

a role that a user must belong to in order to query changes (if not in sysadmin or db_owner),

which columns of the table should be tracked (you don’t need to track all of them), the file-

group on which to create the change table, and whether the SWITCH_PARTITION option of

ALTER TABLE can be executed against the tracked table (which has very important implica-

tions). Consult SQL Server Books Online for more details of sp_cdc_enable_table parameters.

When you no longer require CDC on a particular table, you can call the sp_cdc_disable_table

stored procedure on the table. This procedure drops the change table and the TVFs and up-

dates the system metadata to reflect that the table is no longer tracked. When you no longer

require CDC on the database, call the sp_cdc_disable_db stored procedure to completely dis-

able CDC for the entire database.

Important You should be aware of several considerations before dropping a database on which

CDC has been enabled. To drop a CDC-enabled database, you must either stop SQL Server Agent

or first disable CDC by running sp_cdc_disable_db on the database to be dropped. If you take

the former approach, the SQL Server Agent jobs will be deleted automatically when SQL Server

Agent is next started upon detecting that the database the jobs were associated with is no lon-

ger present. Of course, SQL Server Change Tracking for other databases running on the server

instance will also be suspended while SQL Server Agent is stopped. The latter approach is the

preferred method, since it does not interfere with other CDC-enabled databases and will remove

all CDC artifacts related to the database being dropped.

The change table records all changes to the requested columns, including intermediate states

(per DML statement) between two points in time. Note that CDC supports sparse columns

(covered later in this section) but not sparse column sets. Each change table row also includes

five metadata columns of great value for change-consuming processes to determine what

type of change (insert, update, or delete) each row represents and to group and order all

changes belonging to the same transaction. One item it cannot capture is who made the

C14625990a.indd 595 10/2/2008 9:31:49 AM

596 Part IV Business Intelligence

change, which is why it is not ideal for maintaining audit trails. For that, you can use SQL

Server Audit, which will track and record which users are performing data modifi cations as

well as any other activity of interest. (We cover SQL Server Audit in Chapter 5.)

As we mentioned earlier, CDC relies on SQL Server Agent for automating the capture process.

The fi rst time sp_cdc_enable_table is executed on any table in a database, SQL Server also

creates two SQL Server Agent jobs for that database. The fi rst is a change-capture job, which

performs the actual transaction log monitoring to apply changes on the tracked table to the

corresponding change table. The second is a cleanup job, which deletes rows from change

tables after a confi gurable interval (three days, by default) and removes all CDC artifacts if

the tracked table is dropped. Therefore, SQL Server Agent must be running the fi rst time this

procedure is run to CDC-enable a table on any database in the server instance. Subsequently,

if SQL Server Agent stops running, changes to tracked tables will accumulate in the transac-

tion log but not be applied to the change tables until SQL Server Agent is restarted.

 CDC can at fi rst appear rather cumbersome to use, but it is well thought out in terms of its

confi guration fl exibility and support for various scenarios. Some of these might not be im-

mediately obvious—for example, what happens if a tracked table is dropped, or its structure

changed, after CDC is enabled on it? We lack the space to delve into these essential aspects,

but you’ll fi nd comprehensive details in SQL Server Books Online. The code in Listing 14-3

shows a complete example of using CDC.

LISTING 14-3 Using Change Data Capture

-- Create test database

CREATE DATABASE CDCDemo

GO

USE CDCDemo

GO

-- Enable CDC on the database

EXEC sp_cdc_enable_db

-- Show CDC-enabled databases

SELECT name, is_cdc_enabled FROM sys.databases

-- View the new "cdc" user and schema

SELECT * FROM sys.schemas WHERE name = 'cdc'

SELECT * FROM sys.database_principals WHERE name = 'cdc'

-- Create Employee table

CREATE TABLE Employee(

 EmployeeId int NOT NULL PRIMARY KEY,

 EmployeeName varchar(100) NOT NULL,

 EmailAddress varchar(200) NOT NULL)

-- Enable CDC on the table (SQL Server Agent *should* be running when you run this)

-- Create test database

CREATE DATABASE CDCDemo

GO

USE CDCDemo

GO

-- Enable CDC on the database

EXEC sp_cdc_enable_db

-- Show CDC-enabled databases

SELECT name, is_cdc_enabled FROM sys.databases

-- View the new "cdc" user and schema

SELECT * FROM sys.schemas WHERE name = 'cdc'

SELECT * FROM sys.database_principals WHERE name = 'cdc'

-- Create Employee table

CREATE TABLE Employee(

 EmployeeId int NOT NULL PRIMARY KEY,

 EmployeeName varchar(100) NOT NULL,

 EmailAddress varchar(200) NOT NULL)

-- Enable CDC on the table (SQL Server Agent *should* be running when you run this)

C14625990a.indd 596 10/2/2008 9:31:49 AM

 Chapter 14 Data Warehousing 597

EXEC sp_cdc_enable_table

 @source_schema = N'dbo',

 @source_name = N'Employee',

 @role_name = N'CDC_admin',

 @capture_instance = N'dbo_Employee',

 @supports_net_changes = 1

-- Show CDC-enabled tables

SELECT name, is_tracked_by_cdc FROM sys.tables

-- Insert some employees...

INSERT INTO Employee VALUES(1, 'John Smith', 'john.smith@ourcorp.com')

INSERT INTO Employee VALUES(2, 'Dan Park', 'dan.park@ourcorp.com')

INSERT INTO Employee VALUES(3, 'Jay Hamlin', 'jay.hamlin@ourcorp.com')

INSERT INTO Employee VALUES(4, 'Jeff Hay', 'jeff.hay@ourcorp.com')

-- Select them from the table and the change capture table

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- Delete Jeff

DELETE Employee WHERE EmployeeId = 4

-- Results from Delete

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- (Note: result of DELETE may take several seconds to show up in CT table)

-- Update Dan and Jay

UPDATE Employee SET EmployeeName = 'Dan P. Park' WHERE EmployeeId = 2

UPDATE Employee SET EmployeeName = 'Jay K. Hamlin' WHERE EmployeeId = 3

-- Results from update

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct -- See note above

-- Give the CDC job a chance to initialize before accessing the TVFs

WAITFOR DELAY '00:00:20'

-- To access change data, use the CDC TVFs, not the change tables directly

DECLARE @begin_time datetime

DECLARE @end_time datetime

DECLARE @from_lsn binary(10)

DECLARE @to_lsn binary(10)

SET @begin_time = GETDATE() - 1

SET @end_time = GETDATE()

-- Map the time interval to a CDC LSN range

SELECT @from_lsn =

 sys.fn_cdc_map_time_to_lsn('smallest greater than or equal', @begin_time)

SELECT @to_lsn =

 sys.fn_cdc_map_time_to_lsn('largest less than or equal', @end_time)

SELECT @begin_time AS BeginTime, @end_time AS EndTime

EXEC sp_cdc_enable_table

 @source_schema = N'dbo',

 @source_name = N'Employee',

 @role_name = N'CDC_admin',

 @capture_instance = N'dbo_Employee',

 @supports_net_changes = 1

-- Show CDC-enabled tables

SELECT name, is_tracked_by_cdc FROM sys.tables

-- Insert some employees...

INSERT INTO Employee VALUES(1, 'John Smith', 'john.smith@ourcorp.com')

INSERT INTO Employee VALUES(2, 'Dan Park', 'dan.park@ourcorp.com')

INSERT INTO Employee VALUES(3, 'Jay Hamlin', 'jay.hamlin@ourcorp.com')

INSERT INTO Employee VALUES(4, 'Jeff Hay', 'jeff.hay@ourcorp.com')

-- Select them from the table and the change capture table

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- Delete Jeff

DELETE Employee WHERE EmployeeId = 4

-- Results from Delete

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct

-- (Note: result of DELETE may take several seconds to show up in CT table)

-- Update Dan and Jay

UPDATE Employee SET EmployeeName = 'Dan P. Park' WHERE EmployeeId = 2

UPDATE Employee SET EmployeeName = 'Jay K. Hamlin' WHERE EmployeeId = 3

-- Results from update

SELECT * FROM Employee

SELECT * FROM cdc.dbo_employee_ct -- See note above

-- Give the CDC job a chance to initialize before accessing the TVFs

WAITFOR DELAY '00:00:20'

-- To access change data, use the CDC TVFs, not the change tables directly

DECLARE @begin_time datetime

DECLARE @end_time datetime

DECLARE @from_lsn binary(10)

DECLARE @to_lsn binary(10)

SET @begin_time = GETDATE() - 1

SET @end_time = GETDATE()

-- Map the time interval to a CDC LSN range

SELECT @from_lsn =

 sys.fn_cdc_map_time_to_lsn('smallest greater than or equal', @begin_time)

SELECT @to_lsn =

 sys.fn_cdc_map_time_to_lsn('largest less than or equal', @end_time)

SELECT @begin_time AS BeginTime, @end_time AS EndTime

C14625990a.indd 597 10/2/2008 9:31:50 AM

598 Part IV Business Intelligence

SELECT @from_lsn AS FromLSN, @to_lsn AS ToLSN

-- Return the changes occurring within the query window.

-- First, all changes that occurred...

SELECT *

 FROM cdc.fn_cdc_get_all_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

-- Then, net changes, that is, final state...

SELECT *

 FROM cdc.fn_cdc_get_net_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

 Let’s examine this code closely. After creating our sample database CDCDemo, we enable

CDC on that database by calling EXEC sp_cdc_enable_db. The next several SELECT queries

demonstrate how to retrieve various kinds of CDC-related information. The fi rst SELECT

query shows how the is_cdc_enabled column in sys.databases returns true (1) or false (0),

making it easy to fi nd out which databases are CDC-enabled and which aren’t. The next two

SELECT queries show how the new cdc schema and user can be found in sys.schemas and sys.

database_principals.

 The code then proceeds to create the Employee table, which has only three columns to keep

our example simple. CDC is then enabled on the Employee table by calling EXEC sp_cdc_en-

able_table and passing parameters that identify the Employee table in the dbo schema for

change capture. (Remember that SQL Server Agent must be running at this point.) The next

SELECT statement shows how to query the is_tracked_by_cdc column in sys.tables to fi nd out

which tables are CDC-enabled and which aren’t.

 Recall that enabling CDC on the Employee table creates a TVF for retrieving all changes

made to the table between any two points in time. Recall too that by specifying @supports_

net_changes = 1, this also creates a second TVF for retrieving only the net changes made

between any two points in time. The difference between all changes and net changes will be

very clear in a moment, when we call both of these TVFs and compare their results. But fi rst

the code performs a mix of INSERT, UPDATE, and DELETE operations against the Employee

table to simulate database activity and engage the capture process. In Listing 14-3, these

operations are accompanied by SELECT statements that query the change table cdc.dbo_em-

ployee_ct. This is done purely to demonstrate that change data for the Employee table is be-

ing captured to the change table. However, you should normally not query the change tables

directly in this manner and should instead use the generated TVFs to extract change infor-

mation about the Employee table, as demonstrated by the rest of the code.

 Our code then executes a WAITFOR statement to pause for 20 seconds before calling the

TVFs, in order to give the SQL Server Agent change capture job a chance to initialize. This is

a one-time latency only; it does not represent the normal latency for CDC-tracked changes

to be recorded, which is on the order of 2 to 3 seconds. Without this delay, or if SQL Server

SELECT @from_lsn AS FromLSN, @to_lsn AS ToLSN

-- Return the changes occurring within the query window.

-- First, all changes that occurred...

SELECT *

 FROM cdc.fn_cdc_get_all_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

-- Then, net changes, that is, final state...

SELECT *

 FROM cdc.fn_cdc_get_net_changes_dbo_employee(@from_lsn, @to_lsn, N'all')

C14625990a.indd 598 10/2/2008 9:31:50 AM

 Chapter 14 Data Warehousing 599

Agent is not running when you call the TVFs, you will receive a rather misleading error mes-

sage that unfortunately does not describe the actual problem.

To call either of the generated TVFs, you need to provide a value range that defines the win-

dow of time during which you want change data returned. As already explained, this range

is expressed using LSN values, which you can obtain by calling sys.fn_cdc_map_time_to_lsn

and passing in the desired start and end points in time. So first we establish a time range for

the past 24 hours, which we obtain by assigning GETDATE() – 1 and GETDATE() to the start

and end time variables. Then we call sys.fn_cdc_map_time_to_lsn on the start and end time

variables to obtain the LSN values corresponding to the last 24 hours. (Note that the starting

LSN gets adjusted automatically to compensate for the fact that there are no LSNs from 24

hours ago, as does the ending LSN, since there might not be any from a moment ago either.)

We then issue two SELECT statements so that we can view the time and LSN range values, an

example of which is shown here:

BeginTime EndTime

----------------------- -----------------------

2008-07-08 23:42:55.567 2008-07-09 23:42:55.567

(1 row(s) affected)

FromLSN ToLSN

---------------------- ----------------------

0x0000001A0000001E0039 0x00000020000000A50001

(1 row(s) affected)

Equipped with the LSN range values, we issue two more SELECT statements. (These are

the last two statements in Listing 14-3.) The first statement queries the range against the

all changes TVF, and the second statement queries the range against the net changes TVF.

Comparing the results of these two queries clearly illustrates the difference between the

TVFs, as shown here:

__$start_lsn __$seqval __$operation __$update_mask EmployeeId

EmployeeName EmailAddress

---------------------- ---------------------- ------------ -------------- ---------- -------

---------- --------------------------

0x0000001E0000007C0013 0x0000001E0000007C0012 2 0x07 1 John

Smith john.smith@ourcorp.com

0x0000001E000000800003 0x0000001E000000800002 2 0x07 2 Dan

Park dan.park@ourcorp.com

0x0000001E000000810003 0x0000001E000000810002 2 0x07 3 Jay

Hamlin jay.hamlin@ourcorp.com

0x0000001E000000820003 0x0000001E000000820002 2 0x07 4 Jeff

Hay jeff.hay@ourcorp.com

0x0000001E000000850004 0x0000001E000000850002 1 0x07 4 Jeff

Hay jeff.hay@ourcorp.com

0x0000001E000001AC0004 0x0000001E000001AC0002 4 0x02 2 Dan P.

Park dan.park@ourcorp.com

0x0000001E000001AE0004 0x0000001E000001AE0002 4 0x02 3 Jay K.

C14625990a.indd 599 10/2/2008 9:31:50 AM

600 Part IV Business Intelligence

Hamlin jay.hamlin@ourcorp.com

(7 row(s) affected)

__$start_lsn __$operation __$update_mask EmployeeId EmployeeName EmailAddress

---------------------- ------------ -------------- ---------- ----------------- ------------

0x0000001E0000007C0013 2 NULL 1 John Smith john.smith@

ourcorp.com

0x0000001E000001AC0004 2 NULL 2 Dan P. Park steven.

jones@ourcorp.com

0x0000001E000001AE0004 2 NULL 3 Jay K. Hamlin jay.hamlin@

ourcorp.com

(3 row(s) affected)

The first result set includes all the information about all changes made during the speci-

fied LSN range, including all interim changes. Thus, the information returned from the first

all changes TVF shows every stage of change, or seven changes in total. In our scenario,

John was inserted once and then never changed. So only his insert (__$operation value 2) is

shown. Dan and Jay were inserted (__$operation value 2) and updated (__$operation value 4),

so both changes (insert and update) are returned for each of them. Jeff, on the other hand,

was deleted (__$operation value 1) after being inserted, so both changes (insert and delete)

are returned for Jeff.

The second result set includes only the final changes made during the specified LSN range.

So for the same LSN range, we receive only three change records from the second net

changes TVF, each of which provides the final column values in the specified LSN range.

John appears only once as in the previous query, since he was inserted only once and never

modified or deleted within the LSN range. However, although Dan and Jay were inserted and

updated, they each appear only once (with their final values for the LSN range), and not twice

as in the previous query. And since Jeff was inserted and deleted within the window of time

specified by the LSN range, no change data for Jeff is returned at all by the net changes TVF.

Partitioned Table Parallelism

In SQL Server, a partitioned table is a table whose physical storage is divided horizontally

(that is, as subsets of rows) into multiple filegroups (invisibly to queries and DML) for the pur-

pose of improved manageability and isolation of various kinds of otherwise potentially con-

flicting access. For example, different partitions of the same table can have different backup

and compression strategies and indexes, each optimized to the use of the partition. Given the

large size of many data warehouses, this flexibility can be invaluable.

C14625990a.indd 600 10/2/2008 9:31:50 AM

 Chapter 14 Data Warehousing 601

The typical (although by no means required) partition key is Time, since that is so often the

natural horizontal dividing line. Partitioning by Time allows, for example, “old” data to be in-

dexed more lightly than current, more frequently accessed data. Old data can also be backed

up and deleted without affecting simultaneous queries against more recent data. Partitioning

is an important tool of physical implementation, particularly when building a very large data

warehouse.

Another potential benefit of well-designed partitioning is more efficient query plans. Queries

specifying the partitioning key that involve only a single partition benefit from having less

data to traverse (and potentially more optimized indexes if the partition is for newer data). In

addition, when SQL Server is running on multiple-core or multiple-CPU hardware and con-

figured appropriately, multiple worker threads are available and can achieve parallelism in

processing a query by assigning multiple threads to it.

Note For maximum partitioning benefit, it is crucial to physically isolate each partition of a table

from each of the others. In practice, this means that each filegroup of each partition should be

on a different physical disk and, in extreme cases, even on a different disk controller. In general,

however, this book does not explain the mechanics of partitioned tables, which are well covered

in SQL Server Books Online.

Thread Management

SQL Server 2005 optimized parallelism for queries involving only a single partition, by

 allocating all available threads to the one partition. However, on a multipartition query,

 performance could suffer badly because then only one thread is allocated per partition—

leading to some parallelism for the query as a whole but none per partition. The result was

that queries varying only slightly in their partitioning key constraint could exhibit vastly

 different degrees of performance.

The new Partitioned Table Parallelism feature in SQL Server 2008 directly addresses this

shortcoming by allocating all available threads to a multipartition query in round-robin fash-

ion. The result is that each partition, as well as the query as a whole, achieves some degree

of parallelism. This is automatic when applicable. The best gains will be achieved when the

number of threads (that is, cores or CPUs) is significantly larger than the number of parti-

tions on the table. The difference between SQL Server 2005 and 2008 in thread allocation

for multipartition queries is illustrated in Figure 14-10. Under the latter in this example, three

times as many threads per partition operate on the Feb YTD query, and with all else being

equal, this should translate to a 200 percent performance improvement.

C14625990a.indd 601 10/2/2008 9:31:50 AM

602 Part IV Business Intelligence

SQL Server 2005

SQL Server 2008

Jan YTD Query Feb YTD Query

Jan YTD Query Feb YTD Query

JAN FEB

JAN FEB

JAN FEB

JAN FEB

FIGURE 14-10 The difference between SQL Server 2005 and 2008 in how threads are allocated to

 multipartition queries

Note Partitioned Table Parallelism is available only in the Enterprise edition of SQL Server 2008.

Lock Escalation

Another important feature of Partitioned Table Parallelism relates to table locking behavior.

Previously, when deciding whether to elevate to a table-level lock on a partitioned table, the

database engine did not take into account whether concurrent statements against the same

table were each accessing a different partition. When they were, each was logically indepen-

dent and there would be no reason for one to block another. But by not recognizing this and

escalating one of the statements to a table lock, the database engine could unnecessarily

block the remaining statements, in the process also enhancing the possibility of deadlocks

among them. In SQL Server 2008, the default behavior on a partitioned table behaves as be-

fore, but Partitioned Table Parallelism enables a new ALTER TABLE option, which directs the

database engine to use partition-level lock escalation, instead of table-level, on a partitioned

table. The syntax is shown here:

ALTER TABLE MyTable SET (LOCK_ESCALATION = <option>)

C14625990a.indd 602 10/2/2008 9:31:50 AM

 Chapter 14 Data Warehousing 603

The LOCK_ESCALATION option can be specified as TABLE, AUTO, or DISABLE. The default is

TABLE, which means that only table-level lock escalation will occur. If you specify AUTO, you

get partition-level locking on partitioned tables, table-level otherwise. With DISABLE, no lock

escalation will occur (in most cases).

Star-Join Query Optimization

Star-Join Query Optimization is an important new feature in SQL Server 2008 (again, avail-

able in Enterprise edition only) in the context of data warehouse–oriented performance

enhancements, but it does not lend itself to deep explanation in a book like this because it

does not offer any user-adjustable properties and its operation is largely buried within the

database engine. The good news is that you need not do anything to get the benefit of it

when applicable.

As noted earlier, the star schema is a common physical data model in Kimball-style data

warehousing architectures. Queries against such a physical model are typically characterized

by a central fact table joined to multiple dimension tables, each on single-column equijoins

(joins based on equality), where the fact table has much higher cardinality than the dimen-

sion tables (more rows in the fact table as compared with the dimension table), and the

constraints of the query are all on the dimension tables—a pattern now known as a star-join.

Since this pattern is common across a large range of data warehousing scenarios, it became

apparent that a query optimizer that could recognize such a pattern could potentially pro-

duce more efficient query plans than otherwise.

Here’s the basic idea. Eliminate as many candidate rows from the fact table as early as pos-

sible in the query-resolution pipeline, since the fact table typically has by far the highest

cardinality of the tables involved. In practice, this means determining the candidate join keys

from the dimension tables first (taking advantage of the winnowing effect of the constraints

typically on them) and then using this information to eliminate candidate rows from the fact

table ahead of, and more efficiently than, the actual join process further down the pipeline

would. The heuristics—or in other words the rules by which the optimizer recognizes a star-

join query—are important to the effectiveness of this strategy.

Such mechanisms are complex and, for our purposes, largely opaque. SQL Server 2005 intro-

duced some star-join optimization based on these principles, but SQL Server 2008 extends

the degree to which it can recognize and optimize this pattern. Microsoft benchmarks assert

that the degree of performance improvement on typical data warehouse queries at which

this feature is targeted can range from 10% to 30%. The SQL Server 2008 enhancements in

this area also include more detailed information in query plans, which help the designer to

understand when or if this feature is being applied to particular queries.

C14625990a.indd 603 10/2/2008 9:31:50 AM

604 Part IV Business Intelligence

Note This enhancement will be of most value when a significant part of the SQL Server work-

load involves ad hoc SQL queries against a star schema. If your architecture directs most ad hoc

queries to an OLAP cube, it will be of lesser, if any, benefit, unless your cube is hosted by SQL

Server Analysis Services and uses the Relational OLAP (ROLAP) or Hybrid OLAP (HOLAP) storage

mode (since in these cases a significant number of cube queries might become SQL star schema

queries).

Space considerations preclude us from discussing this feature in more detail here. To learn

more, we recommend that you visit the links provided at the end of this section.

SPARSE Columns

Not all practitioners are happy with NULL values in a relational database schema, but for

 better or worse, they are widely used in practice. Without engaging that debate, some will

rationalize allowing nullable columns when physically modeling a type (for example, Product)

that has many subtypes that have few attributes in common and many attributes unique

to each subtype. It can be convenient, despite going against the grain of normalization, to

physically model this situation as a single table with a column for every attribute across all

subtypes. In such a case, each attribute column must be nullable and will be sparse—that is,

containing NULL in a high percentage of cases. It would be beneficial if the storage for such

sparsely populated nullable columns were optimized, particularly in the data warehousing

context, given the often large database sizes involved.

In versions earlier than SQL Server 2008, storing NULL values was not optimized—it re-

quired storage for every NULL occurrence. SQL Server 2008 introduces the notion of the

SPARSE column, a nullable column whose storage is optimized for NULL values—at the cost

of increased storage overhead for non-NULL values. With this option enabled, occurrences

of NULL use no storage. (Note that this is also true when SQL Server Data Compression,

detailed in the next section, is used—although the two are not equivalent.) The density of

a column’s NULL values required to achieve a 40 percent space saving using the SPARSE at-

tribute, the nominal space saving value as reported by SQL Server Books Online, depends on

the column’s data type and ranges from 42 percent for 38-digit high-precision numeric types

to 98 percent for bit. The SPARSE attribute in particular benefits Microsoft Office SharePoint

Server, which by its generic and end-user-driven nature is a particular case of the preceding

scenario—needing to store many user-defined attributes that are sparse by nature.

A few data types cannot be SPARSE, and there are other, potentially significant, restric-

tions on using SPARSE columns—for example, they cannot have default values or rules or

be part of a clustered index or unique primary key index. SQL Server Books Online provides

full details.

This feature is enabled by decorating column definitions in your CREATE TABLE and ALTER

TABLE statements with the new SPARSE attribute. Obviously, the column must also be de-

clared NULL. Listing 14-4 shows an example of usage.

C14625990a.indd 604 10/2/2008 9:31:50 AM

 Chapter 14 Data Warehousing 605

LISTING 14-4 Declaring SPARSE columns

CREATE TABLE SparseTest

(ID int IDENTITY(1,1),

 LastName varchar(50) SPARSE NULL,

 Salary decimal(9,2) NULL)

GO

ALTER TABLE SparseTest

 ALTER COLUMN Salary decimal(9,2) SPARSE

GO

 SQL Server 2008 introduces two other new features that have a relationship to the SPARSE

feature but do not depend on it. The fi rst is the column set, an optionally declared set of

specifi ed columns on a table that, once declared, associates an xml column with the table

as metadata (that is, no additional storage is used). This column represents the specifi ed

columns as an XML document and allows querying and updating of the columns as a group

using XQuery and XML DML (which we cover in depth in Chapter 6). The individual columns

can still be referenced in the usual way, but the column set representation can be a more

convenient method when a table has a large number of columns and might provide perfor-

mance improvements in some cases. SPARSE columns relate to column sets in that a column

set cannot be added to an existing table already containing any SPARSE columns, and if

SPARSE columns are later added to a table with a column set, they automatically become

part of the column set.

 The second new feature is the fi ltered index. A fi ltered index is an optimized nonclustered

index whose declaration includes a WHERE clause that restricts the values included in the

index to those specifi ed. This can have wide-ranging implications for index maintenance,

index storage, and query plan optimization. This feature is most useful when the query pat-

terns against the table are well understood and they naturally relate to distinct subsets of

rows. SPARSE columns are good candidates to participate in a fi ltered index because they

represent distinct, well-defi ned subsets (rows with NULLs in the columns and rows with non-

NULLs). For more details of both these features, which involve considerable complexity in

their own right, see SQL Server Books Online.

 A fi nal benefi t of SPARSE columns is that, by their nature, they can reduce the size of large

backups, potentially more so than any of the new compression features we cover in the next

section.

Data Compression and Backup Compression

 Data compression and backup compression are long-awaited enhancements to SQL Server—

not surprisingly, also available only in the Enterprise edition (with one exception, as we’ll see

when we discuss backup compression). They are of benefi t in all scenarios, but especially for

large data warehouses. Many factors cause a data warehouse to grow at least linearly with

CREATE TABLE SparseTest

(ID int IDENTITY(1,1),

 LastName varchar(50) SPARSE NULL,

 Salary decimal(9,2) NULL)

GO

ALTER TABLE SparseTest

 ALTER COLUMN Salary decimal(9,2) SPARSE

GO

C14625990a.indd 605 10/2/2008 9:31:50 AM

606 Part IV Business Intelligence

time: the desire to facilitate trend analyses, personalization, and data mining; the fact that

most data warehouses increase the number of data sources included over time; and last that

multiple copies of the data warehouse often exist for redundancy and development and QA

purposes. SQL Server 2008 provides both data compression, targeting the database itself,

and backup compression, targeting the backup/restore process.

As the size of the data warehouse increases, it affects the cost and complexity of maintaining

the online version and of taking backups of it. SQL Server 2008 Data Compression provides

many benefits. It aids online query performance by increasing the number of rows stored per

page, lessening disk I/O and saving costs in disk space. It improves performance for a given

amount of memory, as more rows can be held in memory at the same time. It can benefit the

backup/restore process by minimizing the I/O and therefore time and media required, since

less physical data needs to be transferred. Last, replication and mirroring scenarios can also

benefit for all the same reasons.

Data Compression

SQL Server 2005 made a start at targeting data compression concerns with both its table-

level vardecimal storage format (in Service Pack 2 for the Enterprise edition) and its ability

to use NTFS file system file compression on SQL Server read-only secondary data files (or all

files, including log files, if the database is read-only).

These enhancements remain supported in SQL Server 2008, although use of the vardecimal

option is deprecated and use of NTFS compression for SQL Server data files is mostly not rec-

ommended. Instead, SQL Server 2008 goes considerably beyond these earlier enhancements

in the features it provides for data compression.

The most basic form of data compression uses a storage format that eliminates unneeded

precision in fixed-length data types—that is, representing each value in a column with the

minimal number of bits necessary. For example, any value of 255 or less stored in an integer

data type could be stored in one byte instead of four (neglecting some slight overhead). SQL

Server 2005 provided such compression or variable-length storage only for the decimal and

numeric data types, but SQL Server 2008 provides it for all formerly fixed-length data types

(including decimal and numeric). Note that what is changing is storage format, not data type,

so the semantics of each data type remain the same to T-SQL queries as well as applications.

Data compression comes in two forms: row compression (RC) and page compression (PC).

RC is another name for the variable-length storage approach just detailed. With RC, all oc-

currences of 0 (zero) and NULL consume no space. RC is not effective for variable-length

data types (they are already effectively compressed), for some shorter data types (where the

overhead of compression outweighs the benefit), and for some other data types for technical

reasons.

C14625990a.indd 606 10/2/2008 9:31:50 AM

 Chapter 14 Data Warehousing 607

 Note To summarize, RC does not apply to tinyint, smalldatetime, date, time, varchar, text, nvar-

char, ntext, varbinary, image, cursor, sql_variant, uniqueidentifi er, table, xml, and user-defi ned

types (UDTs).

 PC is a superset of RC and provides potentially greater overall compression than RC alone, at

the cost of greater CPU overhead. Where RC is concerned with compressing scale and preci-

sion on each individual row-column value, PC is concerned with compressing redundancy

across all the rows and their columns on a particular page. PC can be used with all the same

database objects as RC. It applies three steps to the enabled object, in the order indicated:

 1. RC to the leaf level of a table and to all levels of an index.

 2. PC—on each page, for each column of each row on that the page, any common prefi xes

among all values stored in that column (if any) are identifi ed and tokenized. Each such

prefi x value is stored once in the new Compression Information (CI) section of the page

(by column), and values in each column are replaced with short encoded values that

identify the prefi x and how much of it applies (as a prefi x to the remainder of the value).

 3. Dictionary compression—on each page, repeating values from any column in any row

on the page are identifi ed and stored in the CI area, and the values are replaced with

a pointer to the repeated value. This can further compress the results of the fi rst two

steps.

 As data is added to a PC-enabled object, these operations are initiated only when a page be-

comes full. If PC is enabled on an existing object containing data, that object must be rebuilt,

a potentially expensive operation.

 The code in Listing 14-5 shows an example of creating a table enabled for PC.

LISTING 14-5 Enabling PC on a table

CREATE TABLE RowCompressionDemo

 (FirstName char(10),

 LastName char(30),

 Salary decimal(8,2))

 WITH (DATA_COMPRESSION = PAGE)

 SQL Server 2008 provides a system stored procedure associated with both forms of com-

pression aptly named sp_estimate_data_compression_savings, which can be used to evaluate

whether compression is worth applying to a given object. It can be run for a given uncom-

pressed table, index, or partition to estimate the size it would be, using both RC and PC. It

can also do the reverse; reporting the size a compressed object would be if uncompressed.

This procedure works by sampling the data of the indicated object into a temporary store

and running the indicated compression or decompression on it. It is possible for it to report

a larger size for compressed than uncompressed data, which indicates clearly that the nature

CREATE TABLE RowCompressionDemo

 (FirstName char(10),

 LastName char(30),

 Salary decimal(8,2))

WITH (DATA_COMPRESSION = PAGE)

C14625990a.indd 607 10/2/2008 9:31:50 AM

608 Part IV Business Intelligence

of the data is such that the storage overhead associated with compression outweighs any

benefit.

Of course, these forms of compression require more CPU cycles to use than would otherwise

be required, both when writing (compressing) and reading (decompressing) data. Each rep-

resents a tradeoff between saving space (disk and memory) and increasing CPU use. In addi-

tion, the effectiveness of any compression scheme is sensitive to the data type and statistical

distribution of the values being compressed. For example, compression of an int column (4

bytes) in which most values do not exceed 255 (which fit in 1 byte) would exhibit much more

benefit from RC than if the values were evenly distributed or if the column were already de-

clared as a tinyint (1 byte). For these reasons, as well as the fine grain of data types that this

feature allows to be individually tuned for compression, it is advisable to experiment with the

various compression options to determine the optimal combination of settings.

Data compression must be enabled—it is disabled by default. It can be enabled on an entire

table (which applies to all of its partitions), on individual partitions of a table, on individual

indexes of a table, on individual index partitions, and on the clustered index of an indexed

view. These features, together with the separately selectable options of row or page com-

pression, give the database administrator great flexibility in tuning the use of compression to

achieve the best tradeoffs.

Data compression is enabled by CREATE TABLE (as shown earlier) and CREATE INDEX state-

ments, and also by ALTER TABLE and ALTER INDEX. Note that SQL Server Data Compression

is not automatically enabled on existing or subsequently created nonclustered indexes of a

table on which data compression is enabled—each such index must be separately and explic-

itly enabled. The one exception to this is that a clustered index does inherit the compression

setting of its table.

Last but not least, an uncompressed table can be rebuilt with either form of compression

via the new ALTER TABLE…REBUILD WITH (DATA_COMPRESSION=xxx) statement, where

xxx is either ROW or PAGE. As the compression process is CPU intensive, it lends itself to

parallelism, and SQL Server 2008 can take advantage of the availability of multiple CPUs.

The REBUILD clause therefore supports a MAXDOP option to control how many CPUs are

 allocated to the process.

Backup Compression

SQL Server Backup Compression is a new option with the BACKUP statement. Although only

the Enterprise edition can create a compressed backup, any edition can restore one.

Compared with data compression, backup compression is extremely coarse grained. It is

 either enabled or it isn’t for the entire backup—there are no options to tune the compres-

sion, and the compression methods are opaque. Nevertheless, it is a welcome enhancement

since no earlier version of SQL Server provided any form of backup compression, forcing

practitioners to compress backups in a separate step with other, non–SQL Server, utilities.

C14625990a.indd 608 10/2/2008 9:31:50 AM

 Chapter 14 Data Warehousing 609

 The option is disabled by default, but the default can be changed via server-level confi gura-

tion or overridden in the BACKUP statement. It should be noted that an uncompressed 2008

backup operation (both create and restore) can benefi t when SQL Server Data Compression

has been used on a signifi cant scale in the database being backed up, as a direct result of

reduced I/O. If data compression has been used, backup compression will likely provide a

smaller (possibly much smaller) space-saving benefi t, and because of the additional CPU

overhead, backup/restore time might perform worse than without backup compression. This

feature is therefore most valuable when the database being backed up has not had signifi -

cant data compression applied—your own experimentation is warranted.

 Note Compressed and uncompressed backups cannot be mixed in a backup media set.

 As a simple example of the potential effi ciency of backup compression, compare the size and

time required to back up and restore the AdventureWorksDW2008 database, as shown in

Listing 14-6. The CHECKPOINT and DBCC DROPCLEANBUFFERS statements are used to en-

sure that all cache buffers are empty so that one test does not misleadingly improve the per-

formance of the next. Create the directory C:\Backups prior to running the following code.

LISTING 14-6 Comparing the time and size between compressed and uncompressed backups

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWUncompressed.bak'

-- 10.661 sec, 71 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWCompressed.bak'

 WITH COMPRESSION

-- 6.408 sec, 13 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWUncompressed FROM DISK = 'C:\Backups\AWDWUncompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWUncompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWUncompressed.ldf'

-- 9.363 sec

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWCompressed FROM DISK = 'C:\Backups\AWDWCompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWCompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWCompressed.ldf';

-- 6.101 sec

 In this example, you can see that there is much more improvement in the backup (com-

pression) stage than the restore stage, but in both cases, performance for the compressed

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWUncompressed.bak'

-- 10.661 sec, 71 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

BACKUP DATABASE AdventureWorksDW2008 TO DISK='C:\Backups\AWDWCompressed.bak'

WITH COMPRESSION

-- 6.408 sec, 13 Mb

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWUncompressed FROM DISK = 'C:\Backups\AWDWUncompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWUncompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWUncompressed.ldf'

-- 9.363 sec

CHECKPOINT

DBCC DROPCLEANBUFFERS

RESTORE DATABASE AWDWCompressed FROM DISK = 'C:\Backups\AWDWCompressed.bak'

 WITH MOVE 'AdventureWorksDW2008_Data' TO 'C:\Backups\AWDWCompressed.mdf',

 MOVE 'AdventureWorksDW2008_Log' TO 'C:\Backups\AWDWCompressed.ldf';

-- 6.101 sec

C14625990a.indd 609 10/2/2008 9:31:51 AM

610 Part IV Business Intelligence

backup is superior to the uncompressed backup. This is due to the reduction in I/O required

for processing the smaller (compressed) backup file. Of course, experiments are warranted in

your particular scenario to determine exactly what improvements you will see for yourself.

Learning More

We’ve made several references to SQL Server Books Online for more detailed information

about many of the new data warehousing features in SQL Server 2008. In addition, you can

learn more about all of these SQL Server 2008 data warehousing–oriented features by visit-

ing the following links:

 http://msdn.microsoft.com/en-us/library/cc278097(SQL.100).aspx#_Toc185095880

 http://technet.microsoft.com/en-us/magazine/cc434693(TechNet.10).aspx

These links were valid as of press time, but if they don’t work, you can perform a Web search

on “SQL Server 2008 data warehouse enhancements.”

We can also recommend these additional resources to learn more about the recommended

practices of data warehousing:

 Building the Data Warehouse, 4th ed., W. H. Inmon (Wiley, 2005)

 The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd ed.,

Ralph Kimball and Margy Ross (Wiley, 2002), and The Data Warehouse Lifecycle Toolkit,

Ralph Kimball et al. (Wiley, 2008)

 The Data Warehousing Institute, http://www.tdwi.org/TDWI

Summary

Data warehousing has become a key component of any enterprise-wide data architecture

and is no longer only practical for the largest enterprises. Data warehousing developed as

a response to the many impediments to creating actionable information from the data col-

lected by operational applications, impediments that only gradually became recognized as

significantly undermining the potential of computers to help turn data into information. The

issues existed not only because of historical technical limitations but also because of funda-

mental differences in optimum design between operational and informational applications.

A data warehouse provides the foundation for many data-driven applications. SQL Server

2008 provides a full-featured, powerful, and cost-effective platform on which to build a data

warehouse. You’ve seen how SQL Server 2008 is particularly targeted to data warehousing

issues and provides a number of long-awaited features in that sphere. In addition, Microsoft

also offers a wide range of integrated and complementary technology, including Microsoft

Office SharePoint, Microsoft Performance Point, and the 2007 Microsoft Office system, which

enable you to build informational applications on top of your SQL Server data warehouse

foundation.

C14625990a.indd 610 10/2/2008 9:31:51 AM

	Cover
	Table of Contents
	Chapter 14: Data Warehousing
	Data Warehousing Defined
	The Importance of Data Warehousing
	What Preceded Data Warehousing
	Lack of Integration Across the Enterprise
	Little or No Standardized Reference Data

	Data Warehouse Design
	The Top-Down Approach of Inmon
	The Bottom-Up Approach of Kimball

	What Data Warehousing Is Not
	OLAP
	Data Mining
	Business Intelligence
	Dashboards and Scorecards
	Performance Management

	Practical Advice About Data Warehousing
	Anticipating and Rewarding Operational Process Change
	Rewarding Giving Up Control
	A Prototype Might Not Work to Sell the Vision
	Surrogate Key Issues
	Currency Conversion Issues
	Events vs. Snapshots

	SQL Server 2008 and Data Warehousing
	T-SQL MERGE Statement
	Change Data Capture
	Partitioned Table Parallelism
	Star-Join Query Optimization
	SPARSE Columns
	Data Compression and Backup Compression
	Learning More

	Summary

