MCTS EXAM

70-432

Microsoft

MCTS Self-Paced Training

SOL Server 2008~ ' Kit (Exam 70-432):

Implementation and Microsoft® SQL Server®
Maintenance

2008—Implementation
and Maintenance

e

Mike Hotek

Training Kit

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12858.aspx

Micresoft
9780735626058 Press

© 2009 Mike Hotek. All rights reserved.

Contents

Chapter 8

Designing Policy Based Management 177
Before You Begin. o 177
Lesson 1: Designing Policies i, 179
Facets. ... 179
ConditioNS ..ot t 180
Policy Targets. . ..ottt 180
POliCies .o 181
Policy Categories. . ..o oo 181
Policy Compliance. 181
Central Management Server 183
Import and Export Policieso 183
Lesson Summary 191
Lesson Review 191
Chapter Review 193
Chapter Summary 193
Key Terms 193
Case Scenario 193
Suggested Practicest 196
Implement Policy Based Management 196
Take a Practice Test. 196

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

Designing Policy Based
Management

Prior to Microsoft SQL Server 2008, you performed configuration management of an
environment by using a conglomeration of documents, scripts, and manual checking. The
configuration options, naming conventions, and allowed feature set were outlined in one or
more documents. To enforce your standards, you would have had to connect to each instance
and execute scripts that needed to be maintained and updated with new versions and service
packs. In this chapter, you learn about the new Policy Based Management framework that
allows you to check and enforce policy compliance across your entire SQL Server infrastructure.

Exam objectives in this chapter:
= Implement the declarative management framework (DMF).

= Configure surface area.

Lesson in this chapter:

= Lesson 1: Designing Policies 179

Before You Begin

To complete the lessons in this chapter, you must have:
m SQL Server 2008 installed

m The AdventureWorks database installed within the instance

) REAL WORLD

Michael Hotek

M anaging a single server running SQL Server or even a small group of them,
one at a time, has always been reasonably straightforward. However, when
you needed to uniformly manage an entire SQL Server environment or a large
group of instances, you had to either write a large amount of custom code or
purchase additional products.

177

One customer | work with has an environment with more than 5,000 SQL Server
instances. Prior to the release of SQL Server 2008, two DBAs were required to
manage the almost 50,000 lines of code that checked instances for compliance to
corporate policies. They devoted more than 70 hours each week to maintaining the
code and checking systems.

After deploying SQL Server 2008, they started to convert all their code to policies.
After the conversion was completed, they estimate that less than 1,000 lines of
custom logic remained. By using the central management features to check and
enforce policies across the environment, they should be able to save over 3,000
hours of management and maintenance time per year.

178 Designing Policy Based Management

Lesson 1: Designing Policies

SQL Server 2008 has a new feature called Policy Based Management, also known as

the declarative management framework (DMF), to tackle the problem of standardizing
your SQL Server instances. Although Policy Based Management can be used just to

alert an administrator when an object is out of compliance, depending upon the type of
policy, you can also enforce compliance by preventing changes that would violate a policy.

Policy Based Management introduces the following new objects that are used to design
and check for compliance:

m Facets

m Conditions

m Policies

m Policy targets

m Policy categories

After this lesson, you will be able to:
= Create conditions

= Define policies

= Specify targets for policy checking
= Configure policy categories

= Check for policy compliance

= Import and export policies

Estimated lesson time: 30 minutes

Facets

Facets are the core object upon which your standards are built. Facets define the type of
object or option to be checked, such as database, Surface Area, and login. SQL Server ships
with 74 facets, implemented as .NET assemblies, each with a unique set of properties.

All the objects for Policy Based Management are stored within the msdb database. You
can get a list of the facets available by querying the dbo.syspolicy_management_facets table.
Unfortunately, unless you want to write code to interact with Server Management Objects
(SMOs), the only way to get a list of facet properties is to open each facet in SQL Server
Management Studio (SSMS), one at a time, and view the list of properties.

Lesson 1: Designing Policies 179

180

Conditions

When you define a WHERE clause for a data manipulation language (DML) statement, you
set a condition for the DML statement that defines the set of rows that meet your specific
inclusion criteria. Within the Policy Based Management framework, conditions are the
equivalent of a WHERE clause that defines the criteria needing to be checked.

You define the conditions that you want to check or enforce for a policy by defining
criteria for the properties of a facet. Just like a WHERE clause, a condition can be defined by
one or more facet properties, and a single facet property can be checked for multiple criteria.
The comparison operators that can be used are restricted by the data type of the property.
For example, a property of type string can be checked with =, <>, LIKE, NOT LIKE, IN, or NOT
IN, whereas a boolean type can only be checked for = and <>.

If a condition that you want to check for a facet does not have a specific property that
can be used, you can use the advanced editor to define complex conditions that compare
multiple properties and incorporate functions. For example, you can check that every table
has a primary key and that a table with a single index must be clustered. Unfortunately, if you
define a condition using the advanced editor, a policy that incorporates the condition must
be executed manually and cannot be scheduled.

Conditions are checked in a single step. You cannot have a condition pull a list of objects,
iterate across the list of objects, and then apply subsequent checks. To work within the
Policy-Based Management framework, conditions need to return a True or False value.
Therefore, when building complex conditions with the advanced editor, you cannot return
a list of objects that do not meet your criteria. You have to define the condition such that
if any object does not meet your criteria, a value of False is returned.

Although you can check many properties of a facet within a single condition, a single condition
can't be defined for multiple facets. For example, you can check all 10 of the properties for the
Surface Area Configuration facet in a single condition, but you have to define a second condition
to check a property of the Surface Area Configuration for Analysis Services.

Policy Targets

Conditions are the foundation for policies. However, you don't always want to check policies
across every object available, such as every database in an instance or every index within
every database. Conditions can also be used to specify the objects to compare the condition
against, called policy targeting or target sets.

You can target a policy at the server level, such as instances that are SQL Server 2005 or
SQL Server 2008. You can also target a policy at the database level, such as all user databases
or all system databases.

Designing Policy Based Management

Policies

Policies are created for a single condition and set to either enforce or check compliance. The
execution mode can be set as follows:

m Ondemand Evaluates the policy when directly executed by a user

m On change, prevent Creates data definition language (DDL) triggers to prevent a
change that violates the policy

® On change, log only Checks the policy automatically when a change is made using
the event notification infrastructure

®m On schedule Creates a SQL Server Agent job to check the policy on a defined schedule

If a policy contains a condition that was defined using the advanced editor, the only available
execution mode is On Demand.

To use the On change, prevent and On change, log only execution modes, the policy must
target instances running SQL Server 2005 and above. The On change, log only execution mode
uses the event notification infrastructure that is available only for SQL Server 2005 and later. The
On change, prevent execution mode depends on DDL triggers to prevent a change that is not
in compliance with the policy and are available only for SQL Server 2005 and later. In addition,
you can set a policy to On change, prevent only if it is possible for a DDL trigger to prevent the
change. For example, you could prevent the creation of an object that violated your naming
conventions, but you could not enforce a policy that all databases have to be in the Full recovery
model because the ALTER DATABASE command executes outside the context of a transaction.

Policy Categories

Policy categories can be used to group one or more policies into a single compliance unit. If
not specified, all policies belong to the DEFAULT category. To check or enforce policies, you
create a subscription to one or more policies.

Subscription occurs at two levels—instance and database. A member of the sysadmin role
can subscribe an instance to a policy category. Once subscribed, the owner of each database
within the instance can subscribe their database to a policy category.

Each policy category has a Mandate property that applies to databases. When a policy category
is set to Mandate and a sysadmin subscribes the instance to a policy category, all databases that
meet the target set are controlled by the policies within the policy category. A policy subscription
to a policy category set to Mandate cannot be overridden by a database owner.

Policy Compliance

Because you cannot set all policies to enforce compliance, you need to check policies manually
that cannot be enforced on a regular basis. You view policies that apply to an instance by
right-clicking the name of the instance within Object Explorer and selecting Policies, View.

Lesson 1: Designing Policies

181

You can check policies that apply to an instance by right-clicking the name of the instance
within Object Explorer and selecting Policies, Evaluate.

You can check all policies within an instance, as shown in Figure 8-1, by right-clicking the
Policies node and selecting Evaluate.

Policies:
Policy Cabegory Facst
Ditabarsn Bvst Practicns Diatabarsn
Sl oo SIMPLE regrvery uislel Digtabiawe Best Practices Databume
[=] ek For purface srea confiaration | Instance Surface ares Uest Practices | Surface Ares Configurstion
| Checi tables for peimary by Duntsbiase Bt Practions Tabls
B2 vorokz oTeake)
Wit CONeCHion Cropertiss
Resdr])
Cvahiste

FIGURE 8-1 Evaluate policies

By clicking Evaluate, you execute the policies and review the results, as shown in Figure 8-2.

W& Check For auto shink and auto close
%) Check For STMPLE rco: el
(@ Chekbor surface arma configurstion
&3 Checkables for prmary hay

'3 HOTEEE SOUSERVERSOUHOTERZIDER ALLTIDst sbases| Deadmin

e,

2 norexz otz 1 3 HOTEEE SOLSERVERSOUHOTERZIDER ALLTIDst sbases|ReportServer oW,

Q HOTEEE SOUSERVERSOUHOTERZIDEF ML TIDst sbases ReportServer TempDl | Yiew,,,

Hr SONNECRIN CrOpETinE & HoTerz S HATIDS e
| progress | @ e wrusrmrD. - ¥

< »

(g Dens = ——
v

FIGURE 8-2 Policy check results

182 CHAPTER 8 Designing Policy Based Management

EXAM TIP

Defining a condition to be used as a policy target is a critical component to well-defined
policies. A policy fails during a check if the object does not conform to the criteria and if
the property does not exist. For example, attempting to check that the Web Assistant is
disabled against a SQL Server 2008 instance fails because the feature does not exist.

Central Management Server
Policy Based Management would be limited to SQL Server 2008 and be very tedious if you
had to do any of the following:

m Duplicate policies on every instance

m Create subscriptions to each instance in your environment individually

m Check compliance for each instance individually

Within the Registered Servers pane in SSMS, you can configure a Central Management Server.
Underneath the Central Management Server, you can create multiple levels of folders, and register
instances into the appropriate folder. After you have the Central Management Server structure set
up in SSMS, you can evaluate polices against a specific instance, folder, or all instances underneath
the Central Management Server. Figure 8-3 shows an example of a Central Management Server.

= | || Database Engne
[Local Server Groups
= l@ Central Management. Servers
= G HOTEKZ
= [Developrent
l]i HOTEE2\INSTANCEZ
l_d HOTEEZ\IMSTAMNCES
| sCLDevD1
| sCLDev0z
= [LoadTest
| SCLLoadTestni
= [Production
[Asia
| Europe
| Philippines
|1 Unitedstates
SR R
| saLoam

FIGURE 8-3 Central Management Server

Import and Export Policies

Policies and conditions can be exported to files as well as imported from files. SQL Server
ships with 53 policies that are located in the Microsoft SQL Server\100\Tools\Policies folder.
There are 50 policies for the database engine, 2 policies for Reporting Services, and 1 policy
for Analysis Services. The CodePlex site (http.//www.codeplex.com) has additional policies that
you can download and import.

Lesson 1: Designing Policies

183

You can import policies within the Registered Servers pane or the Object Explorer. Within
Object Explorer, you can right-click the Policies node underneath Policy Management and
select Import Policy. Within Registered Servers, you can right-click the Central Management
Server or any folder or instance underneath the Central Management Server and select Import
Policies. If you import policies from the Central Management Server, the policies are imported
to every instance defined underneath the Central Management Server, but not to the Central
Management Server itself. Likewise, right-clicking a folder imports the policies to all instances
within the folder hierarchy. To import policies to the Central Management Server, you must
connect to the instance within Object Explorer and import from the Policies node.

¥ Quick Check
1. What are the five objects that are used within Policy Based Management?
2. What are the allowed execution modes for a policy?

3. Which object has a property that allows you to mandate checking for all
databases on an instance?

4. How many facets can be checked within a single condition?

5. How many conditions can be checked within a single policy?

Quick Check Answers

1. The objects that are used with Policy Based Management are facets, conditions,
policies, policy targets, and policy categories.

2. The policy execution modes are On demand, On schedule, On change, Log only,
and On change, prevent.

3. Policy categories allow you to mandate checking of all databases within an
instance.

4. A condition can be defined on only one facet.

5. A policy can check only a single condition.

Defining Policies and Checking for Compliance

In these practices, you define and check several policies for your environment.

PRACTICE 1 Create a Condition

In this practice, you create a condition for the following:
m Check that a database does not have the auto shrink or auto close properties set.
m Check that CLR, OLE Automation, Ad Hoc Remote Queries, and SQL Mail are all disabled.
m Check that a database is not in the Simple recovery model.

m Check that all tables have a primary key.

184 Designing Policy Based Management

1. In Object Explorer, expand the Policy Management node within the Management node.
2. Right-click the Conditions node and select New Condition.

3. Configure the condition as shown here. Click OK when you are done.

K. Greate New Condition - Auto Shrink and Auto Close Disabled

Select a pag Sseripe + [Help
2 General
1 Description

Mame: ‘Auto Shrink and Auto Close Disabled ‘

Facet: ‘Database v‘
Expression:
AndOr Field Operatol Yalue

@autaClose E = False:
(-

a8

P anD @autashrink False
*
87 HOTEKZ [HOTEKZ\Mike]
Yiew connection properties AutoShrink
_ Specifies whether the AUTOSHRIME database option is active.
Progress

Ready

[[s]4 H Cancel H Help]

4. Right-click the Conditions node again, select New Condition, and configure the condition
as shown here. Click OK.

o Open Condition - Check Database Engine Surface Area

l@l Ready

Select a pag L Gacripe = | Help

5 General

j} Description

% Dependent Policies Mame: ‘Chack [atabase Engine Surface Area

Facet:
Expression:
AndOr Field Operatol Value
@AdHocRemoteQueriesE. . E = False E
AMD @ClrIntegrationEnabled E = False E
AP @0leAutomationEnshled E = False: E
P anD @SqlailEnabled E = False E
.
23 HOTEK2 [HOTEKZMke]
‘Wiew connection properties SqlMailEnabled
0L Mail supports legacy applications that send and receive e-mail messages from the Database
g Engine. 5GL Mail is deprecated in SGL Server 2005 and replaced by Database Mail, Enable SOL Mail

Ready stared procedures only if you plan to configure and use SQL Mail For backward compatibility,

[OK H Cancel][Help]

5. Right-click the Conditions node, select New Condition, and configure this third condition
as shown here. Click OK when you are finished.

Lesson 1: Designing Policies ~ CHAPTER 8 185

B Create New Condition - Database not in Simple recovery model

Select ap [Cseript ~ | [Help
% General
% Description
Hame: ‘Database nat in Simple recovery model| |
Facst: | Database |
Expression:
Andor Field Opstatol Yalue
» @Recoverytiodel L] simple =
*
7 HOTEK2 [HOTEKZ\Mike]
View connection properties RecaveryModel
- The recovery model for the database.
Progress
Ready
[ox J[cancel J[Hep |

6. Right-click the Conditions node and select New Condition. Select the Table facet, click
the ellipsis button next to the Field column to display the Advanced Edit dialog box,
enter the following code in the Cell Value text box, and click OK:

IsNull(ExecuteSql('Numeric', 'SELECT 1 FROM sys.tables a INNER JOIN sys.indexes b
ON a.object_id = b.object_id WHERE b.is_primary_key = 1
AND a.name = @@0bjectName AND a.schema_id = SCHEMA_ID(@@SchemaName)'), 0)

7. Configure the Name, Operator, and Value as shown here, and then click OK.

K Create New Condition - Tables without primany keys

Select a p (Sseript - | P Help
2 General
2 Description
Mare: \Tables without primary keys |
Facet: |Table |
Expression;
Andor Field Operatal Value
o e, (-
*
3 HOTEKE [HOTEKZiMike]
Yiew connection propertiss
Ready
or [camel || help

PRACTICE 2 Create a Condition for a Target Set

In this practice, you create a condition to target all SQL Server 2005 and later instances, along
with a condition to target all user databases that are online.

186 CHAPTER 8 Designing Policy Based Management

1. Right-click the Conditions node, select New Condition, and configure the condition as

shown here. Click OK.

‘--.: Open Condition - SOL Server, 2005 or later

(Caeripe + | [Help

Select a page

4 General

% Description

f Dependent Policies Mame: ‘SQL Server 2005 ar later

Facet:
Expression:
Andor Field
, P— =
*

7 HOTEKZ [HOTEKZ\Mike]

Views connection properties YersionMajor

Ready

Operatol Yalue

=

Gets the major version of the instance of Microsoft SGL Server.

: (]

l

[e]4 H Cancel H Help]

2. Right-click the Conditions node, select New Condition, and configure the condition as

shown here. Click OK when you are done.

‘--.: Open Condition - Online user databases

(Caeripe + | [Help

Select a page

4 General

% Description

' Dependent Policies Marme: ‘Onhna user databases

Facet:
Expression:
AndOr Field Operatol Yalue
, p— - e =
AMND @IsSyskemObject E = False E]
#*
47 HOTEKZ [HOTEKZMike]
Views connection properties Ishccessible
_ Specifies whether the database can be accessed,
Progress
Ready
[e]4 1 [Cancel] [Help

PRACTICE 3 Create a Policy

In this practice, you create policies that use the conditions you just created to do the following:

m Check that a database does not have the auto shrink or auto close properties set.

m Check that CLR, OLE Automation, Ad Hoc Remote Queries, and SQL Mail are all disabled.

Lesson 1: Designing Policies

CHAPTER 8

187

m Check that a database is not in the Simple recovery model.

m Check that all tables have a primary key.
1. Right-click the Policies node, select New Policy, and configure the policy as shown

here. Click OK.

R Create New Policy - Check for auto shrink and auto close

Bseripe + | [Help

Select a page
5 General
1 Description
Mame: |Check for auto shrink and auto dose |
Enabled
Check condtion: | auto Shrink and Auto Closs Disabled v|[]

Against targets:
9 £ Online user datsbasss - Database

7 HOTEKZ [HOTEKZ\Mke]

Wigw connection oroperties

Ready

[[s]'9][Cancel ” Help]

Evaluation Made: |0” demand

2. Right-click the Policies node, select New Policy, and configure this second policy as
shown here. Click OK.

R Create New Policy - Check for; surface area configuration:

Select a page B seript - | [Help

4 Description
Name: |Check for surface area configuration |
Enabled
Check condition: |Check Database Engine Surface Area =5 | E

Against kargets:

% HOTEKZ [HOTEKZ\Mike]

Wigw connection oroperties

Progress

Ready

Evaluation Mode: |On demand

Server restriction:

o I e][e]

188 CHAPTER 8 Designing Policy Based Management

Right-click the Policies node, select New Policy, and configure the policy as shown

here. Click OK.

reate New Policy - Check for SIMPLE recovery model

Select a page

2 General

Deseription

Connection

43 HOTEKZ [HOTEKZ\Mike]

SScript - ‘ Help

Mame: ‘Chack For SIMPLE recovery model

Enabled

Check condition:

Against kargets:
& g Orline user databases « Database

“iew connection properties
Evaluation Mode: ‘O“ demand b ‘
Ready
Server restriction: ‘None vl
[O J [Cancel] [Help]

Right-click the Policies node, select New Policy, and configure the last policy as shown

here. Click OK.

reate New Policy - Check tables for, primary key:

Select a page
& General
Description

Connection

4 HOTEKZ [HOTEKZ\Mike]

Yiew connection properties

Ready

Eseripe + | Help

Mame: ‘Check tables for primary key

Enabled

Check condition:

Against targets:

Every - Table

in Online user databases - Database

Evvaluation Mode: ‘On dernand

Server restriction: ‘None

v

[o]l

Cancel][Help]

Lesson 1: Designing Policies

CHAPTER 8

189

PRACTICE 4 Create a Policy Category
In this practice, you create two policy categories for the policies that you created.

1. Right-click Policy Management, select Manage Categories, and create the categories as
shown here. Click OK.

o Hanage Policy Categories

It:'ﬁl Ready
. S | Lj Help J
& General
Categories
Mame Mandate Database Subscriptions
<Default =
Instance Surface Area Best Practices
ra Database Best Practices
g 0
43 HOTEK2 [HOTEKZiMike]
Vigw connection properties
Ready
[[e]4] [Cancel] [Help]

2. In SSMS, in the console tree, expand the Policies folder. Right-click the Check For Auto
Shrink And Auto Close Policy, select Properties, click the Description tab, and change
the category to Database Best Practices. Click OK.

3. Right-click the Check For Simple Recovery Model Policy, select Properties, select the
Description tab, and change the category to Database Best Practices. Click OK.

4. Right-click the Check For Surface Area Configuration Policy, select Properties, click the
Description tab, and change the category to Instance Surface Area Best Practices. Click OK.

5. Right-click the Check Tables For Primary Key Policy, select Properties, select the
Description tab, and change the category to Database Best Practices. Click OK.

PRACTICE 5 Import Policies
In this practice, you import the policies that ship with SQL Server.

1. Right-click the Policies node underneath Policy Management and select Import Policy.

2. Click the ellipsis button next to the Files To Import text box, navigate to the Microsoft
SQL Server\100\Tools\Policies\DatabaseEngine\1033 folder, select all the files in the
folder, as shown here, and click Open.

190 Designing Policy Based Management

! ELE |
= General
Files ko impart: | "Windaws Event Log Syskem Failure Errar,xml" "Asymmetric Key Encryption Al D
Options:
[Replace duplicates with items imparted
Policy state: |Preserve policy stabe onimport ~
S HOTEKZ [HOTEKZMike]
Wigw connection properties
Ready
[QK] [Cancel] [Help]

3. Select the Replace Duplicates With Items Imported check box, select Preserve Policy
State On Import, and click OK.

4. Take the time to browse the policies and conditions that were created during the
import.

Lesson Summary
m You can build policies to enforce conditions across any version of SQL Server.

m Policies can enforce a single condition and each condition can be based on a single
facet.

m Policy categories allow you to group policies together for compliance checking.

m A policy category can be set with the Mandate property, which requires the policy to
be checked against all databases within an instance.

Lesson Review

The following question is intended to reinforce key information presented in this
lesson. The question is also available on the companion CD if you prefer to review it in
electronic form.

NOTE ANSWERS

Answers to this question and an explanation of why each answer choice is correct
or incorrect is located in the “Answers” section at the end of the book.

Lesson 1: Designing Policies

191

192

1.

You have defined several policies that you want applied to all databases within an
instance. How do you ensure that a database owner is not allowed to avoid the policy
check with the least amount of administrative effort?

A.

B
C.
D

Create a condition that checks all databases.
Add the policy to a user-defined policy category and set the Mandate property.
Add the policy to the default policy category.

Check the policies manually against the instance.

Designing Policy Based Management

Chapter Review

To practice and reinforce the skills you learned in this chapter further, you can perform the
following tasks:

Review the chapter summary.
Review the list of key terms introduced in this chapter.

Complete the case scenario. The scenario sets up a real-world situation involving the
topics in this chapter and asks you to create a solution.

Complete the suggested practices.

Take a practice test.

Chapter Summary

Facets are the .NET assemblies that define the set of properties for an object upon
which conditions are built.

A condition can be defined for a single facet and a policy can be checked for a single
instance.

Policies can be checked manually or automatically. Automatic policy checking can be
performed on a scheduled basis or by using the event notification infrastructure.

A database owner can subscriber a database to one or more policies; however, a policy

that belongs to a policy category set with the Mandate property requires checking
against all databases.

Key Terms

Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

Condition
Facet

Policy category
Policy target

Case Scenario

In the following case scenario, you apply what you've learned in this chapter. You can find
answers to these questions in the "Answers” section at the end of this book.

Chapter Review

193

194

Case Scenario: Designing a Management Strategy for Coho Vineyard

BACKGROUND
Company Overview

Coho Vineyard was founded in 1947 as a local, family-run winery. Due to the award-winning
wines it has produced over the last several decades, Coho Vineyards has experienced
significant growth. To continue expanding, several existing wineries were acquired over the
years. Today, the company owns 16 wineries; 9 wineries are in Washington, Oregon, and
California, and the remaining 7 wineries are located in Wisconsin and Michigan. The wineries
employ 532 people, 162 of whom work in the central office that houses servers critical to the
business. The company has 122 salespeople who travel around the world and need access to
up-to-date inventory availability.

Planned Changes

Until now, each of the 16 wineries owned by Coho Vineyard has run a separate Web site
locally on the premises. Coho Vineyard wants to consolidate the Web presence of these
wineries so that Web visitors can purchase products from all 16 wineries from a single online
store. All data associated with this Web site will be stored in databases in the central office.

When the data is consolidated at the central office, merge replication will be used to
deliver data to the salespeople as well as to allow them to enter orders. To meet the needs of
the salespeople until the consolidation project is completed, inventory data at each winery is
sent to the central office at the end of each day.

Management wants to ensure that you cannot execute stored procedures written in C#NET
or use the OPENROWSET or OPENDATASOURCE command.

EXISTING DATA ENVIRONMENT
Databases

Each winery presently maintains its own database to store all business information. At the
end of each month, this information is brought to the central office and transferred into the
databases shown in Table 8-1.

TABLE 8-1 Coho Vineyard Databases

DATABASE SIZE

Customer 180 megabytes (MB)
Accounting 500 MB

HR 100 MB

Inventory 250 MB

Promotions 80 MB

Designing Policy Based Management

After the database consolidation project is complete, a new database named Order will
serve as a data store to the new Web store. As part of their daily work, employees also
will connect periodically to the Order database using a new in-house Web application.

The HR database contains sensitive data and is protected using Transparent Data
Encryption (TDE). In addition, data in the Salary table is encrypted using a certificate.

Database Servers

A single server named DBL1 contains all the databases at the central office. DBL is running SQL
Server 2008 Enterprise on Windows Server 2003 Enterprise.

Business Requirements

You need to design an archiving solution for the Customer and Order databases. Your archival
strategy should allow the Customer data to be saved for six years.

To prepare the Order database for archiving procedures, you create a partitioned table
named Order.Sales. Order.Sales includes two partitions. Partition 1 includes sales activity for
the current month. Partition 2 is used to store sales activity for the previous month. Orders
placed before the previous month will be moved to another partitioned table named Order.
Archive. Partition 1 of Order.Archive includes all archived data. Partition 2 remains empty.

A process needs to be created to load the inventory data from each of the 16 wineries by
4 am. daily.

Four large customers submit orders using Coho Vineyards Extensible Markup Language
(XML) schema for Electronic Data Interchange (EDI) transactions. The EDI files arrive by 5 p.m.
and need to be parsed and loaded into the Customer, Accounting, and Inventory databases,
which each contain tables relevant to placing an order. The EDI import routine is currently a
single threaded C++ application that takes between three and six hours to process the files.
You need to finish the EDI process by 5:30 p.m. to meet your Service Level Agreement (SLA)
with the customers. After the consolidation project finishes, the EDI routine loads all data into
the new Order database.

You need to back up all databases at all locations. All production databases are required
to be configured with the Full recovery model. You can lose a maximum of five minutes of
data under a worst-case scenario. The Customer, Account, Inventory, Promotions, and Order
databases can be off-line for a maximum of 20 minutes in the event of a disaster. Data older
than six months in the Customer and Order databases can be off-line for up to 12 hours in the
event of a disaster.

Answer the following question.

= What policies would you implement to check and enforce the business requirements
for Coho Vineyard?

Chapter Review

195

196

Suggested Practices

To help you master the exam objectives presented in this chapter, complete the following tasks.

Implement Policy Based Management

m Practice1 Configure a policy to check the surface area configuration for all your SQL
Server instances.

m Practice 2 Configure a policy to check the last time a database was successfully
backed up.

m Practice 3 Configure policies to check the membership of the sysadmin and db_owner
roles.

m Practice 4 Configure a policy to ensure that databases are not set to either auto
shrink or auto close.

®m Practice 5 Based on the policies that ship with SQL Server 2008, decide which policies
apply to your environment and implement the policy checks.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just one exam objective, or you can test yourself on all the 70-432 certification
exam content. You can set up the test so that it closely simulates the experience of taking

a certification exam, or you can set it up in study mode so that you can look at the correct
answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the section entitled “How to
Use the Practice Tests,” in the Introduction to this book.

Designing Policy Based Management

	Cover
	Contents
	Chapter 8: Designing Policy Based Management
	Before You Begin
	Lesson 1: Designing Policies
	Facets
	Conditions
	Policy Targets
	Policies
	Policy Categories
	Policy Compliance
	Central Management Server

	Import and Export Policies
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario

	Suggested Practices
	Implement Policy Based Management

	Take a Practice Test

