

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12858.aspx

9780735626058

© 2009 Mike Hotek. All rights reserved.

MCTS Self-Paced Training
Kit (Exam 70-432):

Microsoft® SQL Server®
2008—Implementation
and Maintenance

Mike Hotek

vii

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Chapter 2 Database Confi guration and Maintenance 37

Before You Begin . 37

Lesson 1: Confi guring Files and Filegroups . 39

Files and Filegroups . 39

Transaction Logs . 42

FILESTREAM data . 43

tempdb Database .44

Lesson Summary 45

Lesson Review 45

Lesson 2: Confi guring Database Options . 46

Database Options . 46

Recovery Options 46

Auto Options 48

Change Tracking 50

Access 50

Parameterization 51

Collation Sequences . 52

Lesson Summary 53

Lesson Review 53

Lesson 3: Maintaining Database Integrity .54

Database Integrity Checks .54

Lesson Summary 56

Lesson Review 56

viii Contents

Chapter Review . 57

Chapter Summary 57

Key Terms 57

Case Scenario 57

Suggested Practices . 59

Confi guring Databases 59

Take a Practice Test .60

 CHAPTER 2 37

C H A P T E R 2

Database Confi guration
and Maintenance

 The confi guration choices that you make for a database affect its performance, scalability,

and management. In this chapter, you learn how to design the fi le and fi legroup storage

structures underneath a database. You learn how to confi gure database options and

 recovery models. You will also learn how check and manage the integrity of a database.

 Exam objectives in this chapter :

 Back up databases.

 Manage and confi gure databases.

 Maintain database integrity.

 Manage collations.

 Lessons in this chapter:

 Lesson 1: Confi guring Files and Filegroups 39

 Lesson 2: Confi guring Database Options 46

 Lesson 3: Maintaining Database Integrity 54

Before You Begin

 To complete the lessons in this chapter, you must have:

 Microsoft SQL Server 2008 installed

 The AdventureWorks database installed within the instance

 38 CHAPTER 2 Database Confi guration and Maintenance

REAL WORLD

Michael Hotek

 I have worked on millions of databases across thousands of customers during the

portion of my career where I have worked with SQL Server. In all that time, I have

come up with many best practices while at the same time creating many arguments

among the “purists.” All my recommendations and approaches to architecting

and managing SQL Servers come from a pragmatic, real-world perspective that,

 although rooted in a deep knowledge of SQL Server, hardware, networking, and

many other components, rarely matches up with the perfect world theory.

Designing the disk structures that underlie a database is one of the cases where

I deviate from a lot of the theoretical processes and computations that you will fi nd

published. Although you can fi nd entire white papers and even sections of training

classes devoted to teaching you how to calculate disk transfer and random vs.

sequential writes, I have never encountered an environment where I had the time or

luxury to run those calculations prior to implementing a system.

It is really nice that there are formulas to calculate the disk transfer of a given disk

confi guration, and you can also apply statistical methods to further refi ne those

 calculations based on the random vs. sequential I/O of a system. However, all the

time spent doing the calculations is worthless unless you also know the required

read and write capacity of the databases you are going to place on that disk

 subsystem. Additionally, unless you are buying a new storage system, dedicated to

a specifi c application, you will have a very diffi cult time architecting the disk storage

underneath a database according to all the theories.

The challenge in achieving optimal performance is to separate the transaction logs

from data fi les so that you can isolate disk I/O. The transaction log is the key to

 high-performance write operations, because the maximum transaction rate is bound

by the write capacity to the transaction log fi le. After taking care of the transaction

log, you need to add enough fi les and fi legroups to achieve enough disk throughput

to handle the read/write activity. However, the most important component of

 performance is to write applications with effi cient code that accesses only the

 minimum amount of data necessary to accomplish the business task.

REAL WORLD

Michael Hotek

Ihave worked on millions of databases across thousands of customers during the

portion of my career where I have worked with SQL Server. In all that time, I have

come up with many best practices while at the same time creating many arguments

among the “purists.” All my recommendations and approaches to architecting

and managing SQL Servers come from a pragmatic, real-world perspective that,

although rooted in a deep knowledge of SQL Server, hardware, networking, and

many other components, rarely matches up with the perfect world theory.

Designing the disk structures that underlie a database is one of the cases where

I deviate from a lot of the theoretical processes and computations that you will fi nd

published. Although you can fi nd entire white papers and even sections of training

classes devoted to teaching you how to calculate disk transfer and random vs.

sequential writes, I have never encountered an environment where I had the time or

luxury to run those calculations prior to implementing a system.

It is really nice that there are formulas to calculate the disk transfer of a given disk

confi guration, and you can also apply statistical methods to further refi ne those

calculations based on the random vs. sequential I/O of a system. However, all the

time spent doing the calculations is worthless unless you also know the required

read and write capacity of the databases you are going to place on that disk

subsystem. Additionally, unless you are buying a new storage system, dedicated to

a specifi c application, you will have a very diffi cult time architecting the disk storage

underneath a database according to all the theories.

The challenge in achieving optimal performance is to separate the transaction logs

from data fi les so that you can isolate disk I/O. The transaction log is the key to

high-performance write operations, because the maximum transaction rate is bound

by the write capacity to the transaction log fi le. After taking care of the transaction

log, you need to add enough fi les and fi legroups to achieve enough disk throughput

to handle the read/write activity. However, the most important component of

performance is to write applications with effi cient code that accesses only the

minimum amount of data necessary to accomplish the business task.

 Lesson 1: Confi guring Files and Filegroups CHAPTER 2 39

Lesson 1: Confi guring Files and Filegroups

Data within a database is stored on disk in one or more data fi les. Prior to being written to the

data fi le(s), every transaction is written to a transaction log fi le. In this lesson, you learn how

to design the data fi les underneath a database, group the fi les into fi legroups to link physical

storage into a database, and manage the transaction log. You also learn how to confi gure the

tempdb database for optimal performance.

After this lesson, you will be able to :

 Create fi legroups

 Add fi les to fi legroups

 Work with FILESTREAM data

 Confi gure the transaction log

Estimated lesson time: 20 minutes

Files and Filegroups

Although storing all your data in memory would provide extremely fast access, you would

lose everything after the machine was shut down. To protect your data, it has to be persisted

to disk. Underneath each database is one or more fi les for persisting your data.

SQL Server uses two different types of fi les—data and transaction log fi les. Data fi les are

responsible for the long-term storage of all the data within a database. Transaction log fi les,

discussed in more detail later in this lesson, are responsible for storing all the transactions that

are executed against a database.

Instead of defi ning the storage of objects directly to a data fi le, SQL Server provides an

 abstraction layer for more fl exibility called a fi legroup. Filegroups are a logical structure,

 defi ned within a database, that map a database and the objects contained within a database,

to the data fi les on disk. Filegroups can contain more than one data fi le.

All objects that contain data, tables, indexes, and indexed views have an ON clause that

you can use to specify when you create an object that allows you to specify the fi legroup

where SQL Server stores the object. As data is written to the objects, SQL Server uses the

fi legroup defi nition to determine on which fi le(s) it should store the data.

At the time that a fi le is added to a database, you specify the initial size of the fi le. You can

also specify a maximum size for the fi le, as well as whether SQL Server automatically increases

the size of the fi le when it is full of data. If you specify automatic growth, you can specify

whether the fi le size increases based on a percentage of the current size or whether the fi le

size increases at a fi xed amount that you defi ne.

After this lesson, you will be able to:

Create fi legroups

Add fi les to fi legroups

Work with FILESTREAM dataM

Confi gure the transaction log

Estimated lesson time: 20 minutes

 40 CHAPTER 2 Database Confi guration and Maintenance

Unless a fi legroup has only a single fi le, you do not know in which fi le a specifi c row of data

is stored. When writing to fi les, SQL Server uses a proportional fi ll algorithm. The proportional

fi ll algorithm is designed to ensure that all fi les within a fi legroup reach the maximum defi ned

capacity at the same time. For example, if you had a data fi le that was 10 gigabytes (GB) and

a data fi le that was 1 GB, SQL Server writes ten rows to the 10 GB fi le for every one row that is

written to the 1 GB fi le.

The proportional fi ll algorithm is designed to allow a resize operation to occur at a fi legroup

level. In other words, all fi les within a fi legroup expand at the same time.

File Extensions

 SQL Server uses three fi le extensions: .mdf, .ndf, and .ldf. Unfortunately, many

people have placed a lot of emphasis and meaning on these three extensions,

where no meaning was ever intended. Just like Microsoft Offi ce Word documents

have a .doc or .docx extension, and Microsoft Offi ce Excel fi les have an .xls or .xlsx

extension, the extension is nothing more than a naming convention. I could just

as easily create a Word document with an extension of .bob, or even no extension,

without changing the fact that it is still a Word document or preventing the ability

of Word to open and manipulate the fi le.

A fi le with an .mdf extension is usually the fi rst data fi le that is created within a

 database, generally is associated with the primary fi legroup, and usually is considered

the primary data fi le which contains all the system objects necessary to a database.

The .ndf extension is generally used for all other data fi les underneath a database,

regardless of the fi legroup to which the fi le is associated. The .ldf extension generally

is used for transaction logs.

The fi le extensions that you see for SQL Server are nothing more than naming

conventions. SQL Server does not care what the fi le extensions are or even if the

fi les have extensions. If you really wanted to, you could use an .ldf extension for

the primary data fi le, just as you could use an .mdf extension for a transaction log

fi le. Although the use of fi le extensions in this way does not affect SQL Server, it

 generally could cause confusion among the other database administrators (DBAs) in

your organization. To avoid this confusion, it is recommended that you use the .mdf,

.ndf, and .ldf naming conventions commonly used across the SQL Server industry,

but do not forget that this is just a naming convention and has absolutely no effect

on SQL Server itself.

All data manipulation within SQL Server occurs in memory within a set of buffers. If you are

adding new data to a database, the new data is fi rst written to a memory buffer, then written

to the transaction log, and fi nally persisted to a data fi le via a background process called

check pointing. When you modify or delete an existing row, if the row does not already exist

File Extensions

SQL Server uses three fi le extensions: .mdf, .ndf, and .ldf. Unfortunately, many

people have placed a lot of emphasis and meaning on these three extensions,

where no meaning was ever intended. Just like Microsoft Offi ce Word documents

have a .doc or .docx extension, and Microsoft Offi ce Excel fi les have an .xls or .xlsx

extension, the extension is nothing more than a naming convention. I could just

as easily create a Word document with an extension of .bob, or even no extension,

without changing the fact that it is still a Word document or preventing the ability

of Word to open and manipulate the fi le.

A fi le with an .mdf extension is usually the fi rst data fi le that is created within a

database, generally is associated with the primary fi legroup, and usually is considered

the primary data fi le which contains all the system objects necessary to a database.

The .ndf extension is generally used for all other data fi les underneath a database,

regardless of the fi legroup to which the fi le is associated. The .ldf extension generally

is used for transaction logs.

The fi le extensions that you see for SQL Server are nothing more than naming

conventions. SQL Server does not care what the fi le extensions are or even if the

fi les have extensions. If you really wanted to, you could use an .ldf extension for

the primary data fi le, just as you could use an .mdf extension for a transaction log

fi le. Although the use of fi le extensions in this way does not affect SQL Server, it

generally could cause confusion among the other database administrators (DBAs) in

your organization. To avoid this confusion, it is recommended that you use the .mdf,

.ndf, and .ldf naming conventions commonly used across the SQL Server industry,

but do not forget that this is just a naming convention and has absolutely no effect

on SQL Server itself.

 Lesson 1: Confi guring Files and Filegroups CHAPTER 2 41

in memory, SQL Server fi rst reads the data off disk before making the modifi cation. Similarly if

you are reading data that has not yet been loaded into a memory buffer, SQL Server must read

it out of the data fi les on disk.

 If you could always ensure that the machine hosting your databases had enough memory to

hold all the data within your databases, SQL Server could simply read all the data off disk into

memory buffers upon startup to improve performance. However, databases are almost always

much larger than the memory capacity on any machine, so SQL Server retrieves data from disk only

on an as-needed basis. If SQL Server does not have enough room in memory for the data being

read in, the least recently used buffer pools are emptied to make room for newly requested data.

 Because accessing a disk drive is much slower than accessing memory, the data fi le design

underneath a database can have an impact on performance.

 The fi rst layer of design is within the disk subsystem. As the number of disk drives within

a volume increases, the read and write throughput for SQL Server increases. However, there

is an upper limit on the disk input/output (I/O), which is based upon the capacity of the

 redundant array of independent disks (RAID) controller, host bus adapter (HBA), and disk

bus. So you cannot fi x a disk I/O bottleneck by continually adding more disk drives. Although

entire 200+ page white papers have been written on random vs. sequential writes, transfer

speeds, rotational speeds, calculations of raw disk read/write speeds, and other topics,

the process of designing the disk subsystem is reduced to ensuring that you have enough

disks along with appropriately sized controllers and disk caches to deliver the read/write

 throughput required by your database.

 If it were simply a matter of the number of disks, there would be far fewer disk I/O

 bottlenecks in systems. But there is a second layer of data fi le design: determining how many

data fi les you need and the location of each data fi le.

 SQL Server creates a thread for each fi le underneath a database. As you increase the

 number of fi les underneath a database, SQL Server creates more threads that can be used

to read and write data. However, you cannot just create a database with thousands of fi les

to increase its number of threads. This is because each thread consumes memory, taking

away space for data to be cached, and even if you could write to all the threads at the same

time, you would then saturate the physical disks behind the data fi les. In addition, managing

 thousands of data fi les underneath a database is extremely cumbersome, and if a large

 percentage of the fi les need to expand at the same time, you could create enough activity to

halt the fl ow of data within the database.

 Due to the competing factors and the simple fact that in the real world, few DBAs have the

time to spend running complex byte transfer rate calculations or even to design the disk layer

based on a precise knowledge of the data throughput required, designing the data layer is an

iterative approach.

 Designing the data layer of a database begins with the database creation. When you

 create a database, it should have three fi les and two fi legroups. You should have a fi le with an

.mdf extension within a fi legroup named PRIMARY, a fi le with an .ndf extension in a fi legroup

with any name that you choose, and the transaction log with an .ldf extension.

 42 CHAPTER 2 Database Confi guration and Maintenance

NOTE FILE EXTENSIONS

As stated in the sidebar “File Extensions,” earlier in this chapter, fi le extensions are nothing

more than naming conventions. They do not convey any special capabilities.

Besides being the logical defi nition for one or more fi les that defi nes the storage boundary

for an object, fi legroups have a property called DEFAULT. The purpose of the DEFAULT property

is to defi ne the fi legroup where SQL Server places objects if you do not specify the ON clause

during object creation.

When the database is created, the primary fi legroup is marked as the default fi legroup.

After you create the database, you should mark the second fi legroup as the default

 fi legroup. By changing the default fi legroup, you ensure that any objects you create are

not accidentally placed on the primary fi legroup and that only the system objects for the

 database reside on the primary fi legroup. You change the default fi legroup by using the

 following command:

ALTER DATABASE <database name> MODIFY FILEGROUP <filegroup name> DEFAULT

The main reason not to place any of your objects on the primary fi legroup is to provide

as much isolation in the I/O as possible. The data in the system objects does not change as

 frequently as data in your objects. By minimizing the write activity to the primary data fi le,

you reduce the possibility of introducing corruption due to hardware failures. In addition,

because the state of the primary fi legroup also determines the state of the database,

you can increase the availability of the database by minimizing the changes made to the

 primary fi legroup.

Following the initial creation of the database, you add fi legroups as needed to separate

the storage of objects within the database. You also add fi les to fi legroups to increase the disk

I/O available to the objects stored on the fi legroup, thereby reducing disk bottlenecks.

Transaction Logs

When SQL Server acknowledges that a transaction has been committed, SQL Server must

ensure that the change is hardened to persistent storage. Although all writes occur through

memory buffers, persistence is guaranteed by requiring that all changes are written to the

transaction log prior to a commit being issued. In addition, the writes to the transaction log

must occur directly to disk.

Because every change made to a database must be written directly to disk, the disk storage

architecture underneath your transaction log is the most important decision affecting the

maximum transaction throughput that you can achieve.

SQL Server writes sequentially to the transaction log but does not read from the log except

during a restart recovery. Because SQL Server randomly reads and writes to the data fi les

underneath a database, by isolating the transaction log to a dedicated set of disks you ensure

that the disk heads do not have to move all over the disk and move in a mostly linear manner.

NOTE FILE EXTENSIONSE

As stated in the sidebar “File Extensions,” earlier in this chapter, fi le extensions are nothing

more than naming conventions. They do not convey any special capabilities.

 Lesson 1: Confi guring Files and Filegroups CHAPTER 2 43

EXAM TIP

The maximum transaction throughput for any database is bound by the amount of data

per second that SQL Server can write to the transaction log.

Benchmarks

 Benchmark disclosures are the best source of information when designing the

disk storage for optimal performance. Many organizations and the press place

great emphasis on various benchmarks. However, a careful study reveals that,

by itself, SQL Server doesn’t have as large of an impact on the overall numbers

as you are led to believe. The transaction processing engine within SQL Server is

extremely effi cient and has a fi xed contribution to transaction throughput, but the

real key to maximizing the transaction rate is in the disk storage. Given the same

disk confi guration, a 7,200 RPM drive delivers about 50 percent of the SQL Server

 transaction rate of a 15,000 RPM drive. Having 100 disks underneath a transaction

log generally doubles the transaction rate of having only 50 disks. In addition,

one of the tricks used in benchmarks is to partition a disk such that all the SQL

Server data is written to the outside half or less of the disk platter, because based

on physics, as the read/write head of a disk moves toward the edge of a circular

object, the velocity increases, thereby spinning a larger segment of the disk platter

 underneath the drive head per unit of time.

FILESTREAM data

Although the volume of data within organizations has been exploding, leading the way in this

data explosion is unstructured data. To tackle the problem of storing, managing, and combining

the large volumes of unstructured databases with the structured data in your databases, SQL

Server 2008 introduced FILESTREAM.

The FILESTREAM feature allows you to associate fi les with a database. The fi les are stored

in a folder on the operating system, but are linked directly into a database where the fi les can

be backed up, restored, full-text-indexed, and combined with other structured data.

Although the details of FILESTREAM are covered in more detail in Chapter 3, “Tables,”

and Chapter 5, “Full Text Indexing,” to store FILESTREAM data within a database, you need

to specify where the data will be stored. You defi ne the location for FILESTREAM data in

a database by designating a fi legroup within the database to be used for storage with

the CONTAINS FILESTREAM property. The FILENAME property defi ned for a FILESTREAM

 fi legroup specifi es the path to a folder. The initial part of the folder path defi nition must exist;

however, the last folder in the path defi ned cannot exist and is created automatically. After

the FILESTREAM folder has been created, a fi lestream.hdr fi le is created in the folder, which is

a system fi le used to manage the fi les subsequently written to the folder.

Benchmarks

Benchmark disclosures are the best source of information when designing the

disk storage for optimal performance. Many organizations and the press place

great emphasis on various benchmarks. However, a careful study reveals that,

by itself, SQL Server doesn’t have as large of an impact on the overall numbers

as you are led to believe. The transaction processing engine within SQL Server is

extremely effi cient and has a fi xed contribution to transaction throughput, but the

real key to maximizing the transaction rate is in the disk storage. Given the same

disk confi guration, a 7,200 RPM drive delivers about 50 percent of the SQL Server

transaction rate of a 15,000 RPM drive. Having 100 disks underneath a transaction

log generally doubles the transaction rate of having only 50 disks. In addition,

one of the tricks used in benchmarks is to partition a disk such that all the SQL

Server data is written to the outside half or less of the disk platter, because based

on physics, as the read/write head of a disk moves toward the edge of a circular

object, the velocity increases, thereby spinning a larger segment of the disk platter

underneath the drive head per unit of time.

 44 CHAPTER 2 Database Confi guration and Maintenance

tempdb Database

Because the tempdb database is much more heavily used than in previous versions, special

care needs to be taken in how you design the storage underneath tempdb.

In addition to temporary objects, SQL Server uses tempdb for worktables used in

 grouping/sorting operations, worktables to support cursors, the version store supporting

snapshot isolation level, and overfl ow for table variables. You can also cause index build

 operations to use space in tempdb.

Due to the potential for heavy write activity, you should move tempdb to a set of disks

separated from your databases and any backup fi les. To spread out the disk I/O, you might

consider adding additional fi les to tempdb.

NOTE MULTIPLE tempdb FILES

 A common practice for tempdb is to create one fi le per processor. The one fi le per processor

is with respect to what SQL Server would consider a processor and not the physical processor,

which could have multiple cores as well as hyperthreading.

Quick Check

 1. What are the types of fi les that you create for databases and what are the

 commonly used fi le extensions?

 2. What is the purpose of the transaction log?

Quick Check Answers

 1. You can create data and log fi les for a database. Data fi les commonly have either

an .mdf or .ndf extension, whereas log fi les have an .ldf extension.

 2. The transaction log records every change that occurs within a database to persist

all transactions to disk.

 PRACTICE Creating Databases

 In this practice, you create a database with multiple fi les that is enabled for FILESTREAM storage.

 1. Execute the following code to create a database:

CREATE DATABASE TK432 ON PRIMARY

(NAME = N'TK432_Data', FILENAME = N'c:\test\TK432.mdf' ,

 SIZE = 8MB , MAXSIZE = UNLIMITED, FILEGROWTH = 16MB),

 FILEGROUP FG1

(NAME = N'TK432_Data2', FILENAME = N'c:\test\TK432.ndf' ,

 SIZE = 8MB , MAXSIZE = UNLIMITED, FILEGROWTH = 16MB),

NOTE MULTIPLE E tempdb FILES

A common practice for tempdb is to create one fi le per processor. The one fi le per processor

is with respect to what SQL Server would consider a processor and not the physical processor,

which could have multiple cores as well as hyperthreading.

Quick Check

1. What are the types of fi les that you create for databases and what are the

 commonly used fi le extensions?

2. What is the purpose of the transaction log?

Quick Check Answers

1. You can create data and log fi les for a database. Data fi les commonly have either

an .mdf or .ndf extension, whereas log fi les have an .ldf extension.

2. The transaction log records every change that occurs within a database to persist

all transactions to disk.

Q

 Lesson 1: Confi guring Files and Filegroups CHAPTER 2 45

 FILEGROUP Documents CONTAINS FILESTREAM DEFAULT

(NAME = N'Documents', FILENAME = N'c:\test\TK432Documents')

 LOG ON

(NAME = N'TK432_Log', FILENAME = N'c:\test\TK432.ldf' ,

 SIZE = 8MB , MAXSIZE = 2048GB , FILEGROWTH = 16MB)

GO

 2. Execute the following code to change the default fi legroup:

ALTER DATABASE TK432

MODIFY FILEGROUP FG1

DEFAULT

GO

Lesson Summary
 You can defi ne one or more data and log fi les for the physical storage of a database.

 Data fi les are associated to a fi legroup within a database.

 Filegroups provide the logical storage container for objects within a database.

 Files can be stored using the new FILESTREAM capabilities.

Lesson Review
The following question is intended to reinforce key information presented in Lesson 1,

“ Confi guring Files and Filegroups.” The question is also available on the companion CD if you

prefer to review it in electronic form.

NOTE ANSWERS

Answers to this question and an explanation of why each answer choice is correct or

 incorrect is located in the “Answers” section at the end of the book.

 1. You have a reference database named OrderHistory, which should not allow any data

to be modifi ed. How can you ensure, with the least amount of effort, that users can

only read data from the database?

 A. Add all database users to the db_datareader role.

 B. Create views for all the tables and grant select permission only on the views to

database users.

 C. Set the database to READ_ONLY.

 D. Grant select permission on the database to all users and revoke insert, update, and

delete permissions from all users on the database.

NOTE ANSWERSE

Answers to this question and an explanation of why each answer choice is correct or

 incorrect is located in the “Answers” section at the end of the book.

 46 CHAPTER 2 Database Confi guration and Maintenance

Lesson 2: Confi guring Database Options

Data within a database is stored on disk in one or more data fi les. Prior to being written to

the data fi le(s), every transaction is written to a transaction log fi le. In this lesson, you learn

how to design the data fi les underneath a database, group the fi les into fi legroups to link

physical storage into a database, and manage the transaction log .

After this lesson, you will be able to :

 Set the database recovery model

 Confi gure database options

 Manage collation sequences

 Check and maintain database consistency

Estimated lesson time: 20 minutes

Database Options

A database has numerous options that control a variety of behaviors. These options are

 broken down into several categories, including the following:

 Recovery

 Auto options

 Change tracking

 Access

 Parameterization

Recovery Options
The recovery options determine the behavior of the transaction log and how damaged pages

are handled.

Recovery Models

Every database within a SQL Server instance has a property setting called the recovery model.

The recovery model determines the types of backups you can perform against a database.

The recovery models available in SQL Server 2008 are:

 Full

 Bulk-logged

 Simple

After this lesson, you will be able to:

Set the database recovery model

Confi gure database options

Manage collation sequences

Check and maintain database consistency

Estimated lesson time: 20 minutes

 Lesson 2: Confi guring Database Options CHAPTER 2 47

THE FULL RECOVERY MODEL

When a database is in the Full recovery model, all changes made, using both data manipulation

language (DML) and data defi nition language (DDL), are logged to the transaction log. Because

all changes are recorded in the transaction log, it is possible to recover a database in the Full

recovery model to a given point in time so that data loss can be minimized or eliminated if you

should need to recover from a disaster. Changes are retained in the transaction log indefi nitely

and are removed only by executing a transaction log backup.

BEST PRACTICES RECOVERY MODELS

Every production database that accepts transactions should be set to the Full recovery

model. By placing the database in the Full recovery model, you can maximize the restore

options that are possible.

THE BULK-LOGGED RECOVERY MODEL

Certain operations are designed to manipulate large amounts of data. However, the

 overhead of logging to the transaction log can have a detrimental impact on performance.

The Bulk-logged recovery model allows certain operations to be executed with minimal

 logging. When a minimally logged operation is performed, SQL Server does not log

 every row changed but instead logs only the extents, thereby reducing the overhead and

 improving performance. The operations that are performed in a minimally logged manner

with the database set in the Bulk-logged recovery model are:

 BCP

 BULK INSERT

 SELECT. . .INTO

 CREATE INDEX

 ALTER INDEX. . .REBUILD

Because the Bulk-logged recovery model does not log every change to the transaction

log, you cannot recover a database to a point in time, within the interval that a minimally

logged transaction executed, when the Bulk-logged recovery model was enabled.

THE SIMPLE RECOVERY MODEL

The third recovery model is Simple. A database in the Simple recovery model logs operations to

the transaction log exactly as the Full recovery model does. However, each time the database

checkpoint process executes, the committed portion of the transaction log is discarded. A

 database in the Simple recovery model cannot be recovered to a point in time because it is not

possible to issue a transaction log backup for a database in the simple recovery model.

Because the recovery model is a property of a database, you set the recovery model by

using the ALTER DATABASE command as follows:

ALTER DATABASE database_name

SET RECOVERY { FULL | BULK_LOGGED | SIMPLE }

BEST PRACTICES RECOVERY MODELSS

Every production database that accepts transactions should be set to the Full recovery

model. By placing the database in the Full recovery model, you can maximize the restore

options that are possible.

 48 CHAPTER 2 Database Confi guration and Maintenance

The backup types available for each recovery model are shown in Table 2-1.

TABLE 2-1 Backup Types Available for Each Recovery Model

R
E
C

O
V

E
R

Y
 M

O
D

E
L

BACKUP TYPE

FULL DIFFERENTIAL TRAN LOG

Full Yes Yes Yes

Bulk Yes Yes Yes/no minimally

logged

Simple Yes Yes No

EXAM TIP

You need to know which types of backups are possible for each recovery model.

Damaged Pages

It is possible to damage data pages during a write to disk if you have a power failure or

 failures in disk subsystem components during the write operation. If the write operation fails

to complete, you can have an incomplete page in the database that cannot be read. Because

the damage happens to a page on disk, the only time that you see a result of the damage is

when SQL Server attempts to read the page off disk.

The default confi guration of SQL Server does not check for damaged pages and could

cause the database to go off-line if a damaged page is encountered. The PAGE_VERIFY

CHECKSUM option can be enabled, which allows you to discover and log damaged pages.

When pages are written to disk, a checksum for the page is calculated and stored in the page

header. When SQL Server reads a page from disk, a checksum is calculated and compared

to the checksum stored in the page header. If a damaged page is encountered, an 824 error

is returned to the calling application and logged to the SQL Server error log and Windows

 Application Event log, and the ID of the damaged page is logged to the suspect_pages table

in the msdb database.

In SQL Server 2005, the only way to fi x a damaged page was to execute a page restore,

which is discussed in Chapter 9, “Backing Up and Restoring a Database.” In addition to a

page restore, if the database is participating in a database mirroring session, SQL Server 2008

 automatically replaces the page with a copy of the page from the mirror. When Database

Mirroring automatically fi xes a corrupt page, an entry is logged and can be reviewed with the

sys.dm_db_mirroring_auto_page_repair view.

Auto Options
There are fi ve options for a database that enable certain actions to occur automatically:

 AUTO_CLOSE

 AUTO_SHRINK

 Lesson 2: Confi guring Database Options CHAPTER 2 49

 AUTO_CREATE_STATISTICS

 AUTO_UPDATE_STATISTICS

 AUTO_UPDATE_STATISTICS_ASYNCH

 Each database within an instance requires a variety of resources, the most signifi cant of

which is a set of memory buffers. Each open database requires several bytes of memory and

any queries against the database populate the data and query caches. If the AUTO_CLOSE

 option is enabled, when the last connection to a database is closed, SQL Server shuts down

the database and releases all resources related to the database. When a new connection is

made to the database, SQL Server starts up the database and begins allocating resources.

 By default, AUTO_CLOSE is disabled. Unless you have severe memory pressure, you should

not enable a database for AUTO_CLOSE. In addition, a database that is frequently accessed

should not be set to AUTO_CLOSE because it would cause a severe degradation in performance.

This is because you would never be able to use the data and query caches adequately.

 Data fi les can be set to grow automatically when additional space is needed. Although most

operations to increase space affect the database on a long-term basis, some space increases

are needed only on a temporary basis. If the AUTO_SHRINK option is enabled, SQL Server

periodically checks the space utilization of data and transaction log fi les. If the space checking

algorithm fi nds a data fi le that has more that 25 percent free space, the fi le automatically

shrinks to reclaim disk space.

 Expanding a database fi le is a very expensive operation. Shrinking a database fi le is also

an expensive operation. If the size of a database fi le increased during normal operations, it

is very likely that if the fi le shrinks, the operation would recur and increase the database fi le

again. The only operations that cause one-time space utilization changes to database fi les are

administrative processes that create and rebuild indexes, archive data, or load data. Because

the growth of database fi les is so expensive, it is recommended to leave the AUTO_SHRINK

option disabled and manually shrink fi les only when necessary.

 Statistics allow the Query Optimizer to build more effi cient query plans. If the AUTO_

CREATE_STATSTICS option is enabled, SQL Server automatically creates statistics that are

missing during the optimization phase of query processing. Although the creation of statistics

incurs some overhead, the benefi t to query performance is worth the overhead cost for SQL

Server to create statistics automatically when necessary.

 Statistics capture the relative distribution of values in one or more columns of a table.

After the database has been in production for a while, normal database changes do not

 appreciably change the statistics distribution in general. However, mass changes to the data

or dramatic shifts in business processes can suddenly introduce signifi cant skew into the data.

If the statistics are not updated to refl ect the distribution shift, the Optimizer could select an

ineffi cient query plan.

 Databases have two options that allow SQL Server to update out-of-date statistics

 automatically. The AUTO_UPDATE_STATISTICS option updates out-of-date statistics

 during query optimization. If you choose to enable AUTO_UPDATE_STATISTICS, a second

 50 CHAPTER 2 Database Confi guration and Maintenance

 option, AUTO_UPDATE_STATISTICS_ASYNC, controls whether statistics are updated during

query optimization or if query optimization continues while the statistics are updated

 asynchronously.

 Change Tracking
 One of the challenges for any multiuser system is to ensure that the changes of one user do

not accidentally overwrite the changes of another. To prevent the changes of multiple users

from overriding each other, applications are usually built within mechanisms to determine

whether a row has changed between the time it was read and the time it is written back to

the database. The tracking mechanisms usually involve columns with either a datetime or

timestamp column and also might include an entire versioning system.

 SQL Server 2008 introduces a new feature implemented through the CHANGE_TRACKING

database option. Change tracking is a lightweight mechanism that associates a version with

each row in a table that has been enabled for change tracking. Each time the row is changed,

the version number is incremented. Instead of building systems to avoid changes from multiple

users overriding each other, applications need only compare the row version to determine if a

change has occurred to the row between when the row was read and written.

 After change tracking has been enabled for the database, you can choose which tables

within a database that change tracking information should be captured for. Over time,

change tracking information accumulates in the database, so you can also specify how long

tracking information is retained through the CHANGE_RETENTION option and whether

 tracking information should be automatically cleaned up with the AUTO_CLEANUP option.

 Access
 Access to a database can be controlled through several options.

 The status of a database can be explicitly set to ONLINE, OFFLINE, or EMERGENCY. When

a database is in an ONLINE state, you can perform all operations that would otherwise be

possible. A database that is in an OFFLINE state is inaccessible. A database in an EMERGENCY

state can be accessed only by a member of the db_owner role, and the only command

 allowed to be executed is SELECT.

 You can control the ability to modify data for an online database by setting the database

to either READ_ONLY or READ_WRITE. A database in READ_ONLY mode cannot be written to.

In addition, when a database is placed in READ_ONLY mode, SQL Server removes any transaction

log fi le that is specifi ed for the database. Changing a database from READ_ONLY to READ_WRITE

causes SQL Server to re-create the transaction log fi le.

 User access to a database can be controlled through the SINGLE_USER, RESTRICTED_USER,

and MULTI_USER options. When a database is in SINGLE_USER mode, only a single user is

allowed to access the database. A database set to RESTRICTED_USER only allows access to

members of the db_owner, dbcreator, and sysadmin roles.

 Lesson 2: Confi guring Database Options CHAPTER 2 51

 If multiple users are using the database when you change the mode to SINGLE_USER or

users that confl ict with the allowed set for RESTRICTED_USER, the ALTER DATABASE command

is blocked until all the non-allowed users disconnect. Instead of waiting for users to complete

operations and disconnect from the database, you can specify a ROLLBACK action to terminate

connections forcibly. The ROLLBACK IMMEDIATE option forcibly rolls back any open transactions,

along with disconnecting any nonallowed users. You can allow users to complete transactions

and exit the database by using the ROLLBACK AFTER <number of seconds> option, which waits

for the specifi ed number of seconds before rolling back transactions and disconnecting users.

 The normal operational mode for most databases is ONLINE, READ_WRITE, and MULTI_USER.

 Parameterization
 One of the “hot button” topics in application development is whether to parameterize calls

to the database. When a database call is parameterized, the values are passed as variables.

You can fi nd just as many articles advocating for both sides. Unfortunately, applications gain

a signifi cant benefi t when database calls are parameterized.

 SQL Server caches the query plan for every query that is executed. Unless there is pressure

on the query cache that forces a query plan from the cache, every query executed since

the instance started is in the query cache. When a query is executed, SQL Server parses and

compiles the query. The query is then compared to the query cache using a string-matching

algorithm. If a match is found, SQL Server retrieves the plan that has already been generated

and executes the query.

 A query that is parameterized has a much higher probability of being matched because

the query string does not change even when the values being used vary. Therefore,

 parameterized queries can reuse cached query plans more frequently and avoid the time

required to build a query plan.

 Because not all applications parameterize calls to the database, you can force SQL Server

to parameterize every query for a given database by setting the PARAMETERIZATION

FORCED database option.

 The default setting for a database is not to force parameterization. The reuse of query plans

provides a benefi t so long as the query plan being reused is the most effi cient path through

the data. For tables where there is signifi cant data skew, one value produces an effi cient

query plan, whereas another value causes a different query plan to be created. In addition,

 applications see the effect of parameterization only if the majority of database calls have an

extremely short duration.

 So long as the majority of your database calls have a very short duration and the query

plan generated do not change depending upon the parameters passed, you could see a

 performance boost by forcing parameterization.

 52 CHAPTER 2 Database Confi guration and Maintenance

Collation Sequences

SQL Server has the capability to store character data that spans every possible written language.

However, not every language follows the same rules for sorting or data comparisons. SQL Server

allows you to defi ne the rules for comparison, sorting, case sensitivity, and accent sensitivity

through the specifi cation of a collation sequence.

When you install SQL Server, you specify a default collation sequence that is used for all

databases, tables, and columns. You can override the default collation sequence at each level.

The collation sequence for an instance can be overridden at a database level by specifying

the COLLATE clause in either the CREATE DATABASE or ALTER DATABASE command.

Quick Check

 1. How do you restrict database access to members of the db_owner role and

 terminate all active transactions and connection at the same time?

 2. What backups can be executed for a database in each of the recovery models?

Quick Check Answers

 1. You would execute the following command: ALTER DATABASE <database name>

SET RESTRICTED_USER WITH ROLLBACK IMMEDIATE.

 2. You can create full, differential, and fi le/fi legroup backups in the Simple recovery

model. The Bulk-logged recovery model allows you to execute types of backups,

but you cannot restore a database to a point in time during an interval when a

minimally logged transaction is executing. All types of backups can be executed

in the Full recovery model.

PRACTICE Changing the Database Recovery Model

In this practice, you change the recovery model of the AdventureWorks database to FULL to

ensure that you can recover from a failure to a point in time.

 1. Execute the following code:

ALTER DATABASE AdventureWorks

 SET RECOVERY FULL

GO

 2. Right-click the AdventureWorks database, select Properties, and select the Options tab

to view the recovery model and make sure that it is full.

Quick Check

1. How do you restrict database access to members of the db_owner role and

 terminate all active transactions and connection at the same time?

2. What backups can be executed for a database in each of the recovery models?

Quick Check Answers

1. You would execute the following command: ALTER DATABASE <database name>

SET RESTRICTED_USER WITH ROLLBACK IMMEDIATE.

2. You can create full, differential, and fi le/fi legroup backups in the Simple recovery

model. The Bulk-logged recovery model allows you to execute types of backups,

but you cannot restore a database to a point in time during an interval when a

minimally logged transaction is executing. All types of backups can be executed

in the Full recovery model.

Q

 Lesson 2: Confi guring Database Options CHAPTER 2 53

Lesson Summary
 You can set the recovery model for a database to Full, Bulk-logged, or Simple.

 You can back up transaction logs for a database in the Full or Bulk-logged recovery

model.

 The AUTO_SHRINK option shrinks a database fi le when there is more than 25 percent

of free space in the fi le.

 You can track and log damaged pages by enabling the PAGE_VERIFY CHECKSUM option.

Lesson Review
The following question is intended to reinforce key information presented in Lesson 2,

“ Confi guring Database Options.” The question is also available on the companion CD if you

prefer to review it in electronic form.

NOTE ANSWERS

Answers to this question and an explanation of why each answer choice is correct or

 incorrect is located in the “Answers” section at the end of the book.

 1. You are the database administrator at Blue Yonder Airlines and are primarily

 responsible for the Reservations database, which runs on a server running SQL Server

2008. In addition to customers booking fl ights through the company’s Web site, fl ights

can be booked with several partners. Once an hour, the Reservations database receives

multiple fi les from partners, which are then loaded into the database using the Bulk

Copy Program (BCP) utility. You need to ensure that you can recover the database

to any point in time while also maximizing the performance of import routines. How

would you confi gure the database to meet business requirements?

 A. Enable AUTO_SHRINK

 B. Set PARAMETERIZATION FORCED on the database

 C. Confi gure the database in the Bulk-logged recovery model

D. Confi gure the database in the Full recovery model

NOTE ANSWERSE

Answers to this question and an explanation of why each answer choice is correct or

 incorrect is located in the “Answers” section at the end of the book.

 54 CHAPTER 2 Database Confi guration and Maintenance

Lesson 3: Maintaining Database Integrity

In a perfect world, everything that you save to disk storage would always write correctly, read

correctly, and never have any problems. Unfortunately, your SQL Server databases live in an

imperfect world where things do go wrong. Although this occurs very rarely, data within your

database can become corrupted if there is a failure in the disk storage system as SQL Server is

writing to a page. Data pages are 8 kilobytes (KB) in size, but SQL Server divides a page into

16 blocks of 512 bytes apiece when performing write operations. If SQL Server begins writing

blocks on a page and the disk system fails in the middle of the write process, only a portion

of the page is written successfully, producing a problem called a torn page. In this lesson, you

learn how to detect and correct corruption errors in your database.

After this lesson, you will be able to :

 Check a database for integrity

 Use DMVs to diagnose corruption issues

Estimated lesson time: 20 minutes

Database Integrity Checks

As you learned in Lesson 2, databases have an option called PAGE_VERIFY. The page

 verifi cation can be set to either TORN_PAGE_DETECTION or CHECKSUM. The PAGE_VERIFY

TORN_PAGE_DETECTION option exists for backwards compatibility and should not be used.

When the PAGE_VERIFY CHECKSUM option is enabled, SQL Server calculates a checksum for

the page prior to the write. Each time a page is read off disk, a checksum is recalculated and

compared to the checksum written to the page. If the checksums do not match, the page has

been corrupted.

When SQL Server encounters a corrupt page, an error is thrown, the command attempting

to access the corrupt page is aborted, and an entry is written into the suspect_pages table in

the msdb database.

BEST PRACTICES PAGE VERIFICATION

You should enable the PAGE_VERIFY CHECKSUM option on every production database.

Although page verifi cation can detect and log corrupted pages, the page must be read

off disk to trigger the verifi cation check. Data is normally read off disk when users and

 applications access data, but instead of having a user receive an error message, it is much

better for you to proactively fi nd corruption and fi x the problem by using a backup before

the user has a process aborted.

After this lesson, you will be able to:

Check a database for integrity

Use DMVs to diagnose corruption issues

Estimated lesson time: 20 minutes

BEST PRACTICES PAGE VERIFICATIONS

You should enable the PAGE_VERIFY CHECKSUM option on every production database.M

 Lesson 3: Maintaining Database Integrity CHAPTER 2 55

You can force SQL Server to read every page from disk and check the integrity by executing

the DBCC CHECKDB command. The generic syntax of DBCC CHECKDB is:

DBCC CHECKDB [('database_name' | database_id | 0

 [, NOINDEX | { REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST

 | REPAIR_REBUILD }])]

 [WITH {[ALL_ERRORMSGS] [, [NO_INFOMSGS]] [, [TABLOCK]]

 [, [ESTIMATEONLY]] [, [PHYSICAL_ONLY]] | [, [DATA_PURITY]] }]

When DBCC CHECKDB is executed, SQL Server performs all the following actions:

 Checks page allocation within the database

 Checks the structural integrity of all tables and indexed views

 Calculates a checksum for every data and index page to compare against the stored

checksum

 Validates the contents of every indexed view

 Checks the database catalog

 Validates Service Broker data within the database

To accomplish these checks, DBCC CHECKDB executes the following commands:

 DBCC CHECKALLOC, to check the page allocation of the database

 DBCC CHECKCATALOG, to check the database catalog

 DBCC CHECKTABLE, for each table and view in the database to check the structural

integrity

Any errors encountered are output so that you can fi x the problems. If an integrity error is

found in an index, you should drop and re-create the index. If an integrity error is found in a

table, you need to use your most recent backups to repair the damaged pages.

NOTE DATABASE MIRRORING

If the database is participating in Database Mirroring, SQL Server attempts to retrieve a

copy of the page from the mirror. If the page can be retrieved from the mirror and has

the correct page contents, the page is replaced automatically on the principal without

 requiring any intervention. When SQL Server replaces a corrupt page from the mirror, an

entry is written into the sys.dm_db_mirroring_auto_page_repair view.

Quick Check

 1. Which option should be enabled for all production databases?

 2. What checks does DBCC CHECKDB perform?

NOTE DATABASE MIRRORINGE

If the database is participating in Database Mirroring, SQL Server attempts to retrieve a

copy of the page from the mirror. If the page can be retrieved from the mirror and has

the correct page contents, the page is replaced automatically on the principal without

 requiring any intervention. When SQL Server replaces a corrupt page from the mirror, an

entry is written into the sys.dm_db_mirroring_auto_page_repair view. r

Quick Check

1. Which option should be enabled for all production databases?

2. What checks does DBCC CHECKDB perform?

Q

 56 CHAPTER 2 Database Confi guration and Maintenance

Quick Check Answers

 1. You should set the PAGE_VERIFY CHECKSUM option for all production databases.

 2. DBCC CHECKDB checks the logical and physical integrity of every table, index,

and indexed view within the database, along with the contents of every indexed

view, page allocations, Service Broker data, and database catalog.

 PRACTICE Checking Database Integrity

In this practice, you check the integrity of the AdventureWorks database.

 1. Execute the following code:

DBCC CHECKDB ('AdventureWorks') WITH NO_INFOMSGS, ALL_ERRORMSGS

GO

 2. Review the results.

Lesson Summary
 The PAGE_VERIFY CHECKSUM option should be enabled for every production database

to detect any structural integrity errors.

 When a corrupt page is encountered, the page is logged to the suspect_pages table in

the msdb database. If a database is participating in a Database Mirroring session, SQL

Server automatically retrieves a copy of the page from the mirror, replaces the page on

the principal, and logs an entry in the sys.dm_db_mirroring_auto_page_repair view.

 DBCC CHECKDB is used to check the logical and physical consistency of a database.

Lesson Review
The following question is intended to reinforce key information presented in Lesson 3,

“ Maintaining Database Integrity.” The question is also available on the companion CD if you

prefer to review it in electronic form.

NOTE ANSWERS

Answers to this question and an explanation of why each answer choice is correct or

 incorrect is located in the “Answers” section at the end of the book.

 1. Which commands are executed when you run the DBCC CHECKDB command? (Check

all that apply.)

A. DBCC CHECKTABLE

B. DBCC CHECKIDENT

C. DBCC CHECKCATALOG

D. DBCC FREEPROCCACHE

Quick Check Answers

1. You should set the PAGE_VERIFY CHECKSUM option for all production databases.M

2. DBCC CHECKDB checks the logical and physical integrity of every table, index,

and indexed view within the database, along with the contents of every indexed

view, page allocations, Service Broker data, and database catalog.

NOTE ANSWERSE

Answers to this question and an explanation of why each answer choice is correct or

 incorrect is located in the “Answers” section at the end of the book.

 Chapter Review CHAPTER 2 57

Chapter Review

 To practice and reinforce the skills you learned in this chapter further, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenario. This scenario sets up a real-world situation involving the

topics in this chapter and asks you to create a solution.

 Complete the suggested practices.

 Take a practice test.

Chapter Summary
 Databases can be confi gured with the Full, Bulk-logged, or Simple recovery model.

 The recovery model of the database determines the backups that can be created, as

well as limitations on the recovery options that can be performed.

 You can set a collation sequence for a database that overrides the collation sequence

defi ned for the instance.

Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

 Corrupt page

 Filegroup

 Recovery model

Case Scenario
 In the following case scenario, you apply what you’ve learned in this chapter. You can fi nd

answers to these questions in the “Answers” section at the end of this book.

 Case Scenario: Confi guring Databases for Coho Vineyard

BACKGROUND

Company Overview

 Coho Vineyard was founded in 1947 as a local, family-run winery. Due to the award-winning

wines it has produced over the last several decades, Coho Vineyards has experienced

 signifi cant growth. To continue expanding, several existing wineries were acquired over the

years. Today, the company owns 16 wineries; 9 wineries are in Washington, Oregon, and

California, and the remaining 7 wineries are located in Wisconsin and Michigan. The wineries

 58 CHAPTER 2 Database Confi guration and Maintenance

employ 532 people, 162 of whom work in the central offi ce that houses servers critical to the

business. The company has 122 salespeople who travel around the world and need access to

up-to-date inventory availability.

Planned Changes

 Until now, each of the 16 wineries owned by Coho Vineyard has run a separate Web site locally

on the premises. Coho Vineyard wants to consolidate the Web presence of these wineries so

that Web visitors can purchase products from all 16 wineries from a single online store. All data

associated with this Web site be stored in databases in the central offi ce.

 When the data is consolidated at the central offi ce, merge replication will be used to

deliver data to the salespeople as well as to allow them to enter orders. To meet the needs of

the salespeople until the consolidation project is completed, inventory data at each winery is

sent to the central offi ce at the end of each day. Merge replication has been implemented to

allow salespeople to maintain local copies of customer, inventory, and order data.

EXISTING DATA ENVIRONMENT

Databases

 Each winery presently maintains its own database to store all business information. At the

end of each month, this information is brought to the central offi ce and transferred into the

databases shown in Table 2-2.

 TABLE 2-2 Coho Vineyard Databases

 DATABASE SIZE

 Customer 180 megabytes (MB)

 Accounting 500 MB

 HR 100 MB

 Inventory 250 MB

 Promotions 80 MB

 After the database consolidation project is complete, a new database named Order will

serve as a data store to the new Web store. As part of their daily work, employees also will

connect periodically to the Order database using a new in-house Web application.

 The HR database contains sensitive data and is protected using Transparent Data

 Encryption (TDE). In addition, data in the Salary table is encrypted using a certifi cate.

Database Servers

 A single server named DB1 contains all the databases at the central offi ce. DB1 is running SQL

Server 2008 Enterprise on Windows Server 2003 Enterprise.

 Suggested Practices CHAPTER 2 59

Business Requirements

 You need to design an archiving solution for the Customer and Order databases. Your archival

strategy should allow the Customer data to be saved for six years.

 To prepare the Order database for archiving procedures, you create a partitioned table

named Order.Sales. Order.Sales includes two partitions. Partition 1 includes sales activity

for the current month. Partition 2 is used to store sales activity for the previous month.

Orders placed before the previous month should be moved to another partitioned table

named Order.Archive. Partition 1 of Order.Archive includes all archived data. Partition 2

remains empty.

 A process needs to be created to load the inventory data from each of the 16 wineries by

4 A.M. daily.

 Four large customers submit orders using Coho Vineyards Extensible Markup Language

(XML) schema for Electronic Data Interchange (EDI) transactions. The EDI fi les arrive by 5 P.M.

and need to be parsed and loaded into the Customer, Accounting, and Inventory databases,

which each contain tables relevant to placing an order. The EDI import routine is currently a

single-threaded C++ application that takes between three and six hours to process the fi les.

You need to fi nish the EDI process by 5:30 P.M. to meet your Service Level Agreement (SLA)

with the customers. After the consolidation project has fi nished, the EDI routine loads all data

into the new Order database.

 You need to back up all databases at all locations. You can lose a maximum of fi ve minutes

of data under a worst-case scenario. The Customer, Account, Inventory, Promotions, and Order

databases can be off-line for a maximum of 20 minutes in the event of a disaster. Data older

than six months in the Customer and Order databases can be off-line for up to 12 hours in the

event of a disaster.

 Answer the following questions.

 1. How should you confi gure the databases for maximum performance?

 2. How should the databases be confi gured to meet recovery obligations?

Suggested Practices

 To help you master the exam objectives presented in this chapter, complete the following

tasks.

 Confi guring Databases
 Practice 1 Create a database which can store FILESTREAM data.

 Practice 2 Change the recovery model and observe the effects on backup and

 restore options.

 60 CHAPTER 2 Database Confi guration and Maintenance

 Practice 3 Change the database state to READ_ONLY and observe the effect on the

transaction log fi le.

 Practice 4 Create multiple connections to a database, change the access to RESTRICTED_

USER, and specify the ROLLBACK IMMEDIATE option. Observe the effects.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just one exam objective, or you can test yourself on all the 70-432 certifi cation

exam content. You can set up the test so that it closely simulates the experience of taking

a certifi cation exam, or you can set it up in study mode so that you can look at the correct

answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests,” in the Introduction to this book.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests,” in the Introduction to this book.

	Cover
	Contents
	Chapter 2: Database Configuration and Maintenance
	Before You Begin
	Lesson 1: Configuring Files and Filegroups
	Files and Filegroups
	Transaction Logs
	FILESTREAM data
	tempdb Database
	Lesson Summary
	Lesson Review

	Lesson 2: Configuring Database Options
	Database Options
	Recovery Options
	Auto Options
	Change Tracking
	Access
	Parameterization

	Collation Sequences
	Lesson Summary
	Lesson Review

	Lesson 3: Maintaining Database Integrity
	Database Integrity Checks
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario

	Suggested Practices
	Configuring Databases

	Take a Practice Test

