
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337024
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337024
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337024
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337024
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337024/Free-Sample-Chapter

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Rogers Cadenhead

24in

Hours

SamsTeachYourself

Java™

Seventh Edition

Sams Teach Yourself Java™ in 24 Hours, Seventh Edition

Copyright © 2014 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

ISBN-13: 978-0-672-33702-4
ISBN-10: 0-672-33702-9

Library of Congress Control Number: 2014936457

Printed in the United States of America

Second Printing: December 2014

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Acquisitions Editor

Mark Taber

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Copy Editor

Barbara Hacha

Indexer

WordWise Publishing

Services

Proofreader

Chuck Hutchinson

Technical Editor

Boris Minkin

Editorial Assistant

Vanessa Evans

Cover Designer

Mark Shirar

Compositor

Trina Wurst

Table of Contents
Introduction 1

PART I: Getting Started
HOUR 1: Becoming a Programmer

Choosing a Language . 4
Telling the Computer What to Do 6
How Programs Work . 8
When Programs Don’t Work . 9
Choosing a Java Programming Tool 9
Installing a Java Development Tool 10

HOUR 2: Writing Your First Program

What You Need to Write Programs 15
Creating the Saluton Program . 16
Beginning the Program . 16
Storing Information in a Variable 20
Saving the Finished Product . 21
Compiling the Program into a Class File 22
Fixing Errors . 23
Running a Java Program . 24

HOUR 3: Vacationing in Java

First Stop: Oracle . 29
Going to School with Java . 32
Lunch in JavaWorld . 34
Watching the Skies at NASA. 36
Getting Down to Business . 37
Stopping by SourceForge for Directions 39
Running Java on Your Phone . 41

HOUR 4: Understanding How Java Programs Work

Creating an Application . 47
Sending Arguments to Applications 49
The Java Class Library . 51

PART II: Learning the Basics of
Programming

HOUR 5: Storing and Changing Information in a
Program

Statements and Expressions . 59
Assigning Variable Types . 60
Naming Your Variables . 64
Storing Information in Variables 65
All About Operators . 66
Using Expressions . 70

HOUR 6: Using Strings to Communicate

Storing Text in Strings . 77
Displaying Strings in Programs . 78
Using Special Characters in Strings 79
Pasting Strings Together . 80
Using Other Variables with Strings 81
Advanced String Handling . 82
Presenting Credits . 84

HOUR 7: Using Conditional Tests to Make
Decisions

if Statements . 91
if-else Statements . 95
switch Statements . 96
The Ternary Operator . 98
Watching the Clock . 99

HOUR 8: Repeating an Action with Loops

for Loops . 107
while Loops . 110
do-while Loops . 111
Exiting a Loop . 112
Naming a Loop . 113
Testing Your Computer Speed 115

PART III: Working with Information in
New Ways

HOUR 9: Storing Information with Arrays

Creating Arrays . 122
Using Arrays . 123
Multidimensional Arrays . 125
Sorting an Array . 126
Counting Characters in Strings. 128

HOUR 10: Creating Your First Object

How Object-Oriented Programming Works 135
Objects in Action . 136
What Objects Are . 138
Understanding Inheritance . 139
Building an Inheritance Hierarchy 140
Converting Objects and Simple Variables 141
Creating an Object . 146

HOUR 11: Describing What Your Object Is Like

Creating Variables . 153
Creating Class Variables . 156
Creating Behavior with Methods 157
Putting One Class Inside Another 162

Using the this Keyword . 164
Using Class Methods and Variables 165

HOUR 12: Making the Most of Existing Objects

The Power of Inheritance . 173
Establishing Inheritance . 175
Working with Existing Objects . 177
Storing Objects of the Same Class in Array
Lists . 178
Creating a Subclass . 182

PART IV: Programming a Graphical User
Interface

HOUR 13: Building a Simple User Interface

Swing and the Abstract Windowing Toolkit 189
Using Components . 190

HOUR 14: Laying Out a User Interface

Using Layout Managers . 211
Laying Out an Application . 217

HOUR 15: Responding to User Input

Getting Your Programs to Listen 227
Setting Up Components to Be Heard 228
Handling User Events . 229
Completing a Graphical Application 233

HOUR 16: Building a Complex User Interface

Sliders . 247
Change Listeners . 249
Using Image Icons and Toolbars 252
Tables . 256

PART V: Moving into Advanced Topics
HOUR 17: Storing Objects in Data Structures

Array Lists . 263
Hash Maps . 269

HOUR 18: Handling Errors in a Program

Exceptions . 277
Throwing Exceptions . 284
Throwing and Catching Exceptions 288

HOUR 19: Creating a Threaded Program

Threads . 295
Working with Threads . 301
The Constructor . 302
Catching Errors as You Set Up URLs 303
Starting the Thread . 304

Handling Mouse Clicks . 305
Displaying Revolving Links . 306

HOUR 20: Using Inner Classes and Closures

Inner Classes . 313
Closures . 320

PART VI: Writing Internet Applications
HOUR 21: Reading and Writing Files

Streams . 329
Writing Data to a Stream . 336
Reading and Writing Configuration Properties 339

HOUR 22: Creating Web Services with JAX-WS

Defining a Service Endpoint Interface 345
Creating a Service Implementation Bean 348
Publishing the Web Service . 349
Using Web Service Definition Language Files . 351
Creating a Web Service Client . 353

HOUR 23: Creating Java2D Graphics

Using the Font Class . 359
Using the Color Class . 360
Creating Custom Colors . 361
Drawing Lines and Shapes . 361
Baking a Pie Graph . 365

HOUR 24: Writing Android Apps

Introduction to Android. 375
Creating an Android App . 377
Running the App. 385
Designing a Real App . 388

Appendixes
APPENDIX A: Using the NetBeans Integrated

Development Environment

APPENDIX B: Where to Go from Here: Java
Resources

APPENDIX C: This Book’s Website

APPENDIX D: Setting Up an Android
Development Environment

Index 427

v

About the Author
Rogers Cadenhead is a writer, computer programmer, and web developer who has written more
than 20 books on Internet-related topics, including Sams Teach Yourself Java in 21 Days. He
maintains the Drudge Retort and other websites that receive more than 20 million visits a year.
This book’s official website is at www.java24hours.com.

Dedication
I began programming as a 13-year-old on a Timex Sinclair 1000, a computer with a 3.25 MHz
processor and 2KB of memory that used a TV as a monitor. I’d like to dedicate this book to the
person who bought that computer and never complained when I immediately stole it from him—my
dad, Roger Cadenhead, Sr. Thanks, Dad! That led me to this.

Acknowledgments
To the folks at Sams and Pearson—especially Mark Taber, Tonya Simpson, Seth Kerney, Barbara
Hacha, and Boris Minkin. No author can produce a book like this on his own. Their excellent work
will give me plenty to take credit for later.

To my wife, Mary, and my sons, Max, Eli, and Sam.

http://www.java24hours.com

Sams Teach Yourself Java in 24 Hoursvi

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d like to
see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like
about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and
email address. We will carefully review your comments and share them with the author and editors
who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Reader Feedback
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

As the author of computer books, I spend a lot of time lurking in the computer section
of bookstores, observing the behavior of readers while I’m pretending to read the latest
issue of In Touch Weekly magazine.

Because of my research, I’ve learned that if you have picked up this book and turned
to the introduction, I only have 13 more seconds before you put it down and head
to the coffee bar for a double-tall-decaf-skim-with-two-shots-of-vanilla-hold-the-whip
latte.

So I’ll keep this brief: Computer programming with Java is easier than it looks. I’m
not supposed to tell you that because thousands of programmers have used their Java
skills to get high-paying jobs in software development, web application programming,
and mobile app creation. The last thing any programmer wants is for the boss to know
that anyone with persistence and a little free time can learn this language, the most
popular programming language on the planet. By working your way through each of
the one-hour tutorials in Sams Teach Yourself Java in 24 Hours, you’ll be able to learn
Java programming quickly.

Anyone can learn how to write computer programs—even if you can’t program a DVR.
Java is one of the best programming languages to learn because it’s a useful, powerful,
modern technology that’s embraced by programmers around the world.

This book is aimed at nonprogrammers, new programmers who hated learning the
subject, and experienced programmers who want to get up to speed swiftly with Java.
It uses Java 8, the brand-new version of the language.

Java is an enormously popular programming language because of the things it makes
possible. You can create programs that feature a graphical user interface, design
software that makes the most of the Internet, connect to web services, create an app
that runs on an Android phone or tablet, and more.

This book teaches Java programming from the ground up. It introduces the concepts
in English instead of jargon with step-by-step examples of working programs you will
create. Spend 24 hours with this book and you’ll be writing your own Java programs,
confident in your ability to use the language and learn more about it. You also will
have skills that are becoming increasingly important—such as network computing,
graphical user interface design, and object-oriented programming.

2

These terms might not mean much to you now. In fact, they’re probably the kind of
thing that makes programming seem intimidating and difficult. However, if you can
use a computer to create a photo album on Facebook, pay your taxes, or work an Excel
spreadsheet, you can learn to write computer programs by reading Sams Teach Yourself
Java in 24 Hours.

NOTE

At this point, if you would rather have coffee than Java, please reshelve this book with the front
cover facing outward on an endcap near a lot of the store’s foot traffic.

As you learned during Hour 1, “Becoming a Programmer,” a computer
program is a set of instructions that tell a computer what to do. These
instructions are given to a computer using a programming language.

During this hour, you create your first Java program by entering it
into a text editor. When that’s done, you save the program, compile it,
and test it out. Then you break it on purpose and fix it again, just to
show off.

What You Need to Write Programs
As explained in Hour 1, to create Java programs, you must have a
programming tool that supports the Java Development Kit (JDK) such
as the NetBeans integrated development environment (IDE). You need
a tool that can compile and run Java programs and a text editor to
write those programs.

With most programming languages, computer programs are written
by entering text into a text editor (also called a source code editor).
Some programming languages come with their own editor. NetBeans
includes its own editor for writing Java programs.

Java programs are simple text files without any special formatting,
such as centered text or boldface text. The NetBeans source code
editor functions like a simple text editor with some extremely useful
enhancements for programmers. Text turns different colors as you type
to identify different elements of the language. NetBeans also indents
lines properly and provides helpful programming documentation
inside the editor.

HOUR 2
Writing Your First Program

THIS HOUR’S TO-DO LIST:

 ▶ Type a Java program into a
text editor.

 ▶ Organize a program with
bracket marks.

 ▶ Store information in a
variable.

 ▶ Display the information
stored in a variable.

 ▶ Save, compile, and run a
program.

16 HOUR 2: Writing Your First Program

Because Java programs are text files, you can open and edit them with
any text editor. You could write a Java program with NetBeans, open
it in Windows Notepad and make changes, and open it again later in
NetBeans without any problems.

Creating the Saluton Program
The first Java program that you create will display a traditional
greeting from the world of computer science: “Saluton mondo!”

To prepare for the first programming project in NetBeans, if you
haven’t already done so, create a new project called Java24 by
following these steps:

 1. Choose the menu command File, New Project. The New Project
dialog opens.

 2. Choose the project category Java and the project type Java
Application and then click Next.

 3. Enter Java24 as the project’s name. (If you created a project with
this name previously, you see the error message “Project folder
already exists and is not empty.”)

 4. Deselect the Create Main Class check box.

 5. Click Finish.

The Java24 project is created in its own folder. You can use this project
for the Java programs you write as you progress through this book.

Beginning the Program
NetBeans groups related programs together into a project. If you don’t
have the Java24 project open, here’s how to retrieve it:

 1. Choose File, Open Project. A file dialog appears.

 2. Find and select the NetBeansProjects folder (if necessary).

 3. Choose Java24 and click Open Project.

The Java24 project appears in the Projects pane next to a coffee cup
icon and a + sign that can be expanded to see the files and folders that
the project contains.

Beginning the Program 17

FIGURE 2.1
The New File Wizard.

To add a new Java program to the currently open project, choose File,
New File. The New File Wizard opens, as shown in Figure 2.1.

The Categories pane lists the different kinds of Java programs you
can create. Click the Java folder in this pane to see the file types that
belong to this category. For this first project, choose the Empty Java File
type and click Next.

A New Empty Java File dialog opens. Follow these steps to begin
writing the program:

 1. In the Class Name field, enter Saluton.

 2. In the Package field, enter com.java24hours.

 3. Click Finish.

So you can begin working right away on your program, an empty
file named Saluton.java opens in the source code editor. Using the
editor, begin your Java programming career by entering each line from
Listing 2.1. These statements are called the program’s source code.

CAUTION

Don’t enter the line number and
colon at the beginning of each
line—these are used in this
book to reference specific line
numbers.

18 HOUR 2: Writing Your First Program

LISTING 2.1 The Saluton Program
1: package com.java24hours;

2:

3: class Saluton {

4: public static void main(String[] arguments) {

5: // My first Java program goes here

6: }

7: }

Make sure to capitalize everything exactly as shown, and use your
spacebar or Tab key to insert the blank spaces in front of Lines 4–6.
When you’re done, choose File, Save to save the file.

At this point, Saluton.java contains the bare-bones form of a Java
program. You will create many programs that start exactly like this
one, except for the word Saluton on Line 3. This word represents the
name of your program and changes with each program you write. Line
5 should make sense to you, because it’s a sentence in actual English.
The rest is probably new to you.

The class Statement
The first line of the program is the following:

package com.java24hours;

A package is a way to group Java programs together. This line tells the
computer to make com.java24hours the package name of the program.

After a blank line, the third line is this:

class Saluton {

Translated into English, it means, “Computer, give my Java program
the name Saluton.”

As you might recall from Hour 1, each instruction you give a computer
is called a statement. The class statement is the way you give your
computer program a name. It’s also used to determine other things
about the program, as you will see later. The significance of the term
class is that Java programs also are called classes.

In this example, the program name Saluton matches the document’s
filename, Saluton.java. A Java program must have a name that
matches the first part of its filename and should be capitalized the
same way.

Beginning the Program 19

If the program name doesn’t match the filename, you get an error
when you try to compile some Java programs, depending on how the
class statement is being used to configure the program.

What the main Statement Does
The next line of the program is the following:

public static void main(String[] arguments) {

This line tells the computer, “The main part of the program begins
here.” Java programs are organized into different sections, so there
needs to be a way to identify the part of a program that is executed
first when the program is run.

The main statement is the entry point to most Java programs. The
exceptions are applets, programs that are run on a web page by a web
browser; servlets, programs run by a web server; and apps, programs
run by a mobile device.

Most programs you write during upcoming hours use main as their
starting point. That’s because you run them directly on your computer.
Applets, apps, and servlets are run indirectly by another program or
device.

To differentiate them from these other types, the programs that you
run directly are called applications.

Those Squiggly Bracket Marks
In the Saluton program, Lines 3, 4, 6, and 7 contain a squiggly
bracket mark of some kind—either a { or a }. These brackets are a way
to group lines of your program (in the same way that parentheses are
used in a sentence to group words). Everything between the opening
bracket { and the closing bracket } is part of the same group.

These groupings are called blocks. In Listing 2.1, the opening bracket
on Line 3 is associated with the closing bracket on Line 7, which
makes your entire program a block. You use brackets in this way to
show the beginning and end of a program.

Blocks can be located inside other blocks (just as parentheses are used
in this sentence (and a second set is used here)). The Saluton program
has brackets on Line 4 and Line 6 that establish another block.

20 HOUR 2: Writing Your First Program

TIP

NetBeans can help you figure
out where a block begins and
ends. Click one of the brackets
in the source code of the
Saluton program. The bracket
you clicked turns yellow along
with its corresponding bracket.
The Java statements enclosed
within the two yellow brackets
are a block. This tip is not that
useful on a short program like
Saluton, but as you write much
longer programs, it helps you
avoid looking like a blockhead.

This block begins with the main statement. The lines inside the main
statement’s block will be run when the program begins.

The following statement is the only thing located inside the block:

// My first Java program goes here

This line is a placeholder. The // at the beginning of the line tells the
computer to ignore this line because it was put in the program solely
for the benefit of humans who are looking at the source code. Lines
that serve this purpose are called comments.

Right now, you have written a complete Java program. It can be
compiled, but if you run it, nothing happens. The reason is that you
haven’t told the computer to do anything yet. The main statement
block contains only a single comment, which is ignored by the
computer. You must add some statements inside the opening and
closing brackets of the main block.

Storing Information in a Variable
In the programs you write, you need a place to store information for a
brief period of time. You can do this by using a variable, a storage place
that can hold information such as integers, floating-point numbers,
true-false values, characters, and lines of text. The information stored in
a variable can change, which is how it gets the name variable.

In the Saluton.java file, replace Line 5 with the following:

String greeting = "Saluton mondo!";

This statement tells the computer to store the text “Saluton mondo!” in
a variable called greeting.

In a Java program, you must tell the computer what type of
information a variable will hold. In this program, greeting is a
string—a line of text that can include letters, numbers, punctuation,
and other characters. Putting String in the statement sets up the
variable to hold string values.

When you enter this statement into the program, a semicolon must
be included at the end of the line. Semicolons end each statement in
a Java program. They’re like the period at the end of a sentence. The
computer uses them to determine when one statement ends and the
next one begins.

Saving the Finished Product 21

Putting only one statement on each line makes a program more
understandable (for us humans).

Displaying the Contents of a Variable
If you run the program at this point, it still seems like nothing
happens. The command to store text in the greeting variable occurs
behind the scenes. To make the computer show that it is doing
something, you can display the contents of that variable.

Insert another blank line in the Saluton program after the String
greeting = "Saluton mondo!" statement. Use that empty space to
enter the following statement:

System.out.println(greeting);

This statement tells the computer to display the value stored in the
greeting variable. The System.out.println statement makes the
computer display information on the system output device—your
monitor.

Now you’re getting somewhere.

Saving the Finished Product
Your program should now resemble Listing 2.2, although you might
have used slightly different spacing in Lines 5–6. Make any corrections
that are needed and save the file (by choosing File, Save).

LISTING 2.2 The Finished Version of the Saluton Program
 1: package com.java24hours;

 2:

 3: class Saluton {

 4: public static void main(String[] arguments) {

 5: String greeting = "Saluton mondo!";

 6: System.out.println(greeting);

 7: }

 8: }

When the computer runs this program, it runs each of the statements
in the main statement block on Lines 5 and 6. Listing 2.3 shows what
the program would look like if it was written in the English language
instead of Java.

22 HOUR 2: Writing Your First Program

LISTING 2.3 A Line-by-Line Breakdown of the Saluton Program
 1: Put this program in the com.java24hours package.

 2:

 3: The Saluton program begins here:

 4: The main part of the program begins here:

 5: Store the text "Saluton mondo!" in a String variable named
➥ greeting

 6: Display the contents of the variable greeting

 7: The main part of the program ends here.

 8: The Saluton program ends here.

Listing 2.4 shows what the program would look like if written in
Klingon, the language of the warrior race from Star Trek.

LISTING 2.4 The Saluton Program in Klingon
 1: This program belongs to the house of com.java2hours!

 2:

 3: Begin the Saluton program here if you know what's good for you!

 4: The main part of the program begins here with honor!

 5: Store the gibberish "Saluton mondo!" in a String variable
➥ called greeting!

 6: Display this gibberish from a tongue inferior to Klingon!

 7: End the main part of the program here to avoid my wrath!

 8: End the Saluton program now and be grateful you were spared!

Compiling the Program into a Class
File
Before you can run a Java program, you must compile it. When you
compile a program, the instructions given to the computer in the
program are converted into a form the computer can better understand.

NetBeans compiles programs automatically as they are saved. If
you typed everything as shown in Listing 2.2, the program compiles
successfully.

A compiled version of the program, a new file called Saluton.class,
is created. All Java programs are compiled into class files, which are
given the .class file extension. A Java program can be made up of
several classes that work together, but in a simple program such as
Saluton only one class is needed.

The compiler turns Java source code into bytecode, a form that can be
run by the Java Virtual Machine (JVM).

Fixing Errors 23

NOTE

The Java compiler speaks up
only when there’s an error to
complain about. If you compile
a program successfully without
any errors, nothing happens in
response. This is anticlimactic.
When I was starting out as a
Java programmer, I was hoping
successful compilation would
be met with a grand flourish of
celebratory horns.

Fixing Errors
As you compose a program in the NetBeans source editor, errors are
flagged with a red alert icon to the left of the editor pane, as shown in
Figure 2.2.

FIGURE 2.2
Spotting errors in the source editor.

The icon appears on the line that triggered the error. You can click this
icon to display an error message that explains the compiler error with
these details:

 . The name of the Java program

 . The type of error

 . The line where the error was found

Here’s an example of an error message you might see when compiling
the Saluton program:

cannot find symbol.

symbol : variable greting

location: class Saluton

The error is the first line of the message: “cannot find symbol .” These
messages often can be confusing to new programmers. When the error
message doesn’t make sense to you, don’t spend much time trying to
figure it out. Instead, take a look at the line where the error occurred
and look for the most obvious causes.

Error Icon

24 HOUR 2: Writing Your First Program

TIP

This book’s official website at
www.java24hours.com includes
source files for all programs
you create. If you can’t find any
typos or other reasons for errors
in the Saluton program but
there are still errors, go to the
book’s website and download
Saluton.java from the Hour
2 page. Try to run that file
instead.

For instance, can you determine what’s wrong with the following
statement?

System.out.println(greting);

The error is a typo in the variable name, which should be greeting
instead of greting. (Add this typo on purpose in NetBeans to see what
happens.)

If you get error messages when creating the Saluton program,
double-check that your program matches Listing 2.2 and correct any
differences you find. Make sure that everything is capitalized correctly
and all punctuation marks such as {, }, and ; are included.

Often, a close look at the line identified by the error message is enough
to reveal the error (or errors) that need to be fixed.

Running a Java Program
To see whether the Saluton program does what you want, run the class
with the Java Virtual Machine, the interpreter that runs all Java code.
In NetBeans, choose the menu command Run, Run File. An Output
pane opens below the source code editor. In this pane, if there are no
errors, the program displays the output, as shown in Figure 2.3.

Output Pane

FIGURE 2.3
Running your first Java program.

http://www.java24hours.com

Summary 25

NOTE
Oracle offers comprehensive
documentation for the Java
language on the Web. You
don’t need it to use this book,
because each topic is discussed
fully as it is introduced, but
this reference comes in handy
when you want to expand your
knowledge and write your own
programs.

The documentation can be
downloaded, but it’s more
convenient to browse as needed
on Oracle’s website. The most
up-to-date Java documentation
is available at http://
download.java.net/jdk8/
docs/api.

If you see the text “Saluton Mondo!” you have just written your first
working Java program! Your computer has just greeted the world—a
tradition in the computer programming field that’s as important to
many of us as caffeine, short-sleeved dress shirts, and Call of Duty.

You might be asking yourself why “Saluton mondo!” is a traditional
greeting. The phrase means “Hello world!” in Esperanto, an
artificial language created by Ludwig Zamenhof in 1887 to facilitate
international communication. It’s only a traditional greeting in the
sense that I’m trying to start that tradition.

Summary
During this hour, you got your first chance to create a Java program.
You learned that to develop a Java program you need to complete
these four basic steps:

 1. Write the program with a text editor or a tool such as NetBeans.

 2. Compile the program into a class file.

 3. Tell the Java Virtual Machine to run the class.

 4. Call your mother.

Along the way, you were introduced to some basic computer
programming concepts such as compilers, interpreters, blocks,
statements, and variables. These will become clearer to you in
successive hours. As long as you got the Saluton program to work
during this hour, you’re ready to proceed.

(The fourth step has nothing to do with Java programming. It’s just
something my mother suggested I put in the book.)

http://download.java.net/jdk8/docs/api
http://download.java.net/jdk8/docs/api
http://download.java.net/jdk8/docs/api

26 HOUR 2: Writing Your First Program26 HOUR 2: Writing Your First Program

Workshop

Q&A
 Q. How important is it to put the right number of blank spaces on a line

in a Java program?

 A. It’s completely unimportant as far as the computer is concerned.
Spacing is strictly for the benefit of people looking at a computer
program—the Java compiler couldn’t care less. You could have written
the Saluton program without using blank spaces or used the Tab key to
indent lines, and it would compile successfully.

 Although the number of spaces in front of lines isn’t important, you
should use consistent spacing and indentation in your Java programs.
Why? Because spacing makes it easier for you to see how a program is
organized and to which programming block a statement belongs.

 The programs you write must be understandable to other programmers,
including yourself when you look at the code weeks or months later
to fix a bug or make an enhancement. Consistency in spacing and
indentation are part of what’s called a programming style. Good
programmers adopt a style and practice it in all their work.

 Q. A Java program has been described as a class and as a group of
classes. Which is it?

 A. Both. The simple Java programs you create during the next few hours
are compiled into a single file with the extension .class . You can run
these with the Java Virtual Machine. Java programs also can be made
up of a set of classes that work together. This topic is fully explored
during Hour 10, “Creating Your First Object.”

 Q. If semicolons are needed at the end of each statement, why does the
comment line // My first Java program goes here not end with a
semicolon?

 A. Comments are completely ignored by the compiler. If you put // on a
line in your program, this tells the Java compiler to ignore everything to
the right of the // on that line. The following example shows a comment
on the same line as a statement:
System.out.println(greeting); // hello, world!

 Q. I couldn’t find any errors in the line where the compiler noted an error.
What can I do?

Workshop 27Workshop 27

 A. The line number displayed with the error message isn’t always the
place where an error needs to be fixed. Examine the statements that
are directly above the error message to see whether you can spot any
typos or other bugs. The error usually is within the same programming
block.

 Q. How can I visit Antarctica?

 A. If you’re not willing to become a scientific researcher or a support
staffer such as a cook, electrician, or doctor, you can become one of
the 10,000 people who visit the frozen continent annually as tourists.

 Flyovers are available from Australia, New Zealand, and South America
and cost around $1,000 per person.

 Several cruise ships visit for a trip lasting from 10 days to three weeks,
the most expensive of which is around $25,000. Some cruises offer a
chance to kayak or hike among penguins, visit icebergs, and even camp
overnight.

 The Polar Cruises website at www.polarcruises.com provides more
information for prospective Antarctica visitors.

 The British Antarctic Survey offers a piece of advice for visitors: “Do not
walk onto glaciers or large snowfields unless properly trained.”

Quiz
Test your knowledge of the material covered in this hour by answering the fol-
lowing questions.

 1. When you compile a Java program, what are you doing?

 A. Saving it to a disk

 B. Converting it into a form the computer can better understand

 C. Adding it to your program collection

 2. What is a variable?

 A. Something that wobbles but doesn’t fall down

 B. Text in a program that the compiler ignores

 C. A place to store information in a program

http://www.polarcruises.com

28 HOUR 2: Writing Your First Program28 HOUR 2: Writing Your First Program

 3. What is the process of fixing errors called?

 A. Defrosting

 B. Debugging

 C. Decomposing

Answers
 1. B. Compiling a program converts a .java file into a .class file or a set

of .class files.

 2. C. Variables are one place to store information; later you learn about
others such as arrays and constants. Weebles wobble but they don’t fall
down, and comments are text in a program that the compiler ignores.

 3. B. Because errors in a computer program are called bugs, fixing those
errors is called debugging. Some programming tools come with a tool
called a debugger that helps you fix errors. NetBeans has one of debest
debuggers.

Activities
If you’d like to explore the topics covered in this hour a little more fully, try the
following activities:

 . You can translate the English phrase “Hello world!” into other languages
using the Google Translator at http://translate.google.com. Write a pro-
gram that enables your computer to greet the world in a language such
as French, Italian, or Portuguese.

 . Go back to the Saluton program and add one or two errors. For exam-
ple, take a semicolon off the end of a line or change the text println
on one line to print1n (with a number 1 instead of the letter L). Save
the program and try to compile it; then compare the error messages you
see to the errors you caused.

To see solutions to these activities, visit the book’s website at
www.java24hours.com.

http://www.java24hours.com
http://translate.google.com

INDEX

; (semicolon), 20, 26, 114
‘ (single quotation marks), 61, 79
[] (square brackets), 122
// (two slash characters), 287
_ (underscore), 64

A
Absolute program, 40
Abstract Windowing Toolkit. See AWT
access control

definition of, 154
public methods, 158
variables, 155

ActionListener interface, 228, 302
actionPerformed() method, 229, 239,

305-306
add() method, 175, 203
addActionListener() method, 228
addChangeListener() method, 249
add(Component) method, 253
adding

emulators, 382
objects, 264

addItemListener() method, 230-232
addition operator (+), 66
addKeyListener() method, 230
addOneToField() method, 238
addSlice() method, 368
Agile Java Development with Spring,

Hibernate and Eclipse, 414
Android

applications
configuring AVDs, 382
creating, 377-381

NUMERICS
2D graphics, 362

arcs, 364-365, 373
circles, 364
ellipses, 364
lines, 362
PiePanel application, 365-366

PiePanel.java source code, 370
PieSlice class, 367-368

rectangles, 363

Symbols
$ (dollar sign), 64
\ (backslash), 79
{} (braces), 19-20, 59, 94, 104
[] (brackets), 122
-- (decrement operator), 67
/ (division operator), 66
“ (double quotation mark), 61
// (double slashes), 20
== (equality operator), 93
= (equal sign), 62, 65
/ (forward slash) character, 330
> (greater than operator), 93
!= (inequality operator), 93
< (less than operator), 92-93
- (minus sign), 66-67
* (multiplication operator), 67
n (newline character), 200
% operator, 67
+= operator, 81
| (pipe) characters, 282
+ (plus sign), 66, 80-81
? (question mark), 98

Debug Configurations, 384
debugging, 399
design, 388-391
interface design, 392-396
manifest files, 391-392
navigating, 379-380
overview of, 375-377
running, 385-387
writing Java code, 396-401

IDEs, 421
phones

configuring, 424-426
running Java on, 41

plug-ins
Eclipse, 376
installing, 423

programming, 421-422
resources, 391

Android Programming Unleashed, 414
Android Virtual Devices. See AVDs
AndroidManifest.xml file, 380, 390
Angry Birds application, 41
annotations, 346-348
anonymous inner classes, 316-320
Apache Project, 52
apostrophes (‘), 61
app_name string resource, 381
applets, 29

definition of, 29, 47
event handling, 227

actionPerformed() method, 229
check boxes, 230
combo boxes, 230
event listeners, 227-228
keyboard events, 232

applets428

Font class, 359-360
inner classes, 313-320
methods, 165-167
NetBeans, 405

creating new projects, 406-408
formatting classes, 408-410
installing, 405
running, 410-411
troubleshooting, 411-412

objects, 177-178
Package Explorer, 380
threads, 301-303
variables, 165-167

Arc2D class, 364-365
arcs, drawing, 364-365, 373
arguments, 57

applications, 49-51
methods, 159

ArrayIndexOutOfBounds
Exception class, 278

arrayoutofbounds errors, 124
arrays

applying, 123-125
characters, 128-130
declaring, 122-123
definition of, 121
initial values, 122
lists, 263-268

looping, 180-182
storing objects, 178-180

multidimensional, 125-126
sorting, 126-127
upper limits, 124
Wheel of Fortune application, 129

ASCII character sets, 131
/assets, 380
assigning variables, 60, 65-66
asterisk (*), 67
attributes, 136-141, 153
autoboxing, 145-146
autodialers, 137
AVDs (Android Virtual

Devices), 382
AWT (Abstract Windowing Toolkit),

189, 216-217

B
backslash (\), 79
backspaces, 79

multithreading, 36
NetBeans

running, 410-411
troubleshooting, 411-412

NumberDivider, 282-284
PageCatalog, 288-291
PieFrame, 371-372
PiePanel, 365-370
PlanetWeight, 71
ReadConsole, 335
Root

compiling, 49
source code, 48

running, 24-25
Saluton, 16-18

classes, 18-19
compiling, 22-23
greeting variable, 21
line-by-line breakdown, 21
main() block, 19
saving, 21
writing, 16-25

saving, 8. See also applets
SquareRootClient, 353-355
SquareRootServer, 348
starting, 16-18
threading, 295-299
Tool, 254-256
troubleshooting, 9, 23
variables

char variables, 61-62
floating-point variables, 61
int statement, 60
integer variables, 61
string variables, 61-62

Virus, 165
class constructor, 160
getSeconds() method, 158
setSeconds() method, 158
showVirusCount(), 161
tauntUser() method, 159

VirusLook source code, 166
Wheel of Fortune, 129
writing, 15-16

applying
annotations, 346-348
arrays, 123-125
Color class, 360
components, 190
expressions, 70-72

real-word examples, 32
Revolve, 301
saving, 8
security, digital signatures, 35
threaded, 301

applications
Android

configuring AVDs, 382
creating, 377-381
Debug Configurations, 384
debugging, 399
design, 388-391
interface design, 392-396
manifest files, 391-392
navigating, 379-380
overview of, 375-377
running, 385-387
writing code, 396-401

Angry Birds, 41
arguments, 49-51, 57
autodialers, 137
BlankFiller.java source code, 50
block statements, 93-95
Clock, 101
colors, 359

RGB values, 361
setting, 361

compiling, 22-23, 49
Configurator.java, 342
Console, 336
constructors, 302-303
creating, 47-48
Crisis, 213
definition of, 47
deploying, 424
design, 5
executing, 8-9
Fonts, 359
formatting, 217, 220-222
Game source code, 94
graphics, 233-242
ID3Reader, 332
KeyView.java, 232
LeaderActivity, 396-400
LottoMadness, 234

applet version, 242
event listeners, 234
LottoEvent.java class, 235, 238
methods, 238-239
source code listing, 240-242

clocks 429

inner, 162-164
anonymous, 316-320
applying, 313-316

Insets, 216-217
JApplet, 173-175
Java libraries, 51-54
JButton, 195-197
JCheckBox, 198-199
JComboBox, 199-200
JFrame, 191
JLabel, 197-198
JPanel, 203
JScrollPane, 201
JSlider, 247
JTextArea, 200
JTextField, 197-198
Line2D, 362
LottoEvent, 235, 238
methods

applying, 165-167
declaring, 161

Modem, 138
NetBeans, 408-410
objects

loops, 180-182
storing, 178-180

PieSlice, 367-368
Point, 182
Point3D

code listing, 183
creating, 183-184
testing, 184

private, 150
R, 397
Random, 55
ReadConsole, 335
Rectangle2D, 363
statements, 18-19, 138
subclasses, 140, 148, 175-184
superclasses, 140
testing, 184
Thread, 295
threaded, 296-300
variables, 156
Virus, 153

clearAllFields() method, 238
clients, creating web services,

353-355
Clock application source code, 101
clocks, 99-102

catch statement, 303, 310
catching

errors, 303
exceptions, 277-278

multiple exceptions,
282-284, 290

PageCatalog sample applica-
tion, 288-291

try-catch blocks, 279-291
try-catch-finally blocks, 284

change listeners, 249-250
ColorSlide sample application, 252
registering objects as, 249

ChangeListener interface, 249
char variables, declaring, 61-62, 77
characters

definition of, 61, 77
special, escape codes, 79-80
strings, counting, 128-130

check boxes
creating, 198-199
event handling, 230

checkAuthor() method, 164
choice lists, event handling, 230
circles, drawing, 364
.class file extension, 26
classes, 136

applets, 175
Arc2D, 364-365
ArrayIndexOutOfBounds

Exception, 278
Color, 361
Console, 336
declaring, 301-302
documentation, 415
Ellipse2D, 364
encapsulation, 158
ErrorCorrectionModem, 139
Exception, 278
files, 148, 330-331
FileInputStream, 336
FileOutputStream, 336
Graphics2D, 362

arcs, 364-365, 373
circles, 364
ellipses, 364
lines, 362
rectangles, 363

hierarchies, 173, 186
inheritance, 139-141, 150,

173-176

BASIC (Beginner’s All Symbolic
Instruction Code), 4, 12

behavior. See also methods
inheritance, 139-141
methods, 157
objects, 136

benchmarks, 115-117
blank spaces in source code, 26
BlankFiller.java application, 50
blocks, 19-20

braces ({}) notation, 20
statements, 59, 93-95

books, Java-related, 413
Boole, George, 63
Boolean variables, 63-64
BorderLayout manager, 214-216
borders, Insets class, 216-217
BoxLayout manager, 215
braces ({}), 19-20, 59, 94, 104
brackets [], 122
break statement, 97, 104, 112
breaking loops, 112
browsers, Java Plug-in, 33
buffered input streams, 334-339
bugs, 9. See also debugging
buttons, creating, 195-196
bytecode, 330
bytes, 330, 343

C
C#, 4
C++, 4-5, 12
Cadenhead, Rogers, 413
calculating percentages, 206
calling web services, 355
cannot resolve symbol (error

message), 23
career opportunities, 417
carriage returns, 79
case

modifying, 83, 87
statements, 96
variable names, 64

casting, 141
definition of, 141
destinations, 141
objects, 143
sources, 141
variables, 142

close() method430

compiled languages, performance, 12
compilers

definition of, 8
javac, 23-24

compiling, 22
applications, 22, 49
Windows, 23

complex for loops, 114-115
components, 190, 247

arranging, 209
buttons, creating, 195-196
change listeners, 249-250

ColorSliders sample
application, 252

registering objects as, 249
check boxes

creating, 198-199
event handling, 230

combo boxes, 199-200, 230
creating, 203-208
disabling, 233
enabling, 233
frames, 190-191

adding components to, 195
creating, 191, 194
sizing, 192

image icons, 252-256
labels, creating, 197-198
panels, 203
scroll panes, 201

adding components to, 202
creating, 201

sliders, 247-248
creating, 248
labels, 248

tables, 256-260
text areas, creating, 200
text fields

creating, 197-198
write protecting, 223

TextField, 197
toolbars, 252-253

creating, 253-255
dockable toolbars, 253
Tool sample application,

254-256
windows, 190-195

computer speed, testing, 115-117
concatenating strings, 80
concatenation operator (+), 80-81
Conder, Shane, 422

NewRoot.java application, 144
Nines application, 109
NumberDivider.java

application, 283
PageCatalog.java application, 290
PieFrame application, 370
PiePanel.java source code, 369-370
PlanetWeight application, 71
Playback.java application, 196
Point3D class, 183
PointTester.java application, 184
PrimeFinder.java application, 298
Root application, 48
Saluton application, 18, 21
SalutonFrame.java application, 193
SpaceRemover.java application, 125
SquareRootClient.java

application, 354
SquareRootServer.java

application, 347
SquareRootServerImpl.java

application, 349
SquareRootServerPublisher.java

application, 350
StringLister.java application, 181
Tableframe.java application, 259
TestModems class, 148
Tool.java application, 254
Variable application, 62
Virus.java application, 165
VirusLab.java application, 166
Web Service Description

Language Contract, 351
Wheel.java application, 129

Color class, 360-361
colors, 359

Color class, 360
Font class, 359-360
RGB values, 361
setting, 361

ColorSliders application, 252
com object, creating, 138-139
combo boxes

creating, 199-200
event handling, 230

commands, 6, 49
comments, 20, 26
comparing strings, 82

equal/not equal, 93
less/greater than, 92-93

close() method, 337
closing streams, 337
closures, 321-326
code

Android applications, 396-401
annotations, formatting, 346-348

code listings
Battlepoint.java application, 267
Benchmark.java application, 116
BlankFiller.java application, 50
CableMode.java class, 147
Calculator.java application, 279
Catalog.java application, 315
Clock application, 99, 101
ColorFrame.java application, 323
ColorSliders.java application, 250
Commodity program, 97
Configurator.java application, 341
ConfigWriter.java, 338
Console application, 336
Console.java application, 335
Credits application, 85
Crisis application, 213
Crisis.java application, 212
Dice.java application, 54
DslModem class, 148
FontMapper.java application, 272
FreeSpaceFrame.java

application, 207
Game program, 94
HomePage.java application, 289
ID3Reader.java application, 333
KeyView.java application, 232
KeyViewer.java application, 231
LeaderActivity.java

application, 399
LinkRotator.java application, 306
LottoEvent.java application, 235
LottoEvent.java class, 235, 238
LottoMadness application, 220,

240-242
LottoMadness.java

application, 218
Modem.java class, 147
NameSorter.java application, 127
NewCalculator.java

application, 281
NewColorFrame.java

application, 324
NewKeyViewer.java application, 319

employment opportunities 431

Development settings, 386
development tools, 4
Dice program, 53
Dice.java, 54
digital signatures, 35
disabling components, 233
displaying. See viewing
displaySpeed() method, 138-139
division operator (/), 66
do-while loops, 111-112
dockable toolbars, 253
docking toolbars, 256
documentation, 25, 415

Java Class Library, 52
Swing, 261

dollar sign ($), 64
double quotation mark (“), 61
double slashes (//), 20
draw() method, 362
drawing

arcs, 364-365, 373
circles, 364
ellipses, 364
lines, 361-362
pie graphs, 365-366

PiePanel.java source code,
370

PieSlice class, 367-368
rectangles, 363
shapes, 361

drawRoundRect() method, 363-364
drawString() method, 157

E
EarthWeb’s Java directory, 416
Eclipse, 9

Android plug-in, 376. See also
Android

installing, 422
projects, creating, 388

editing
NetBeans, 408-410
strings, 381
XML, 382

educational applications, 32
elements, 122
Ellipse2D class, 364
ellipses, drawing, 364
else statements, 95-96
employment opportunities, 417

char, 61-62
long, 63
short, 62
String, 20

Debug Configurations, creating, 384
debugging

Android applications, 390, 399
definition of, 9
OOP applications, 137
phones, 425

declaring
arrays, 122-126
classes, 301-302

class statement, 18-19
subclasses, 175-184

methods, 157
classes, 161
constructors, 160
public methods, 158

variables, 60
Boolean, 63-64
char, 61-62, 71
classes, 156
floating-point, 61
integers, 61
long, 63
short, 62
strings, 61-62, 78

decrement operator (--), 67
decrementing variables, 67-69
default statement, 97
default.properties file, 380
defining

classes, 162-164
services, 345

deleting files, 331
deploying

Android applications, 387
applications, 424

Deployment Target Selection
Mode, 384

design
applications, 389-391
interfaces, 392-396
programming languages, 5

destinations (casting), 141
detecting errors in Android

applications, 390
determining string lengths, 83
development history of Java, 31

conditionals, 91
Clock application source code, 101
if, 92-93, 104

blocks, 93-95
equal/not equal comparisons, 93
less/greater than comparisons,

92-93
if-else, 95-96
switch, 96
ternary operator (?), 98

configuration properties, reading/writ-
ing, 339-342

Configurator.java application, 342
configuring

AVDs (Android Virtual
Devices), 382

Debug Configurations, 384
phones, 424-426
variables, 302

Console application, 336
constants, 66
constructor methods, 159-160,

302-303
containers, 190, 203
continue statement, 113
contracts, WSDL, 351
controlling access, 155. See also

access control
converting

objects to variables, 141-144
variables to objects, 144

counter variables
definition of, 108
initializing, 108

counting character strings, 128-130
createNewFile() method, 331
Creative Commons, 334
credits, viewing, 84-86
Crisis application, 213
currentThread() method, 305
customizing properties, 395

D
Darcey, Lauren, 422
data structures

array lists, 263-268
hash maps, 269-272

data types. See also types
Boolean, 63-64
byte, 62

emulators (Android), configuring432

deleting, 331
File class, 331
file extensions, .class, 26
finding size of, 331
manifest, 391-392
reading streams, 331-334
renaming, 331
writing to streams, 336-337

fill() method, 362
fillRect() method, 361-363
fillRoundRect() method, 363
finding strings within strings, 84
Fisher, Timothy R., 413
flagging errors (NetBeans), 411
float statement, 61
floating-point variables,

declaring, 61
FlowLayout layout manager, 196, 212
folders, 389. See also files
Font class, applying, 359-360
fonts, 272, 359
for loops, 108-110

complex for loops, 114-115
counter variables, 108
empty sections, 115
exiting, 112
syntax, 108-110

formatting
annotations, 346-348
applications, 47-48, 217-222,

377-384
behavior with methods, 157
buttons, 195-196
checkboxes, 198-199
classes

NetBeans, 408-410
variables, 156

Color class, 360
combo boxes, 199
components, 203-208
Font class, 359-360
inner classes, 313-320
interfaces

annotations, 346-348
AWT, 189
Endpoint Interfaces, 345

labels, 197-198
objects, 138, 146-149

autoboxing/unboxing, 145-146
converting, 141-142

event listeners, 227-228
ActionListener interface, 228
LottoMadness application,

234-235, 238
keyboard events, 232

event listeners, 227-228
ActionListener interface, 228
actionPerformed() method, 229
adding, 227
LottoMadness application, 234-238

EventListener interfaces, 227-228
Everlong.mp3 file, 333
Exception class, 278
exceptions, 124, 132

ArrayIndexOutOfBounds
Exception, 278

catching, 277-278
multiple exceptions, 282-284,

290
PageCatalog sample applica-

tion, 288-291
try-catch blocks, 279-291
try-catch-finally blocks, 284

creating, 292
ignoring, 287
NumberFormatException, 281-282
throwing, 278, 284-286

PageCatalog sample
application, 288-291

throw statements, 285
executing applications, 8-9
existing objects, 177-178
exists() method, 331
exiting loops, 112
expressions, 59-60, 70-72. See also

operators
advantages, 71
lambda. See closures
operator precedence, 69-70

extends statement, 147, 175
extensions (file), .class, 26

F
File class, 330-331
FileInputStream class, 336
FileInputStream object, 339
FileOutputStream class, 336
File.pathSeparator, 330
files

checking existence of, 331
creating, 330

emulators (Android), configuring,
382-384

enabling components, 233
encapsulation, 158
endless loops, 118
EndPoint class, 349
Endpoint Interfaces

annotations, 346-348
creating, 345

equal sign (=), 62, 65
equality operator (==), 93
equals() method, 82, 175
equalsIgnoreCase() method, 83
error handling, 277

cannot resolve symbol
message, 23

catching exceptions, 277-278
multiple exceptions,

282-284, 290
PageCatalog sample applica-

tion, 288-291
try-catch blocks, 279-291
try-catch-finally blocks, 284

creating exceptions, 292
ignoring exceptions, 287
memory errors, 292
stack overflows, 292
throwing exceptions, 278,

284-286
PageCatalog sample applica-

tion, 288-291
throw statements, 285

try-catch statements, 303
try...catch statements, 303

ErrorCorrectionModem class, 139
errors. See also error handling

Android applications, 390
arrayoutofbounds, 124
bugs, 9
exceptions, 124, 132
javac error messages, 24
logic errors, 9
NetBeans, 411-412
syntax errors, 9

escape codes, 79-80
evaluating expressions, 70
event handling, 227

actionPerformed() method, 229,
305-306

check boxes, 230
combo boxes, 230

IDEs (integrated development environments) 433

image icons, 252-255
creating, 253
Tool sample application, 254-256

Insets, 216-217
labels, creating, 197-198
layout managers, 211-213

applications, 217-222
BorderLayout, 214-216
BoxLayout, 215
FlowLayout, 212
GridLayout, 213-214

panels, creating, 203
scroll panes, 201

adding components to, 202
creating, 201
sliders, 248

Swing, 189
tables, 256-260
text areas, 200
text fields

creating, 197-198
write-protecting, 223

toolbars, 252-253
creating, 253-255
dockable toolbars, 253
Tool sample application, 254-256

windows, 190-195

H
handling errors. See error handling
Harwani, B.M., 414
hash maps, 269-272
Hemrajani, Anil, 414
hierarchies, Java classes, 173
history of Java, 31
HomePage.java listing, 288
horizontal sliders, 248
HttpComponents, 52
hyphen (-), 66

I
IceRocket, 416
icons, 252-255

creating, 253
Tool sample application, 254-256

ID3Reader application, 332
IDEs (integrated development environ-

ments), 9, 376, 405, 421

ellipses, drawing, 364
fonts, 359
icons, 252-255

creating, 253
Tool sample application, 254-256

lines, drawing, 362
PiePanel application, 365-366

PiePanel.java source code, 370
PieSlice class, 367-368

rectangles, drawing, 363
Graphics2D class, 362

arcs, 364-365, 373
circles, 364
ellipses, 364
lines, 362
rectangles, 363

graphs
creating, 365-366

PiePanel.java source code, 370
PieSlice class, 367-368

viewing, 372
greater than (>) operator, 93
greeting variable, displaying

contents of, 21
GridLayout manager, 213-214
GridLayout() method, 221
GUIs (graphical user interfaces),

190, 247
AWT, 189
buttons, creating, 195-196
change listeners, 249-250

ColorSliders sample
application, 252

registering objects as, 249
check boxes

creating, 198-199
event handling, 230

combo boxes
creating, 199-200
event handling, 230

enabling/disabling
components, 233

event listeners, 227-228
ActionListener interface, 228
actionPerformed() method, 229
adding, 227

frames, 190
adding components to, 195
creating, 191
sizing, 192

panels, 203
Service Implementation Bean,

348-349
subclasses, 182-184
tables, 256-260
text

areas, 200-202
fields, 197-198

threads, 296-297
variables, 143-144, 153-155
web service clients, 353-355

formfeeds, 79
forward slash (/) character, 330
frames, 190

adding components to, 195
creating, 191
SalutonFrame.java example, 194
sizing, 192

G
Game application source code, 94
Gamelan website, 416
games, running on phones, 41
getActionCommand() method,

229, 239
getId() method, 397
getInsets() method, 217
getKeyChar() method, 231
getKeyCode() method, 231
getKeyText() method, 231
getName() method, 331
getPort() method, 354
getProperty() method, 340
getSeconds() method, 158
getSource() method, 230, 249
getSquareRoot() method, 348, 352
getStateChange() method, 230
getTime() method, 348
getURL() method, 303
getValueIsAdjusting() method, 249
getVirusCount() method, 166
Google, 41. See also Android
Gosling, James, 5, 31, 376, 405
graphics, 362

applications, 233-242
arcs, drawing, 364-365, 373
circles, drawing, 364
color, 359

RGB values, 361
setting, 361

if-else statements434

if-else statements, 95-96
if statements, 92-93, 104

blocks, 93-95
equal/not equal comparisons, 93
less than/greater than compari-

sons, 92-93
ignoring exceptions, 287
ImageIcon() method, 252-253
implementing Service Implementation

Bean, 348-349
incrementing variables, 67-69
indexOf() method, 84
inequality operator (!=), 93
infinite loops, 118
InformIT, 414, 416
inheritance, 139, 150, 173-175

classes, 173-176
constructors, 160
hierarchy, 140-141

init() method, 303
initializing, definition of, 118
inner classes, 162-164

anonymous, 316-320
applying, 313-316

input/output. See I/O
Insets class, 216-217
installing

Android plug-ins, 423
Eclipse, 422
NetBeans, 405
tools, 10

int statement, 61
integers

arrays, creating, 122
variable types, 61

integrated development
environments. See IDEs

IntelliJ IDEA, 9
Intent() method, 398
interfaces. See also GUIs

ActionListener, 228, 302
AWT (Abstract Windowing

Toolkit), 189
buttons, 195-196
ChangeListener, 249
check boxes, 198
combo boxes, 199-200
components, 190, 203-208
defined, 227
design, 392-396

Endpoint Interfaces
annotations, 346-348
creating, 345

EventListener, 227-228
frames, 190-194
ItemListener, 230
KeyListener, 230-232
labels, 197-198
layout managers, 211-213

BorderLayout manager, 214-215
BoxLayout manager, 215
GridLayout manager, 213
separating components, 216

NetBeans, 407
panels, 203
Runnable, 295
Service Implementation Bean,

348-349
tables, 256-260
text areas, 200
text fields, 197-198
windows, 190-194

interpreted languages, 8, 12
interpreters, 33

definition of, 8
Java Plug-in, 33

I/O (input/output), 329
buffered input streams, 334-339
closing, 337
defining, 329-330
reading data from, 331-334
writing data to, 336-337

is statements, 91
ItemListener interface, 230
itemStateChanged() method, 230, 239
iteration, 109. See also loops

J
JApplet class, 173-174

inheritance, 174-175
methods

add(), 175
equals(), 175
overriding, 175
setBackground(), 175
setLayout(), 175

Java
classes, 409

documentation, 415
libraries, 51-54

educational applications, 32-33
history, 31
SourceForge, 39

Java Development Kits. See JDKs
The Java EE 6 Tutorial Basic Concepts,

Fourth Edition, 413
Java Enterprise Edition. See JEE
Java Mobile Edition. See JME
Java Phrasebook, 413
Java Plug-in, 33
Java Standard Edition. See JSE
Java website, 415
javac command, 49
javac compiler, 23-24
JavaWorld, 34-35, 416
javax.xml.ws, 349
JAX-WS library packages, 354
JButton objects, 195-197
JCheckBox class, 198-199
JComboBox class, 199-200
JDKs (Java Development Kits),

10, 353
JEE (Java Enterprise Edition), 406
Jendrock, Eric, 413
JFrame class, 191
JLabel class, 197-198
JME (Java Mobile Edition), 406
job opportunities, 417
Joy, Bill, 31
JPanel class, 203
JScrollPane class, 201
JScrollPane() method, 201
JSE (Java Standard Edition), 406
JSlider class, 247
JSlider() method, 248
JTable component, 260. See also

tables
JTextArea class, 200
JTextField class, 197-198
JToolBar() method, 253
JVMs (Java virtual machines), 33

K
keyboards

events, 230-232
input, monitoring, 320

KeyListener interface, 230-232
KeyView.java application, 232

methods 435

L
Label() method, 197
labels

creating, 197-198
sliders, 248

lambda expressions. See closures
languages

OOP. See OOP
Java. See Java
selecting, 4-5

layout managers, 211-213
applications, 217-222
BorderLayout, 214-216
BoxLayout, 215
FlowLayout, 212
GridLayout, 213-214

LeaderActivity application, 396-400
length

strings, 83
variables, 124, 132

length() method, 83, 331
less than operator (<), 92-93
libraries, Java classes, 51-54
licenses, Creative Commons, 334
Line2D class, 362
lines, drawing, 361-362
linking variables with strings, 81-82
listeners, 227-228

ActionListener interface, 228
actionPerformed() method, 229
adding, 227
change listeners, 249-250

ColorSliders sample
application, 252

registering objects as, 249
LottoMadness application,

234-238
listFiles() method, 331
listings. See code listings
lists

arrays, 263-268
looping, 180-182
storing objects, 178-180

choice lists, 230
load() method, 339
logic errors, 9
Long objects, 270
long variable type, 63

loops
array lists, 180-182
benchmarks, 115-117
definition of, 107
do-while, 111-112
exiting, 112
for, 108-110

complex for loops, 114-115
counter variables, 108
empty sections, 115
syntax, 108-110

infinite loops, 118
naming, 113-114
nesting, 113
while, 110-111

LottoEvent.java class, 235, 238
LottoMadness application, 234

applet version, 242
event listeners, 234
LottoEvent.java class, 235-238
methods

actionPerformed(), 239
addOneToField(), 238
clearAllFields(), 238
getActionCommand(), 239
itemStateChanged(), 239
matchedOne(), 239
numberGone(), 238

source code listing, 240-242
lowercase, modifying strings, 83

M
magazines, JavaWorld, 34-35
main() blocks, Saluton program, 19
main() method, 408
MalformedURLException errors, 287
managers. See layout managers
managing

applications, 93-95
resources, 389-391

manifest files, Android applications,
391-392

maps, hash, 269-272
matchedOne() method, 239
Matz, Kevin, 8
memory errors, 292
messages

errors. See errors
SOAP, 354

methods, 153, 157
actionPerformed(), 229, 239,

305-306
add(), 175, 203
addActionListener(), 228
addChangeListener(), 249
add(Component), 253
addItemListener(), 230
addKeyListener(), 230
addOneToField(), 238
addSlice(), 368
arguments, 159
behavior, creating with, 157
checkAuthor(), 164
classes

applying, 165-167
declaring, 161

clearAllFields(), 238
close(), 337
constructors, 159

arguments, 160
declaring, 160
inheritance, 160

createNewFile(), 331
currentThread(), 305
declaring, 157
definition of, 82
displaySpeed(), 138-139
draw(), 362
drawRoundRect(), 364
drawString(), 157
equals(), 82, 175
equalsIgnoreCase(), 83
exists(), 331
fill(), 362
fillRect(), 361, 363
fillRoundRect(), 363
get(), 270
getActionCommand(), 229, 239
getId(), 397
getInsets(), 217
getKeyChar(), 231
getKeyCode(), 231
getKeyText(), 231
getName(), 331
getPort(), 354
getProperty(), 340
getSeconds(), 158
getSource(), 230, 249
getSquareRoot(), 348, 352

methods436

getStateChange(), 230
getTime(), 348
getURL(), 303
getValueIsAdjusting(), 249
getVirusCount(), 166
GridLayout(), 221
ImageIcon(), 252
indexOf(), 84
init(), 303
Intent(), 398
itemStateChanged(), 230, 239
JScrollPane(), 201
JSlider(), 248
JToolBar(), 253
Label(), 197
length(), 83, 331
listFiles(), 331
load(), 339
LottoMadness(), 221
main() blocks, 19
matchedOne(), 239
nextInt(), 53
numberGone(), 238
overriding, 175-176
pack(), 192
paint(), 176
parseInt(), 144, 169
println(), 72, 78, 157, 408
public, 158
readLine(), 336
renameTo(), 331
return values, 87, 158
run(), 297, 304-305
setBackground(), 175
setContentView(), 397
setDefaultCloseOperation(), 192
setEditable(), 200, 223
setEnabled(), 233
setLayout(), 175, 212
setLayoutManager(), 195
setLookAndFeel(), 194
setProperty(), 340
setSeconds(), 158
setSize(), 192
setText(), 244
setTitle(), 192
setVisible(), 193
shoot(), 269
showVirusCount(), 161
sleep(), 296

sort(), 127
sqrt(), 48
start(), 304
stateChanged(), 249
stop(), 301
substring(), 334
System.out.println(), 409
tauntUser(), 159
TextArea(), 200
toCharArray(), 124
toLowerCase(), 83
toUpperCase(), 83, 87
variables, scope, 161-162
void keyPressed(), 231
void keyReleased(), 231
void keyTyped(), 231
write(), 337

minus sign (-), 66-67
Modem class, 137-138
modifying strings, 83
modulus operator (%), 67
Monitor objects, 137
monitoring input, 320
mouse clicks, handling, 305-306
multidimensional arrays, 125-126
multiplication operator (*), 67
multitasking, 295
multithreading, 36, 295

N
naming

conventions
loops, 113-114
variables, 64, 74

file extensions, .class, 26
resources, 381

NASA, 36
navigating

Android applications, 379-380
programs, 8-9

nesting
classes, 162-164
loops, 113

NetBeans, 9
applying, 405
classes, 408-410
installing, 10, 405
projects, creating, 406-408
running, 410-411
troubleshooting, 411-412

NetBeans Field Guide, 405
NetBeansProjects, 407
New Android Project Wizard, 381
New File Wizard, 17
New Project button, 406
New Project Wizard, 407
new statement, 122, 159
newline characters (n), 79, 200
nextInt() method, 53
NumberDivider application, 282-284
NumberFormatException, 281, 285
numberGone() method, 238
numeric variable types, 62-63

O
Oak language, 31
object-oriented programming. See

OOP
objects

array lists, 263-268
attributes, 136, 153
autoboxing/unboxing, 145-146
behavior, 136
casting, 143
classes, 136
closures, 321-326
converting, 141-144
creating, 138-149
existing, 177-178
hash maps, 269-272
inheritance, 139-141, 173-175
Long, 270
loops, 180-182
Modem, 137
Monitor, 137
PieChart, 136-137
Point, 268
runner, 309
sharing, 178
storing, 178-180
this statement, 164-165
variables

converting, 143-144
declaring, 153-155
private, 155
protected, 155

onCreate() method, 397
online communities, Stack

Overflow, 416

real-world Java projects 437

OOP (object-oriented programming),
136, 190

advantages, 136-138
applications, debugging, 137
encapsulation, 158
inheritance, 139-141, 150,

173-175
objects

casting, 143
creating, 138-139, 146-149

operators
+=, 81
addition (+), 66
concatenation (+), 80-81
decrement (--), 67
division (/), 66
equality (==), 93
greater than (>), 93
inequality (!=), 93
less than (<), 92-93
modulus (%), 67
multiplication (*), 67
precedence, 69-70
subtraction (-), 66
ternary (?), 98

Oracle, 5, 29
Oracle Technology Network for Java

Developers, 414
order of precedence, operators, 69-70
organizing resources, 389-391. See

also managing
output. See I/O
@Override annotation, 347
overriding methods, 175-176

P
pack() method, 192
Package Explorer, applying, 380
packages, 155

Android SDKs, installing, 423
javax.xml.ws package, 349
JAX-WS library, 354

PageCatalog application, 288-291
pageTitle array, 302
paint() method, overriding, 176
panels, creating, 203
parseInt() method, 144, 169
passing arguments to methods, 159
pasting strings, 80-82
percent sign (%), 67

percentages, calculating, 206
performance, interpreted

languages, 12
phones

Android, configuring, 424-426
Java, running on, 41

PHP, 5
pie graphs

creating, 365-370
viewing, 372

PieChart object, 136-137
PieFrame application, 371-372
PiePanel application, 365-370

PiePanel.java source code, 370
PieSlice class, 367-368

PieSlice class, 367-368
pipe (|) characters, 282
PlanetWeight application, 71
platform independence, 33
Playback.java, 196
plug-ins

Android, 376
installing, 423

plus sign (+)
addition operator (+), 66
concatenation operator, 80-81
increment operator (++), 67

Point class, 182, 268
Point3D class

creating, 183-184
testing, 184

postfixing, 67
precedence, operators, 69-70
prefixing, 67
printing strings, special characters,

79-80
println() method, 72, 78, 157, 408
private classes, 150
private variables, 155
procedures, System.out.println(), 72
program listings. See code listings
programmer skills, 4-5
programming. See also code; lan-

guages
Android, 421

configuring phones, 424-426
Eclipse, 422
plug-ins, 423

OOP. See also OOP
advantages of, 136-137
overview of, 135

tools
installing, 10
selecting, 9

programs. See also applications
creating, 47-48
running, 24-25
Saluton, 16-25
starting, 16-18
strings, viewing in, 78
TextDisplayer, 49
troubleshooting, 23
writing, 15-16

Project Location text field, 407
Project Selection dialog box, 384
projects

Android applications, 379-380
creating, 388
NetBeans, 406-408

properties
configuration, reading/writing,

339-342
customizing, 395

Properties object, 340
protected variables, 155
public methods, 158
public statements, 138
publishing web services, 349-350
Python, 4

Q
QName, 353
question mark (?), 98
quotation marks

double (“), 61
escape codes, 79
single (‘), 61

QuoteMedia, 37-38

R
R class, 397
Random class, 55
Read Console application, 335
reading

configuration properties, 339-342
files, 331-334

readLine() method, 336
ReadyBASIC interpreter, 8
real-world Java projects

JavaWorld website, 34-35

recommended reading438

recommended reading, 413
Rectangle2D class, 363
rectangles, drawing, 363
Red, Green Blue (RGB) color

system, 361
referencing objects, this statement,

164-165
registering objects as change

listeners, 249
renameTo() method, 331
renaming files, 331
resources

Android, 391
folders, viewing, 389
Java-related books, 413
job opportunities, 417
managing, 389-391
naming, 381. See also websites
strings, editing, 381

restricting access, 155. See also
access control

return values (methods), 87, 158
Revolve applet, 301
RGB (red, green, blue) color

system, 361
R.java file, 397
Root application

compiling, 49
source code, 48

rounded rectangles, drawing, 363
Ruby, 4
Run, Run Main Project, 51
run() method, 297, 304-305
RuneScape, 30
Runnable interface, 295
runner objects, 309
running

Android applications, 385-387
Java on phones, 41
NetBeans, 406-411
programs, 24-25
threads, 304-305

S
Saluton application, 16-18

classes, 18-19
code code listings, 22
compiling, 22-23
main() block, 19

saving, 21
variables, 21
writing, 16-25

SalutonFrame.java, 194-195
Sams Teach Yourself Java 2 in 21

Days, 413
Sams Teach Yourself Java 2 in 24

Hours website, 419-420
Sams Teach Yourself Java in 24 Hours

website, 415
saving

applications, 8
Saluton program, 21

scope (variables), 161-162
scroll panes, 201-202
SDKs (Software Development

Kits), 421
searching strings, 84
security, 35-36
selecting

languages, 4-5
tools, 9

semicolon (;), 20, 26, 114
sending arguments to applications,

49-51
Service Implementation Bean,

348-349
services

clients, creating, 353-355
defining, 345
publishing, 349-350
SquareRootServer, 345

setBackground() method, 175
setContentView() method, 397
setDefaultCloseOperation()

method, 192
setEditable() method, 200, 223
setEnabled() method, 233
setLayout() method, 175, 212
setLayoutManager() method, 195
setLookAndFeel() method, 194
setProperty() method, 340
setSeconds() method, 158
setSize() method, 192
setText() method, 244
setTitle() method, 192
setVisible() method, 193
shapes

arcs, 364-365, 373
circles, 364
drawing, 361-362

ellipses, 364
lines, 362
PiePanel application, 365-366

PiePanel.java source code, 370
PieSlice class, 367-368

rectangles, 363
sharing objects, 178
shoot() method, 269
short variable type, 62
showVirusCount() method, 161
signatures (digital), 35
simple variables, converting, 141-142
single quotation marks (‘), 79
skills, language, 4-5
SkyWatch, 36
Slashdot, 415
slashes (//), 20
sleep() method, 296
sliders, 247-248
slowing down threads, 296
SOAP messages, 354
software. See applications; programs
Software Development Kits. See SDKs
sort() method, 127
sorting arrays, 126-127
source code listings. See code listings
SourceForge, 39
sources (casting), 141
spacing in source code, 26
Spartacus.java class, 409
special characters, escape codes,

79-80
sqrt() method, 48
square brackets ([]), 122
SquareRootClient application,

353-355
SquareRootServer application, 348
SquareRootServer web service, 345
SquareRootServerPublisher

application, 349
sRGB (Standard RGB), 361
stack overflows, 292, 416
Standard RGB, 361
start() method, 304
starting

programs, 16-18
threads, 304
variables, 65

stateChanged() method, 249
statements, 59

tauntUser() method 439

benchmarks, 115-117
blocks, 19-20, 59
braces ({}) notation, 20
break, 97, 104, 112
case, 96
catch, 310
class, 18-19, 138
continue, 113
default, 97
definition of, 6
example, 7
expressions, 60, 70-72
extends, 147, 175
float, 61
if, 91-92, 104

blocks, 93-95
equal/not equal comparisons, 93
less/greater than comparisons,

92-93
if-else, 95-96
int, 61
loops

definition of, 107
do-while, 111-112
exiting, 112
for, 108-115
infinite loops, 118
naming, 113-114
nesting, 113
while, 110-111

new, 122, 159
public, 138
static, 156, 161
super, 177, 183
switch, 96
this, 164-165, 176, 183
throw, 285
try-catch blocks, 279-284,

290-291, 303
try-catch-finally blocks, 284
void, 157

static statements, 156-161
static variables, 156
stop() method, 301
stopping threads, 309
storage

arrays, 121
applying, 123-125
declaring, 122-123
multidimensional, 125
sorting, 126-127

fonts, 272
objects, 178-182

array lists, 263-268
hash maps, 269-272

text in strings, 77-78
variables, 20, 65-66

streams, 329-330
buffered input streams, 334-339

Console application, 336
ReadConsole application, 335

closing, 337
defining, 329-330
reading data from, 331-334
writing to, 336-337

String data type, 20
strings, 77-78

adding to, 81-82
arrays, 122
case, modifying, 83, 87
characters, counting, 128-130
comparing, 82
concatenating, 80
definition of, 61, 77
equal/not equal comparisons, 93
finding within other strings, 84
length, determining, 83
less/greater than comparisons,

92-93
programs, viewing in, 78
resources, editing, 381
searching, 84
special characters, 79-80
text, 77-78
variables, 61-62

declaring, 78
linking, 81-82

strings.xml file, 382
Stroustrop, Bjarne, 5
subclasses, 140, 148, 175-184
substring() method, 334
subtraction operator (-), 66
Sun website, 29-31, 414-415
super statement, 177, 183
superclasses, 140
Swing, 189, 247

buttons, creating, 195-196
change listeners, 249-250

ColorSliders sample
application, 252

registering objects as, 249

check boxes
creating, 198-199
event handling, 230

combo boxes
creating, 199-200
event handling, 230

documentation, 261
enabling/disabling

components, 233
event listeners, 227-228

ActionListener interface, 228
actionPerformed() method, 229
adding, 227
LottoMadness application,

234-238
image icons, 252-255

creating, 253
Tool sample application,

254-256
labels, creating, 197-198
layout managers, 211-213

applications, 217-222
BorderLayout, 214-216
BoxLayout, 215
FlowLayout, 212
GridLayout, 213-214

panels, creating, 203
scroll panes, 201

adding components to, 202
creating, 201

sliders, 248
creating, 248
labels, 248

text areas, creating, 200
text fields

creating, 197-198
write protecting, 223

toolbars, 252-253
creating, 253-255
dockable toolbars, 253
Tool sample application,

254-256
switch statements, 96
syntax errors, 9
System.out.println() method, 409
System.out.println() procedure, 72

T
tables, 256-260
tabs, escape code, 79
tauntUser() method, 159

ternary operator (?)440

ternary operator (?), 98
testing

computer speed, 115-117
Points3D class, 184
SquareRootServerPublisher

application, 351
text. See also strings

areas, 200
Color class, 360
editors, 8
fields, 197-198, 223
Font class, 359-360
pasting into strings, 82
strings

pasting, 81
storage, 77-78

TextArea() constructor method, 200
TextDisplayer program, 49
this statement, 164-165, 176, 183
Thread class, 295
threads, 295

applets, 301
classes, 296-300
creating, 296-300
multithreading, 36
Runnable interface, 295
running, 304-305
slowing down, 296
starting, 304
stopping, 309
Thread class, 295

throw statements, 285
throwing exceptions, 278, 284-286

PageCatalog sample application,
288-291

throw statements, 285
time, displaying, 410
titles, frames, 192
T-Mobile G1s, 375
toCharArray() method, 124
toLowerCase() method, 83
Tool application, 254-256
toolbars, 252-253

creating, 253-255
docking, 256
Tool sample application, 254-256

tools
development, 4
installing, 10
selecting, 9

toUpperCase() method, 83, 87
troubleshooting. See also errors

Android applications, 390
applications, 9, 23
BlankFiller.java, 50
exceptions, 277-279. See also

exceptions
NetBeans, 411-412

trusted developers, 35
try-catch blocks, 279-284, 290-291

DivideNumbers sample
application, 290

NumberDivider sample
application, 284

SumNumbers sample application,
279-281, 290-291

try-catch statement, 303
try-catch-finally blocks, 284
TryPoints.java listing, 184
Twitter, 417
two slash characters (//), 287
types

Boolean, 63-64
byte, 62
char, 61-62
long, 63
short, 62
streams, 330

type values (variables), casting, 142

U
Udovydchenko, Aleksey, 40
unboxing, 145-146
underscore (_), 64
University of British Columbia, 32
upper limits of arrays, checking, 124
uppercase, modifying, 83, 87
user events, 227

ActionListener interface, 228
combo boxes, 230
components, enabling/

disabling, 233
handling, 229
keyboard events, 230-232
LottoMadness application,

233-239

V
van de Panne, Michiel, 32
Variable application

int statement, 60
variables

floating-point, 61
integers, 61
strings, 61-62

variables
access control, 155
applying, 165-167
arrays

applying, 123-125
declaring, 122-123
definition of, 121
initial values, 122
multidimensional, 125
sorting, 126-127

casting, 142
characters, 61-62
classes, 156
configuring, 302
converting, 141-142
converting to objects, 144
counter variables

definition of, 108
initializing, 108

creating, 153-155
data types, 20
declaring, 60
definition of, 59
displaying contents of, 21
initializing, 118
length, 132
naming conventions, 64, 74
objects, converting, 143-144
private, 155
protected, 155
scope, 161-162
storage, 20
strings, 78

changing case, 87
comparing, 82
concatenating, 80
declaring, 78
determining length, 83
escape codes, 79
linking, 81-82
modifying case, 83
viewing, 78

XML (Extensible Markup Language), editing 441

this statement, 164-165
types

assigning, 60
Boolean, 63-64
char, 61-62, 77
floating-point, 61
integers, 61
long, 63
short, 62
strings, 61-62

values
assigning, 65-66
decrementing, 67-69
incrementing, 67-69
starting values, 65

VB.NET, 5
VeriSign website, 36
versions, Java, 31
vertical sliders, creating, 248
viewing

Android projects, 379
credits, 84-86
pie graphs, 372
resources, 389
strings

in programs, 78
special characters, 79-80

text areas, 200
web services, 355

Virus application, 165
class constructor, 160
methods

getSeconds(), 158
setSeconds(), 158
tauntUser(), 159

showVirusCount(), 161
Virus class, 153
VirusLook application source

code, 166
void keyPressed() method, 231
void keyReleased() method, 231
void keyTyped() method, 231
void statement, 157

W
Web Service Description Language,

See WSDL
web services

clients, creating, 353-355
publishing, 349-350
SquareRootServer, 345

weblogs, 416
@WebMethod annotation, 347
websites

Gamelan, 416
InformIT, 414
JavaWorld, 34-35
Sams Publishing, 414
Sams Teach Yourself Java 2 in 24

Hours, 419-420
Sams Teach Yourself Java in 24

Hours, 415
Slashdot, 415
Sun, 29, 31, 414-415
VeriSign, 36
Workbench, 415

Wheel of Fortune application, 129
while loops, 110-112
widgets, customizing, 395
windows, 190-195, 384
Windows, compiling Java

applications, 23
wizards

New Android Project Wizard, 381
New File, 17
New Project Wizard, 407

word processing programs, 8
Workbench website, 415
write() method, 337
write protecting text fields, 223
writing

Android apps, 375-377
applications, 15-25, 47-48
code, 396-401
Color class, 360
configuration properties, 339-342
Font class, 359-360
programs, 5
streams, 336-337

WSDL (Web Service Description
Language), 351, 353

X
XML (Extensible Markup

Language), editing, 382

	Table of Contents
	Introduction
	HOUR 2: Writing Your First Program
	What You Need to Write Programs
	Creating the Saluton Program
	Beginning the Program
	Storing Information in a Variable
	Saving the Finished Product
	Compiling the Program into a Class File
	Fixing Errors
	Running a Java Program

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

