Jesse Feiler

SamsTeach Yourself

Core Data for

Mac and 10S

Jesse Feiler

Sams Teach Yourself

Core Data for
Mac and iO0OS

Second Edition

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Core Data for Mac® and iOS in 24 Hours,
Second Edition
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33619-5

ISBN-10: 0-672-33619-7

Library of Congress Cataloging-in-Publication data is on file.
Printed in the United States of America
First Printing: June 2012

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand
Executive Editor
Loretta Yates
Development
Editor

Sondra Scott

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Indexer
Brad Herriman

Proofreader
Megan Wade

Technical Editor
Robert McGovern
Publishing
Coordinator
Cindy Teeters

Designer
Gary Adair

Compositor
Mark Shirar

Contents at a Glance

Introduction

Part I: Getting Started with Core Data

HOUR 1:
2:
3:

Introducing Xcode 4
Creating a Simple App
Understanding the Basic Code Structure

Part II: Using Core Data

HOUR 4:

ey a

10:

Getting the Big Core Data Picture

Working with Data Models

Working with the Core Data Model Editor

What Managed Objects Can Do

Controllers: Integrating the Data Model with Your Code
Fetching Data

Working with Predicates and Sorting

Part Ill: Developing the Core Data Interface

HOUR 11:

12:

13:
14:

Finding Your Way Around the Interface Builder Editor:
The Graphics Story

Finding Your Way Around the Interface Builder Editor:
The Code Story

Control-Dragging Your Way to Code

Working with Storyboards and Swapping Views

Part IV: Building the Core Data Code

HOUR 15:
16:
17:

18:

Saving Data with a Navigation Interface
Using Split Views on iPad

Structuring Apps for Core Data, Documents,
and Shoeboxes

Validating Data

49
63

85
101
117
133
143
153
171

189

209
223
239

257
279

289
317

Part V: Managing Data and Interfaces

HOUR 19:
20:
21:
22:
23:
24:

Appendix

A

Using UITableView on iOS
Using NSTableView on Mac OS
Rearranging Table Rows on iOS
Managing Validation
Interacting with Users

Migrating Data Models

What's Old in Core Data, Cocoa, Xcode, and Objective-C

Index

337
363
375
393
409
423

441

443

Table of Contents

Introduction
Who Should Read This Book
Some Points to Keep in Mind

How This Book Is Organized

Part I: Getting Started with Core Data

HOUR 1: Introducing Xcode 4
Getting to Know Xcode
Goodbye “Hello, World”
Hello, App Development for Mac OS X and iOS
Getting Started with Xcode
Using the Navigator
Using Editors
Working with Assistant
Getting Help in an Editor Window
Using Utilities—Inspectors
Using Utilities—Libraries
Using the Text Editor
Using the Organizer Window
Summary
Workshop

Activities

HOUR 2: Creating a Simple App
Starting to Build an App
Building the Project
Exploring the App
Summary
Workshop

Activities

w N =

13
15
25
29
31
31
35
40
45
47
48
48

49
49
52
58
60
60
61

vi

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

HOUR 3: Understanding the Basic Code Structure 63
Working with the Code 63
Looking at Object-Oriented Programming in the Context
of Objective-C 66
Using Declared Properties 68
Messaging in Objective-C 73
Using Protocols and Delegates 75
Using the Model/View/Controller Concepts 81
Importing and Using Declarations in Files 82
Summary 83
Workshop 84
Activities 84

Part II: Using Core Data

HOUR 4: Getting the Big Core Data Picture 85
Starting Out with Core Data 85
Examining Core Data at Runtime: The Core Data Stack 90
Working with Fetched Results 96
Summary 99
Workshop 99
Activities 99

HOUR 5: Working with Data Models 101
Making the Abstract Concrete 101
Working with Entities 103
Adding Attributes to Entities 105
Linking Entities with Relationships 107
Keeping Track of Your Data in Files and Documents 108
Summary 116
Workshop 116

Activities 116

vii

Contents

HOUR 6: Working with the Core Data Model Editor 117
Moving the Data Model from Paper to Xcode and
the Core Data Model Editor 117
Adding Entities to the Data Model 119
Choosing the Editor Style 125
Adding Relationships to a Data Model 126
Summary 132
Workshop 132
Activities 132
HOUR 7: What Managed Objects Can Do 133
Using Managed Objects 133
Deciding Whether to Override NSManagedObject 134
Overriding NSManagedObject 136
Implementing Transformation in an NSManagedObject Subclass 140
Summary 142
Workshop 142
Activities 142
HOUR 8: Controllers: Integrating the Data Model with Your Code 143
Looking Inside Model/View/Controller 143
Integrating Views and Data on Mac OS 147
Integrating Views and Data on iOS 151
Summary 152
Workshop 152
Activities 152
HOUR 9: Fetching Data 153
Choosing the Core Data Architecture 153
Exploring the Core Data Fetching Process 154
Using Managed Object Contexts 158
Creating and Using a Fetch Request 159
Stopping the Action to Add New Data 161

Optimizing Interfaces for Core Data 162

viii

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

Summary
Workshop

Activities

HOUR 10: Working with Predicates and Sorting
Understanding Predicates
Constructing Predicates
Creating a Fetch Request and Predicate with Xcode
Sorting Data
Summary
Workshop

Activities

Part lll: Developing the Core Data Interface

HOUR 11: Finding Your Way Around the Interface Builder Editor:
The Graphics Story

Starting to Work with the Interface Builder Editor in Xcode

Working with the Canvas

Summary

Workshop

Activities
HOUR 12: Finding Your Way Around the Interface Builder Editor:
The Code Story

Using the Connections Inspector

Using IBOutlets for Data Elements

Summary

Workshop

Activities

HOUR 13: Control-Dragging Your Way to Code
Repurposing the Master-Detail Application Template
Adding New Fields as IBOutlets

Summary

168
168
169

171
171
177
178
185
187
187
187

189
189
197
206
206
207

209
209
215
222
222
222

223
223
230
237

Workshop

Activities

HOUR 14: Working with Storyboards and Swapping Views
Creating a Project with a Storyboard
Swapping Views on iOS Devices
Swapping Detail Views (the Old Way)
Understanding the Storyboard Concept
Looking at the Estimator Storyboard and Code
Creating a Storyboard
Summary
Workshop

Activities

Part 1V: Building the Core Data Code

HOUR 15: Saving Data with a Navigation Interface
Using a Navigation Interface to Edit and Save Data
Starting from the Master-Detail Template
Using the Debugger to Watch the Action
Adding a Managed Object
Moving and Saving Data
Cleaning Up the Interface
Summary
Workshop

Activities

HOUR 16: Using Split Views on iPad
Moving to the iPad
Implementing the Second Interface
Changing the Data Update and Saving Code
Summary
Workshop

Activities

ix

Contents

237
238

239
239
241
244
246
248
251
254
255
255

257
257
263
267
272
273
275
277
278
278

279
279
281
284
287
287
288

X

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

HOUR 17: Structuring Apps for Core Data, Documents, and Shoeboxes 289
Looking at Apps from the Core Data Point of View:
The Role of Documents 289
Exploring App Structure for Documents, Mac OS, and iOS 292
Moving Data Models 311
Moving a Data Model from One Project to Another 312
Summary 315
Workshop 316
Activities 316

HOUR 18: Validating Data 317
Using Validation Rules in the Data Model 317
Setting Up Rules in Your Data Model 320
Entering Data into the Interface and Moving It to the Data Model
(and Vice Versa) 327
Creating Subclasses of NSManagedObject for Your Entities 331
Summary 335
Workshop 336
Activities 336

Part V: Managing Data and Interfaces

HOUR 19: Using UITableView on iOS 337
Working with Table Views and iOS, Mac OS, and Core Data 337
Comparing Interfaces: Settings on iOS and System Preferences
on Mac OS 339
Using UITableView Without Core Data 344
Using UITableView with Core Data 357
Summary 360
Workshop 361
Activities 361

HOUR 20: Using NSTableView on Mac OS 363
Exploring the New NSTableView Features 363

Building an NSTableView App 366

Xi

Contents

Summary 373
Workshop 374
Activities 374
HOUR 21: Rearranging Table Rows on i0OS 375
Handling the Ordering of Table Rows 375
Allowing a Table Row to Be Moved 380
Doing the Move 382
Summary 391
Workshop 392
Activities 392
HOUR 22: Managing Validation 393
Validation for Free 393
Validation on Mac OS 394
Programming Validation for iOS or Mac OS 402
Summary 407
Workshop 407
Activities 408
HOUR 23: Interacting with Users 409
Choosing an Editing Interface 409
Communicating with Users 413
Using Sheets and Modal Windows on Mac OS 419
Summary 422
Workshop 422
Activities 422
HOUR 24: Migrating Data Models 423
Introducing the Core Data Migration Continuum 423
Managing Data Model Migration 424
Working with Data Model Versions 426
Using Automatic Lightweight Migration 432

Looking at a Mapping Model Overview 434

xii

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

Summary 438
Workshop 438
Activities 439
APPENDIX A: What's Old in Core Data, Cocoa, Xcode, and Objective-C 441
Declared Properties 441
Required and Optional Methods in Protocols 442
Storyboards in Interface Builder 442
Ordered Relationships 442

Index 443

xiii

About the Author

Jesse Feiler is a developer, web designer, trainer, and author. He has been an Apple devel-
oper since 1985 and has worked with mobile devices starting with Apple’s Newton and con-
tinuing with the iOS products such as the iPhone, iPod touch, and iPad. Feiler’s database
expertise includes mainframe databases such as DMS II (on Burroughs), DB2 (on IBM), and
Oracle (on various platforms), as well as personal computer databases from dBase to the
first versions of FileMaker. His database clients have included Federal Reserve Bank of New
York; Young & Rubicam (advertising); and many small and nonprofit organizations, pri-
marily in publishing, production, and management.

Feiler’s books include the following:
» Sams Teach Yourself Objective-C in 24 Hours (Sams/Pearson)

» Data-Driven iOS Apps for iPad and iPhone with FileMaker Pro, Bento by FileMaker, and
FileMaker Go (Sams/Pearson)

FileMaker 12 in Depth (Sams/Pearson)
Using FileMaker Bento (Sams/Pearson)
iWork for Dummies (Wiley)

Sams Teach Yourself Drupal in 24 Hours (Sams/Pearson)

vV v v v VY

Get Rich with Apps! Your Guide to Reaching More Customers and Making Money NOW
(McGraw-Hill)

v

Database-Driven Web Sites (Harcourt)
» How to Do Everything with Web 2.0 Mashups (McGraw-Hill)

» The Bento Book (Sams/Pearson)

He is the author of MinutesMachine, the meeting management software for iPad—qget more
details at champlainarts.com.

A native of Washington, D.C., Feiler has lived in New York City and currently lives in
Plattsburgh, NY. He can be reached at northcountryconsulting.com.

Xiv

Acknowledgments

Thanks go most of all to the people at Apple, along with the developers and users who have
helped to build the platform and imagine possibilities together to make the world better.

At Pearson, Loretta Yates, Executive Editor, has taken a concept and moved it from an idea
through the adventures along the way to printed books and eBooks in a variety of formats.
She is always a pleasure to work with.

Mandie Frank, Project Editor, has done a terrific job of keeping things on track with a
complex book full of code snippets, figures, and cross references in addition to the text.
Technical Editor Robert McGovern caught numerous technical typos and added comments
and perspectives that have clarified and enhanced the book.

As always, Carole Jelen at Waterside Productions has provided help and guidance in bring-
ing this book to fruition.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

As an Editor-in-Chief for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn't like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do
have a User Services group, however, where I will forward specific technical questions related to the
book.

When you write, please be sure to include this book’s title and author as well as your name,
email address, and phone number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@amspublishing.com

Mail: Greg Wiegand
Editor-in-Chief
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at amspublishing.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Organizing things is an important human activity. Whether it is a child organizing
toys in some way (by size, color, favorites, and so forth) or an adult piecing together
a thousand-piece jigsaw puzzle, the desire to “make order out of chaos” (as one
inveterate puzzler put it) reflects a sense that somehow if we try hard enough or just
have enough information, we can find or create an understandable view of the
world. Or at least an understandable view of the left overs in the refrigerator or the
photos in an album.

Core Data is a powerful tool that you can use with the Cocoa and Cocoa Touch
frameworks on iOS and Mac OS to help you make order out of the chaos of the hun-
dreds, thousands, and even billions of data elements that you now can store on your
computer or mobile device.

Who Should Read This Book

This book is geared toward developers who need to understand Core Data and its
capabilities. It's also aimed at developers who aren’t certain they need the combina-
tion of Core Data and Cocoa. It places the technologies in perspective so that you
can see where you and your project fit in. Part of that is simply analytical, but for
everyone, the hands-on examples provide background as well as the beginnings of
applications (apps) that you can create with these two technologies.

If you are new to databases or SQL, you will find a basic introduction here. If you
are familiar with them, you will find a refresher as well as details on how the con-
cepts you know already map to Core Data terminology.

Likewise, if you are new to development on Mac OS, iOS, or Cocoa and Cocoa
Touch, you will find a fairly detailed introduction. If you are already familiar with
them, you will see how some of the basic concepts have been expanded and
rearranged to work with Core Data.

There is a theme that recurs in this book: links and connections between interface
and code as well the connections between your app and the database. Much of what
you find in this book helps you develop the separate components (interface, data-
base, and code) and find simple ways to link them.

Introduction

Some Points to Keep in Mind

Not everyone starts from the same place in learning about Core Data (or, indeed,
any technology). Learning and developing with new technologies is rarely a linear
process. It is important to remember that you are not the first person to try to learn
these fairly complex interlocking technologies. This book and the code that you
experiment with try to lead you toward the moment when it all clicks together. If
you do not understand something the first time through, give it a rest, and come
back to it another time. For some people, alternating between the graphical design
of the interface, the logical design of the code processes, and the organizational
structure of the database can actually make things seem to move faster.

Here are some additional points to consider.

Acronyms

In many books, it is a convention to provide the full name of an acronym on its first
use—for example, HyperText Markup Language (HTML). It is time to recognize that
with wikipedia.org, dictionaries built into ebooks and computers, and so many other
tools, it is now safe to bring a number of acronyms in from the cold and use them
without elaboration. Acronyms specific to the topic of this book are, indeed,
explained on their first use in any chapter.

There is one term that does merit its own little section. In this book, as in much
usage today, SQL is treated as a name and not as an acronym. If you look it up on
Wikipedia, you will see the evolution of the term and its pronunciation.

Development Platforms

It is not surprising that the development of Mac OS X apps takes place on the Mac
itself. What may surprise some people, though, is that iOS apps that can run on
iPad, iPod touch, and iPhone must be developed on the Mac. There are many rea-
sons for this, not the least of which is that the development tool, Xcode, takes
advantage of many dynamic features of Objective-C that are not available on other
platforms. Also, Xcode has always served as a test bed for new ideas about develop-
ment, coding, and interfaces for the Apple engineers. Registered Apple developers
have access to preview versions of the developer tools. As a result, the Apple devel-
opers had access to features of Lion such as full-screen apps nine months before the
general public. In fact, Xcode 4 is optimized for Lion in both speed and interface
design.

How This Book Is Organized

Assumptions

Certain things are assumed in this book. (You might want to refer to this section as
you read.) They are as follows:

» Cocoa, as used in this book, refers to the Cocoa framework on Mac OS and,
unless otherwise specified, also to the Cocoa Touch framework on iOS.

» iPhone refers to iPhone and iPod touch unless otherwise noted.

Formatting

In addition to the text of this book, you will find code samples illustrating various
points. When a word is used in a sentence as computer code (such as NSTableView),
it appears like this. Code snippets appear set off from the surrounding text.
Sometimes they appear as a few lines of code; longer excerpts are identified with
listing numbers so they can be cross-referenced.

Downloading the Sample Files

Sample files can be downloaded from the author’s website at northcountryconsulting.
com or from the publisher’s site at www.informit.com/9780672335778.

How This Book Is Organized

There are five parts to this book. You can focus on whichever one addresses an
immediate problem, or you can get a good overview by reading the book straight
through. Like all of the Teach Yourself books, as much as possible, each chapter (or
hour) is made to stand on its own so that you can jump around to learn in your
own way. Cross-references throughout the book help you find related material.

Part 1, “Getting Started with Core Data”

This part introduces the basic issues of the book and shows you principles and tech-
niques that apply to all of the products discussed:

» Chapter 1, “Introducing Xcode 4”—Xcode is the tool you use to build Mac
OS and iOS apps. It includes graphical editors for designing your interface
and data model. The current version, Xcode 4, represents a significant step
forward from previous development environments. You'll get started by
learning the ins and outs of Xcode 4. After you use it, you'll never look
back.

www.informit.com/9780672335778

Introduction

>

Chapter 2, “Creating a Simple App”"—This hour walks you through the
process of creating an app from one of the built-in Xcode templates. It's
very little work for a basic app that runs.

Chapter 3, “Understanding the Basic Code Structure”—This hour introduces
design patterns used in Obijective-C as well as some of the features (such as
delegates and protocols) that distinguish it from other object-oriented pro-
gramming languages.

Part I, “Using Core Data”

Here you will find the basics of Core Data and its development tools in Xcode:

>

Chapter 4, “Getting the Big Core Data Picture”—Here you’ll find an
overview of Core Data and a high-level introduction to its main
components.

Chapter 5, “Working with Data Models”—Data models have been around
since the beginning of databases (and, in fact, since long before, if you
want to include data models such as the classifications of plants and ani-
mals). This hour lets you learn the language of Core Data.

Chapter 6, “Working with the Core Data Model Editor”—In this hour, you
will learn how to build your data model graphically with Xcode’s table and
grid styles.

Chapter 7, “What Managed Objects Can Do”—In this hour, you'll discover
the functionality of managed objects and what you can do to take advan-
tage of it and to expand it.

Chapter 8, “Controllers: Integrating the Data Model with Your Code”—The
key point of this book is to show you how to link your database and data
model to interface elements and your code. This hour provides the basics
for Mac OS and for Cocoa.

Chapter 9, “Fetching Data”—Just as the SQL SELECT statement is the heart
of data retrieval for SQL databases, fetching data is the heart of data
retrieval for Core Data. Here you'll learn the techniques and terminology.

Chapter 10, “Working with Predicates and Sorting”—When you fetch data,
you often need to specify exactly what data is to be fetched—that is the
role of predicates. In addition, you will see how to build in sorting to your
fetch requests so that the data is already in the order you need.

How This Book Is Organized

Part 1ll, “Developing the Core Data Interface”

Now that you understand the basics of Core Data, you can use it to drive the com-
mands, controls, and interfaces of your apps:

» Chapter 11, “Finding Your Way Around Interface Builder: The Graphics
Story”—The Interface Builder editor in Xcode 4 (a separate program until
now) provides powerful tools and a compact workspace to help you develop
your interface and app functionality.

» Chapter 12, “Finding Your Way Around Interface Builder: The Code
Story”—This hour shows you the graphical tools to link the code to the
interface.

» Chapter 13, “Control-Dragging Your Way to Code”—A special aspect of
linking your interface to your code is using the tools in Xcode 4 to actually
write the interface code for you.

» Chapter 14, “Working with Storyboards and Swapping Views”—One of the
major advances in Xcode 4, storyboards not only create and manage the views
and controllers that make up your interface, but also let you manage the
sequences in which they are presented (segues). You will find that storyboards
can replace a good deal of code that you would otherwise have to write for
each view you display.

Part 1V, “Building the Core Data Code”

Yet another aspect of the connections between Core Data, your code, and your inter-
face consists of the data source protocol and table views. This part explains them:

» Chapter 15, “Saving Data with a Navigation Interface”—Originally
designed for iPhone, navigation interfaces are an efficient use of screen
space for organized data. This hour shows you how to use them.

» Chapter 16, “Using Split Views on iPad”"—Split views on iPad provide a larger-
screen approach to data presentation than navigation interfaces. As you see
in this hour, you can combine navigation interfaces with a split view on iPad.
Data sources provide your Core Data data to the table view. This hour shows
how that happens and moves on to how you can work with tables and their
rows and sections. You'll also see how to format cells in various ways.

» Chapter 17, “Structuring Apps for Core Data, Documents, and
Shoeboxes”—This hour goes into detail about how and where your data
can actually be stored.

» Chapter 18, “Validating Data”—When you use Xcode and Core Data to
specify what data is valid, you do not have to perform the validation your-
self. This hour shows you how to set up the rules

Introduction

Part V, “Managing Data and Interfaces”

» Chapter 19, “Using UlTableView on iOS”"—Table views let you manage
and present data easily. The UITableView structure on iOS is designed for
seamless integration with Core Data.

» Chapter 20, “Using NSTableView on Mac OS”—NSTableView on Mac OS is
revised in Lion. The older versions of table views still work, but as you see
in this hour, some of the new features of UITableView have been back-
ported to Mac OS.

» Chapter 21, “Rearranging Table Rows on iOS”"—The ability to rearrange
table rows by dragging them on the screen is one of the best features of
iOS. It is remarkably simple once you know the table view basics.

» Chapter 22, “Managing Validation”—This hour shows you how to build on
the validation rules from Hour 18 to actually implement them and let users
know when there are problems.

» Chapter 23, “Interacting with Users”—On both iOS and Mac OS, it is
important to let users know when they are able to modify data and when it
is only being displayed.

» Chapter 24, “Migrating Data Models”—You can have Core Data automati-
cally migrate your data model to a new version. This hour shows you how
to do that, as well as how to use model metadata and alternative types of
data stores.

Appendixes

» Appendix A, “What’s Old in Core Data, Cocoa, Xcode, and Objective-C"—
There are some legacy features in the sample code you'll find on developer.
apple.com and in apps you might be working with. This appendix helps
you understand what you're looking at and how to modernize it.

NOTE

Due to the complexity of the topics discussed, some figures in this book are very
detailed and are intended only to provide a high-level view of concepts. Those
figures are representational and not intended to be read in detail. If you prefer to
view these figures on your computer, you can download them at
informit.com/title/9780672336195.

Introducing Xcode 4

What You’ll Learn in This Hour:

» Understanding the new development paradigms
Exploring the Xcode workspace window

Defining projects and workspaces

Debugging with breakpoints

Caring for your source code with repositories and versions

vV v. vy

The Origins of Xcode 4

Xcode 4 has its roots in Project Builder and Interface Builder, the two development
tools created for NeXTSTEP. The NeXTSTEP operating system ran on the NeXT com-
puter, which was manufactured by NeXT, the company Steve Jobs founded when he
left Apple in 1985. The hardware side of the business was not successful, and
NeXTSTEP morphed into OPENSTER which ran on Sun’s Solaris operating system,
and later on Windows. After Apple purchased NeXT in 1996, the software became
Rhapsody and, later, Mac OS X. A branch of the software became the iPhone oper-
ating system which, after the introduction of iPad, became iOS.

Project Builder and Interface Builder remained the developer tools through all this time.
Project Builder was the tool you used to write code, and Interface Builder was the
graphically oriented tool you used to draw the interface. Project Builder was renamed
Xcode in 2003; it contained significant changes to its user interface at that time.

At Apple’s 2010 Worldwide Developer Conference, Xcode 4 was given its debut. It
was released as the official version in spring 2011. One of its most significant fea-
tures was the integration of Project Builder and Interface Builder in a single tool.

This book is based on Xcode 4. If you are using an earlier version, it is time for you
to update to the latest software because by the time this book is published, Xcode
4 will be more than a year old (depending on whether you start counting from the
demonstrations or from the official release). Now that you know the history and ori-
gins of Xcode 4, there is no reason to distinguish it from its predecessors: From
this point on, it is simply referred to as Xcode.

HOUR 1: Introducing Xcode 4

Getting to Know Xcode

Everything you do in the development of Mac and iOS apps is done in the context
of Xcode. First demonstrated at Apple’s Worldwide Developers Conference in June
2010, it was released in several preview versions until the final release in the spring
of 2011. Xcode 4 is not just a revision to the interface of Xcode 3; it is a rethinking of
the way in which developers work on their apps.

This hour helps you understand this new way of working and why it is so relevant
to apps written for Mac and iOS in today’s world. Not only will you find out how to
use Xcode 4, but you will see why it is structured the way it is and how you can best
take advantage of its new features.

As you use Xcode 4, try to use the new features and new ways of working so that
you understand what the people at Apple think a productive development process
can look like today. And bear in mind one important point about Apple’s developer
tools: for many years, these tools have been testing and proving grounds for new
ideas about interface design. What you see in Xcode 4 includes some novel
approaches to interface design that you may consider using for your own apps both
on Mac and iOS.

» One of the most important features of Xcode is its simulator: software that
lets you test iOS apps on your Mac. You'll find out more about the simula-
tor in Part II of this book, “Using Core Data.”

Goodbye “Hello, World”

For many people, their first program was something along the lines of the well-
known Hello World program shown in Listing 1.1. It is from the classic The C
Programming Language by Brian Kernighan and Dennis Ritchie (1978).

LISTING 1.1 Hello, World

main() {
printf("hello, world");
}

Many people still think of this as a model of what programming is all about: You
start with a blank piece of paper or a blank screen, you type in your code, you run
it, you make revisions, and you continue on to the next program on its own blank
piece of paper or blank screen.

Goodbye “Hello, World”

Today’s programming is based on several commonly used paradigms. Two of the
most important have to do with how programs function—declarative and impera-
tive paradigms. A third, object-oriented programming, has to do with the structure
of programs.

Working with Imperative and Declarative
Programming Paradigms

Today’s apps are much more complex than just printing or displaying a line of text.
How do you get from Hello, World to an app such as iTunes? Even an app that
appears to be text-based such as Pages in the iWork suite is a far cry from Hello,
World. And when you consider that Mac OS X and iOS are basically just very large
apps, it is hard to see how they evolved from Hello, World.

When Hello, World first was written, the programming world was already
moving away from this linear do this/do that paradigm (called imperative or
procedural programming) to a new paradigm called declarative programming, in
which the mechanics of how something is done are less important than what is
done.

Procedural programming is used in the code you write; most of that is Objective-C
when you are writing for Mac OS X and iOS. For most people, writing procedural
code “feels” like programming. (In addition to its procedural programming con-
cepts, Objective-C uses object-oriented programming, hence its name.)

Languages that are declarative (that is, focusing on what is done) are particularly
common on the Web. Most people consider Cascading Style Sheets (CSS), regular
expressions, and the basics of SQL (SELECT statements, for example) to be examples
of declarative languages. Markup languages in general—including HTML itself—are
declarative rather than procedural because they describe what the end result should
look like. For many people, designing databases and web pages doesn’t “feel” like
programming (and many people do not think that it is).

The distinction between these two programming paradigms is not a matter of
good versus bad or old versus new: It is simply a contrast between two ways of
developing software. As you approach Xcode, Mac OS X, and iOS, you do not
have to make a choice because both paradigms are supported in Xcode. Most of
the time, a specific editing function is implemented only in procedural or declara-
tive styles because one or the other is the natural way of editing that particular set
of instructions.

10

HOUR 1: Introducing Xcode 4

NOTE

In at least one case—the creation of interface views—you can choose between
procedural and declarative styles. In those cases, this book will point out some of
the differences that affect your finished app.

If you are starting building apps for Mac OS X or iOS that use Core Data, you
will use descriptive editors for the Core Data side of things just as you do with
many SQL-based development environments, and you will use procedural editors
for the text-based code that you write to manipulate the interface and the
database.

Working with Object-Oriented Programming

Object-oriented programming is now so pervasive that for many people, it is the
only kind of programming they do. Instead of the simple and relatively unstructured
code shown in Listing 1.1, objects are created that encapsulate data and functionali-
ty. These objects interact with one another to get the work of the program done.

When people first started using object-oriented programming techniques, some
critics pointed out that it took much more code and programming time to use
object-oriented techniques and languages than to use traditional techniques and
languages. The idea of writing a program with the three lines shown in Listing 1.1
is unthinkable in the object-oriented programming world.

However, the arguments made by proponents of object-oriented programming and
borne out by decades of experience are that

» Object-oriented programming is easier to maintain and modify over time
in part because of its inherent structures.

» It might take many more lines to write a very simple program using object-
oriented programming techniques, but as the complexity of the program
increases, the incremental effort to build each new feature can be signifi-
cantly less than with traditional techniques.

When you put these points together, you can see that there is a significant difference
between simple and complex programs no matter whether you are using object-
oriented programming or traditional programming. The benefits of object-oriented
programming really only appear in complex programs, whereas the limitations of
traditional programming methods do not appear in short programs.

In practical terms, this means that to learn how to use the tools of Mac OS X and
iOS along with Xcode, you have to work with hefty examples. And if you try to use a

Hello, App Development for Mac OS X and iOS

simplified example, you might wind up thinking that these tools are overly complex.
That is true in one sense: Using these tools to write something very simple is overkill.
But not using tools like this to write complex software is frequently self-defeating.

As you begin to work with Xcode, Core Data, Mac OS X, and iOS, you will find your-
self at the helm of a sophisticated and powerful development environment. In this
book, you will see how to start small and build up to very complex apps. In the ini-
tial hours, because the examples are small, you may be tempted to worry about the
complexity, but just remember that the complexity will pay off as the examples
become more complex.

» With that overview, you might be interested in the Tutorial “Using Xcode to
Write ‘Hello, World’” in Hour 1 of Apple’s Xcode Quick Start Guide. It is 20
pages long and demonstrates precisely these points.

TIP

If you have not done so already, register as a developer with Apple at developer.
apple.com. A variety of developer programs are available, but the most common
are the Mac OS X developer program ($99/year), the i0S developer program
($99/year), and the Safari developer program (free). All these programs are built
on your registration as a developer with Apple, which is free.

Without even registering, you have access to libraries of documentation. All Apple
documentation referred to in this book is available through developer.apple.com. Any
documentation that is not available through developer.apple.com will be identified.

You can visit http://developer.apple.com/programs/which-program/ to compare
the various developer programs and to choose the one that makes sense for you.

Hello, App Development for Mac 0S X
and i0OS

To get started, register and sign up for a developer program so you can download
Xcode from developer.apple.com. If you are not certain that you want to register as
a developer, you can purchase Xcode alone from the Mac App store. It is currently
free. Starting with Xcode 4.3.1, it is an app just like any other you download from
the App Store. It comes with a variety of tools as shown in Figure 1.1. (Prior to Xcode
4.3.1, it and the tools were installed in a special Developer folder.)

Launch Xcode to open the window shown in Figure 1.2. (While you are at it, you
might want to set the option to keep it in the Dock. Some people like to launch

11

http://developer.apple.com/programs/which-program/

12 HOUR 1: Introducing Xcode 4

Xcode directly; others launch it by opening the Xcode project document they are
currently working on.)

FIGURE 1.1 [JEEZDl File Edit View Navigate Editor Product Window Help = 4 (=} (Charged) Mon 150 PM_ Sams Publishing 2
Xcode comes “’“"r Yeode
. . Preferences... X
with a variety of irininpi *
developer apps. Open Developer Tool B Instruments
Services L FileMerge
Hide Xcode HH ## Icon Composer
Hide Others W @ OpenGL ES Performance Detective
Show All © Application Loader
Quit Xeode ®Q More Developer Toals...
FIGURE 1.2 800

Launch Xcode.

Reents.

Welcome to Xcode

Version 4.2.1 (4D502)

Create a new Xeode project m

Start bullding a new Mac, IPhone or Pad
applicatian fram ane of the included templates

Learn ahout using Xeode
Explare the Xcode development environment with
the Xcode 4 User Guide

Go to Apple's developer portal
Visit the Mac and 105 Dev Center websites at L
develaperapple.com | No Selection

Connect to a repository
E Use Xcode's Integrated source control features to
£ work with your existing projects

TIP

If you have run Xcode before, preferences might have changed and you may see a
different welcome screen—or none at all.

As you can see in Figure 1.2, from this point you can create a new project, get help,
and generally get started with Xcode.
> At this point, you can get started using Xcode by creating a simple app as
described in Hour 2, “Creating a Simple App,” p. 49.

This hour continues with an exploration of the Xcode window and how to use it.

Getting Started with Xcode 13

Getting Started with Xcode

Whether you are creating a new Xcode project or reopening an old one, you see the
Xcode workspace window shown in Figure 1.3. Note that depending on your project
and your Xcode preferences, the details of the window (not to mention the code) will
very likely be different.

Navigation FIGURE 1.3

Selector bar Toolbar Jump bar Inspector Selector bar You work inside
the Xcode work-
CXaXG) | [Mastor Detall Sample.xcobepra] — =) DetailViewController.m F space window.

() (@) (woirsdsosma.] (=] | e Hoz @ HEE (=)
Run Stop Scheme Breakpoims Editor. ew Orgamizer
(== s =] s T | IO

Defall Sampie " ¥ _ldestiry and Tyse

Mastar
¥ B 1 s, 0] 306 5.0 3l 47 Detatiestontralier.m
3| /7 Master Detail Sam e same | DrtasvirwCorroliesm
(] Master ees Saenple 3| /¢ Master Detail Swmple file Marme | DetatviewCodgrolh
AgppOfiegute s 5| /7 Created by Jesse Feiler on 2/1/12. Fie Type | Delaul - Coctive-C sa.. 2
W Acetfiepate s 4 Copyright (e} 2812 Champlain Arts Corp. ALL rights

Location | Relstive ta Cup

MasediewCornratier h | reserved. 0
Mast ViemComreiier.m 2+ [T ——
e Foll Pk Juserspeler]

| #import “DetailviewController.k
- Curramtprojeel Objretive-

o [e kol Inspector
% ara 1 suster cwnait fampley

DerufiewComraiierIPhone
DerufiewComrolier IPaxin
¥ [Supprgeting Files

DenailviewCorfrolier.m & pane
b Lecaliration
| gimplementation DetailViewController |7 Tanget Membtrship

:_:“m [@synthesiee detailTten = _detailItes; o iy Master Desat Sample
%) @synthesize detailDescriptionlabel = _detailDescriptisslabel; HH
|| gsynthesie masterPopoverController = sasterPapaverontroller Utility area
i seBreakpoint e st ses ¥ Tt setings
Tesa incediog | Detaut - unfode wTh-t) : :
2 gUtter e tieimmoetsnizies e e oo s s rom) | | Library
. w0 T aerasiaten 1= nevderasuem) { Selector
NaV|gat0r area 2 Zdetailltes = newdetailites; n T EIE - bar
| £/ Update th s i ry
x | L contigursiieal; [l Coce Sninpet Liarary +
" it Gaeltmasterras RS ot {} S‘:‘.::’w‘ T
= self 5 issPopoverAnimated: H .
visl; - 1 | Libraries
i ¥ € inline Bock as Viriable - Used for —
1} {}) segivuciosafisieoan pane
o P B 43 4 e okt
3| - (void)contigurevien
-. " 47 uptate the user saverface for the detasl stes, {} | covpedes - uses tofdefining a tyse.
afl af tsert
— nLabel.text = [self detailltes C++ Class Declaralion - Used for
, L e e cosuinies |}
SNEE :;.I_. (2
Filter bar Focus ribbon

Using the Workspace Window

As noted previously, Apple developer tools often provide a test bed for new interface
features (and, under the hood, performance advances such as advanced threading).
In its first demonstration of Mac OS X 10.7 (Lion), Apple showed how full-screen
apps could take over the screen in much the same way that all apps do on mobile
iOS devices. As Apple has moved forward, Xcode has provided an example of how a
full-screen app can work. It was compelling and relatively simple to demonstrate

14

HOUR 1: Introducing Xcode 4

full-screen implementations of existing apps such as Preview, iCal, iPhoto, and Mail,
which Apple did as long ago as fall of 2010.

But how would full-screen apps work with data that is not visual the way that pho-
tos, calendars, and the documents shown in Preview are? The answer was under
developers’ eyes right at the first preview: They just had to download a beta version
of Xcode 4.

The window is a combination of panes and panes-within-panes that can be shown
or hidden as well as resized. At first glance, Figure 1.3 can be daunting. But when
you look at it a second time, you will see that it is actually fairly simple. It uses and
reuses three components. Each component exhibits the same behavior wherever it
appears. In addition, you can show or hide almost all the components, rearrange
them, and resize them.

These are the main components of the workspace window:

» Areas—There are three areas shown in Figure 1.3. At the left is the naviga-
tor area, at the right is the utility area, and hidden at the bottom is the
debug area. Each of these can be shown or hidden by using the three View
buttons at the upper right of the workspace window. The editor area, in the
center of the workspace window, is always visible.

» Bars—At the top of the navigator, editor, and debug areas, you will find a
bar you can use to select different views for the area. The bar above the
editor area is the jump bar, but the others are the navigator selector bar
and the debug bar.

» Panes—The utility area is divided into two panes, each of which can be
resized. The combined height of the utility area remains constant within
the window size, so if you enlarge the height of the library pane, you auto-
matically reduce the height of the inspector pane. Selector bars appear at
the top of the panes in the utility area.

There are three lesser components in the workspace window:

» Filter bar—At the bottom of the navigator areaq, this lets you filter the lists
in the navigator to include or exclude certain types of items, such as class
symbols, files with unsaved changes, and so forth.

» Breakpoint gutter—This appears in the editor area and lets you insert and
delete breakpoints for debugging.

» Focus ribbon—This lets you expand or collapse sections of code in the editor.

Using the Navigator

TIP

The best way to explore the workspace window is to open or create a project and
then explore the menu bar. This hour can only provide a high-level summary of the
workspace window.

There you have it: The workspace window is a compact and powerful environment
to let you manage your development process. The same interface elements are used
over and over, which means you do not have to learn a multitude of interfaces and
functions. This is the result of the consolidation of Project Builder and Interface
Builder along with a great deal of hard work and imagination.

Xcode is designed to be customizable with all kinds of preferences; these, together
with the basic interface components, allow you to work the way you want to work
on the projects you want to work on. (An iPhone app? A Mac OS app? And if you
work for Apple, Mac OS X itself?) For these reasons, there is no sequential way to
start working with Xcode. The sections that follow highlight some of the main
components: Feel free to skip around.

NOTE

This overview of Xcode walks through the workspace window. There is an Xcode
menu bar, as you would expect in a Mac app, but menus today are not nearly so
important as they were many years ago. If this book had been written 10 years
ago, it is quite likely that the overview would have walked you through each menu
and each command in that menu. Now, however, we are in a world of direct manipu-
lation where buttons, commands, and hot items are located throughout the
interface—they are placed where you want to use them. This means that that
lengthy mouse trip up to the menubar is often not necessary because the interface
element that does what you want to have done is right on the window itself.
(Hmmm, just like on an iOS device.) The menu commands are more often than
ever available with keyboard equivalents. For many people, the menubar and its
commands serve largely as a place to go to find the keyboard equivalent for a
command. For these reasons, you will find the menu commands scattered through
this hour; they are dealt with in the interface elements they affect.

Using the Navigator

The starting point for this exploration is the navigator pane at the left of the work-
space window. You show or hide it with the leftmost View button, as pointed out in
Figure 1.3. At the top of the navigator is a selector bar. The seven items in it control
which navigator is displayed. You can use commands in the Navigators submenu of
the View menu or keyboard equivalents instead of the selector bar if you want.

15

16

FIGURE 1.4
The project is
shown in a col-
lapsed form in
the navigator
right after you

have created it.

HOUR 1: Introducing Xcode 4

TIP
If the navigator is not visible, the menu command will automatically open it.

If you want to hide the navigator, use the leftmost View button or the View >
Navigators > Hide Navigator command (3-0).

The next sections explain the navigators, their keyboard equivalents, and what
they do.

Project ¥-1

Figure 1.4 shows the project navigator. When you have first created a new project, it
will very likely look like this. At the top of the navigator is a single item with a dis-
closure triangle to its left.

Click the disclosure triangle, and the single project item opens revealing its files and
groups, as you see in Figure 1.5.

NOTE

Groups are shown with folder icons, but they are not file system folders. The
groups into which you organize your project’s files are a construct within Xcode.
The files can be anywhere you want.

Figure 1.5 also demonstrates another feature of Xcode: the parts of the workspace
window know about one another. When you click the project icon at the top of the
navigator, the editor area of the workspace window shows information about the
project, as you can see in Figures 1.4 and 1.5.

(») (W) [irad 50 simatirer] (=) [e] oz @Eoo =
Mo e seheme treakpents Ense iew Grganizer |
im|Z ® 4 = = @ [=)4 b Fsase

PROJECT | Summary | o
B st e

Bulld Settegs Build Phases Balld Mules

105 Agplcation Target

TARGETS Mentifier | cem.thamplainarts Master-Detar Samgie
Verslon | 1.9 suikd (1.0
Devices. | Universal

Beployment Target (5.0

B _iPhene | IPod Ciploymant lnfa

b_iPud Begloyment Info
¥ Linked Frameworks and Ubraries

EE KR ramemork, Reguired +
¥ Foundation framewark Reguired 3
3 Conetraphis framewsrk Reguired 3
W ConeDama frameworic Reguired 3

—
B Entitiemants

L @B Add Target Valldare Semings

Using the Navigator ‘

[NNz}

[Master Detail Sample.xeodeproj

@ M iPad 5.0 Simulator | [m e [= 5] (=]
= = = el |
,&?::mm* PROJECT | Summary | o Rulld Setzngs Rl Phases Rl sl |
% [Master Dietall Sarmgle [master 0a 0% Appleation Target |
-. oy ““: :| TAReETs 1dantifee | cem champlainarte Masser-Dstai-Samole
MasterViewController & varon (1.0 huid (3.0
MasterViewControlier = r 3
DeiviewCantrailer.n Deeees | Universal ¢
DetsviewCantreller.m ODeploymert Target 10 %]
~ Master¥iewComralier_Phosexib)
 haeriewController_fud. b iFhene | |
A::x:‘mw:jm..l:h bl Dvelomant ol |
B e SecalLE o 4 ¥ Linked Frameworks and Libraries. - |
S e e 6 ki frameork Reguired 3
T . | BB Foundation framewark. Resaired o
» [Products N CoreGraphics.framewsrk Reguired 3
K Corebats framewr Reguired 3
r—
b Entitlements |
L OEX | Add Targen ‘Validate Semings.

Click one of the files in the project, and it appears in the editor area shown in Figure 1.6.

ano
() (®) (3 meas050uinor]

o ® 4 == 8

&)

[Master Detall Sample. xcodepra] — [AppDelegate.h
Xeode

o

EEg@Ea =@

amola) jasser o

'hmmma—mh
1 target, 405 50K 5.0

B Deraiviewcontrotier.n
W DerviewContatier.m
A MaseerviewContrelier_iPhane uin
& MasterViewControdler_iPad.wib
DesallViewControlber_Phase.xib
= DetailViewController_iPad xib
(11 Wasser_Desall 5...Jexedamamadeld
I [Swpperting Fibes
* [Frameworics
» (] Produces

+ I GEE

a4 > | Pymase
"

#¢ Appbelegate.h
£# Master Oevail Sasple

£f Crested by Jesse Feiler on 371712

#import <UIKLTAUTKITL. I

1 Copyright 1o} 2612 Chompladn Arts Corp. ALL rights reserved.
i

Binterface [e i 5

gproperty (strong, menstosic) Ulkindiw swindow:

gproperty (readonly, strang, nosstosic) grdobj

#property (readonly, strong, nomstosic)

@nroperty {readanly, strong, } Hiper

- IvoidhsaveContext;
- {MSURL »)applicat ionDocusentsDirectary;

eproperty (strong,] oller ;
eproperty tstrong, catraller antraller;
fend

Clicking a file opens it in the editor area no matter what kind of file it is. Figure 1.7
shows an interface file (a nib file) in the editor area. Note that new projects for iOS
have the option to use storyboards instead of nib files; for older projects and on Mac
OS, nibs remain the standards.

» Learn more about storyboards in Hour 14, “Working with Storyboards and

Swapping Views.”

Figure 1.8 shows a Core Data data model file in the editor area.

In Figure 1.9, you see that if you have added an image file to your project, clicking

it opens the image in the editor area.

17

FIGURE 1.5

You can expand
groups in

the project
navigator.

FIGURE 1.6
Click a file to
edit it.

18 HOUR 1: Introducing Xcode 4

FIGURE 1.7
Edit a nib file in (») (m) [m i (=]
Xcode.

[Master Detall Samplexcodepro] — - MasterViewController_iPad.xib.

Maaster
| 1 targer, 405 SDIC 5.0
v (L] Master Detail Sample

California

~ Brea
Burlingame
Canoga Park
Carlsbad
Chula Vista
Corte Madera
Costa Mesa

+ OB 86 i

e

FIGURE 1.8
Edit your data
model in Xcode.

Destination Inverse

DetailViewController_iPad.xib

1§l Master_Desall 5. le.xcdaamedeld L+ =i
[Swpporting Fikes

[+ =

+ 008 (S Acd Entiey Add Amribinte Ediae See
FIGURE 1.9 PR TR = PR
Open resource [m i toc] |
files.

Using the Navigator 19

In other words, no matter what kind of file it is, select it in the project navigator and
edit it in the editor (for the file types that Xcode supports).

You have seen how to use the navigator to explore your project and its files, but how
do you manage the files themselves? When you create a project, as you will see in
Hour 2, the files are automatically created for you. In your own projects, you might
need to add files to it. Control-click in the project navigator to bring up the shortcut
menu shown in Figure 1.10. For many people, right-clicking the mouse will have the
same effect. You can add the new file anywhere you want and move it to the right
position in the navigator just by dragging it. If you control- or right-click in a group,
the file will be added to that group and you might not have to move it.

eno . [Master Detall Sample.xcodepre] — s add.png o FIGURE 1.10
(), (®) (M 50 Semiar] (=) =] Blae @ual = Use the short-
Bun Siop Schene. Efites iew Organizer

| T @ A = = B (&4 b Fiuace Desl Sample) [Master Dol Sample | || 3d4.p0g | N Salaction cut menu to
<+ e Dot S add files to the

1 targer, 05 SDK 5.0
v (| Master Devail Sample H

— T i org N roject.
(LSS in Finder proj

A Open with External Editor
B vasted Open As »
= bt NewFile...
B Deeury New Project...

"o New Group

+ Deaity New Group from Selection +
RO Sort
18 Maste
B s

=t dd Files to “Master Detail Sample”__|
» (5 Produrts) Add Files te "Master Detail Sample”...

Delete

| Source Control >

Project Navigator Help [
+IOEE i

Once you have selected a file to add, the sheet shown in Figure 1.11 opens.

FIGURE 1.11

LI IH = mi || @ - || & Desktop =] (a . .
= -) = | Specify a file to
FAVORITES add.

EEE DR
2y Drop Box
G} sams

f/.\; Applications

% Documents Name add.pag

o Downloads Kind Portable Network Gr...
Size 323 bytes

B Pictures Created Aug 4, 2009 7:01 AM

[CurrentProje... Modified Aug 4, 2009 7:01 AM

B Last opened Aug 4, 2009 7:01 AM

| CoreData STY Dimantisas

] Objective-C

Destination (¥ Capy items into destination group's folder (if needed)

Folders (%) Create groups for any added folders
(_)Create folder references for any added folders

Add to targets (¥ ,A Master Detail Sample

| New Folder Cancel

20 HOUR 1: Introducing Xcode 4

The most important part of this dialog other than the filename is the Destination
checkbox. This determines whether the project will use the file that may be some-
where else on your disk or network or whether it will copy it into your project.
Normally, you do want to copy the file into the project so that you can then move
the entire project folder to another computer if necessary.

TIP

Sometimes, a filename will appear in red. This indicates that it is part of the proj-
ect but that it is missing. For example, before you have built your project, the file
named <MyProjectName>.app appears in red. After you have successfully built
your project, the name appears in black.

The filter bar at the bottom of the project navigator lets you filter by filename (or
part thereof). The + in the bottom-left lets you add a new file with a template (it is
not the same as the add file to project command shown in the shortcut menu in
Figure 1.10). Three symbols to the right of the + limit your navigation. From left,
here are their effects:

» Show only recently edited files
» Show only files with source-control status such as modified

» Show only files with unsaved changes

Symbol 3£-2

The symbol navigator, shown in Figure 1.12, shows you the symbols in your project:
the classes (indicated with C), methods (M), and properties (P). Interface Builder
actions (A) and outlets (O) manage the interactions between your code and your

interface.
FIGURE 1.12 800 B3 Master Detail Sample xcodeproj — m DetallViewConraller.m -
Use the symbol (®) () (M iPud 50 Simuiatoc] (=] [Jeets l Elazs Moo (@
. Run Ston Sacheeme Breakpeints. Efiters Wiew Organizer
navigator. BSI @ A = m @ |f| 4 b e Dl Sample) | Master Dutsl Ssmple | [§ DetsiViewControllerm | No Selection

LSEUE ot Symbol nevigater || 1|
1= /
v [3 DeraiviewComreiier
>
[-contgureview

] -cerailDescriptioniabel

[0 -cecailinem

[-cidReceiveMemoryWarming
[-iniewithiibhame:bundie:
] -setDetailDescripticntabel:
n——

Wer 0
c} UiPepaverCantraller smasterPopoverdentroller;

ju]
Ju] reller
[-spimewCantralier withlidevients
[-snlviewContralier witShowiiew

[0 -viewDidasesar

. ire detailites = _detaill
s ize detailbescriptionlasel
rolle

nragea mark - Managing the detail item

| = (voighsetDetatilten:z { i newbetalllten

[-viewwilanpear: =l {

[-viewwiiDisappear: 2

[5] deraiiDeseripninnlabel =

3 desaitiem ™ 4f Update t
- self con

EF [_#ctailltes I= newbetailltes] {
Zeetailiten = newbetadlites;

e O
an8® aff 3

Using the Navigator

Properties are identified by P unless they are Interface Builder outlets—a special kind
of property. The synthesize directive that is the companion to a property directive
is flagged with a V (for variable).

» You will find out more about the property and synthesize directives in Hour
3, “Understanding the Basic Code Structure,” p. 63.

At the bottom of the symbol navigator, you can filter the display. Use the search box
to type text to search for in symbol names. To the left of the filter bar, symbols let
you choose what to display and hide. From left, the following effects are available:

» Show only class symbols—that is, no globals
» Show only symbols defined in the project

» Show only containers such as classes and categories; do not show members

Search -3

The search navigator packs a lot of searching into a small space. You can use it by
simply typing a search term into the box; Xcode will search for it through the proj-
ect. The list of results (if any) is shown in the search navigator. You will see the rele-
vant filename, a symbol such as the ones shown previously in Figure 1.12, and the
beginning of the line of code. The search term is highlighted in yellow in each line.
Sometimes this means that you do not see the beginning of the line, but never
fear—a click on the line will display it in the editor area, or you can hover the
pointer over it to see a tooltip with the full text.

You can switch between searching and replacing text at the upper-left, as shown in
Figure 1.13. In addition, at the bottom of the search navigator, the filter bar lets you
search within the results. In Figure 1.13, for example, the find was executed on
“detail.” (You can see this because “detail” is highlighted in all of the search results.)
The filter bar is used to filter on “item.” If you look at the search results, you will see
that “detail” is always found, but each of those results also contains “item,” which is
not highlighted because it was not part of the original search. You can duplicate
these results for yourself. Conduct a search without a filter, and then add a filter.
You'll see that the number of results is reduced.

Just to the right of the magnifying glass in the search field, a disclosure triangle lets
you show or hide the Find Options shortcut, as shown in Figure 1.14. It also lets you
repeat recent searches.

21

22 HOUR 1: Introducing Xcode 4

FIGURE 1.13 3 Master Dotall Sample xcodepro] — (@ DetalliewController.m
Specify a
search.

1
\ 2 Det e
Replace 1| 3| #r master cerail sasple
- A
_found draviaindfe s| #f Crested by Jesse Feiler on 2/1/12.
(Prevew | | Replace | [Replace Al 8| #7 Copyright () 2912 Champlain Arts Corp. ALL rights reserved.
R | ¥
o

vy ABADsisqaten
Mastre Detail Sarple project
(= i Master Detall Sample

wiapart “DetailViewfontraller.h”

@interface DetallViewController ()

@property [strong, ter
= {voia) cont iguraVie;

gend

¥ B o
Mastes Dol Sarsple project
(50 Master Detall Sample

#import "DetalViewControllerh”
1 41 Mer

@synthesize setoilltes = _setailltes;
abel = _getailDesc 3
geynthesize Mer = P ontroller

#pragms mark - Managing the detsil item

- Ulves: |

LT ET I S

[=]=]=]= Rl =] =[]

if {_detailltem |= newbetailltem) {
Cdetailites = newDetailites;

#f Update the view.
[self configurevies];

if iself
[ent
¥

terPopoverContrailer 1= nil) {
sterPap

¥
- {void)cont igureVien
47 Update the wser interface for the detall ites,

L (sl detaillten) {
self.detailbescriptionLabel.text = [self.detaillten description];
}

S FELEESEAERFENEREYY

FIGURE 1.14 Show Find Options
Show or hide

Hecent Kesults

Find Options In Praject, cantains "detail", ignore case
shortcuts. In Praject, contains "another”, ignore case
Clear Recents

The search navigator searches throughout the project. The Edit menu has traditional
single-file Find commands, as shown in Figure 1.15.

FIGURE 1.15
The Edit menu
provides a mul-
titude of search

dler an 21712,

P Spacisl TCHV Phasplais Arts Corp. AL rights resceved,
and_ replace Paste and Preserve Formatting OO 3V ! " !
options. Duplicate KO Lo
Delete wa| o o
Select All A Fomich ontraller ssaster ter

* Find in Worl
» Find Selected Text in Workspace
Sort L3 Find and Replace in Warkspace, LOHF
Format Ld
Find... _F
Refactor » Find and Replace... HF
Find Next *E
Special Characters... Find Previous NG
Replace
Replace All
T 5netast Replace and Find Next
+ Replace and Find Previcus.
[eetieasirrey tode Find far
3 Use Selection for Find HE
Use Selection for Replace #E

14 Update the user intarface for the detail itea.

if [self.detaillten) {
elf.dntail0escript iontabel, toxt = (self.dotailites doscription]:

- yWarning

[super didReceiweMemoryWarning!
7 Releave any cached data,

%, ete that aren’t in use,

#prages mark - View lifecyele

Using the Navigator

Issue 3£-4

The issue navigator lets you view the issues with your project. In the old days, these
used to be called compile errors, but with Xcode, you will have many fewer compile
errors. Do not get your hopes up, though. That is because Xcode has a powerful
parser that checks your code as you type. It is as lively as a spell-checker, but it looks
for syntax errors as well as ordinary misspellings. This means that compile errors
now show up much earlier—just as you are typing them in many cases. The issue
navigator lets you see them. You can display them by file (the traditional way of
showing compile errors), but you can also display them by type so that like errors
are grouped together. Sometimes that can make fixing the errors faster, particularly
if you are consistently mistyping a variable name.

Figure 1.16 shows the issue navigator. In addition, note that, in the breakpoint gut-
ter at the left of the editor area, symbols show up as soon as you have made the
offending keystroke. (An extra s has just been added to synthesize—synthessize.)

@00 [Master Detall Sample scodepro] — = DatalViewController.m "
(®) (W) [umasosiou.] (=) xcode | Elaoz GEoa (5
Bun St e Fewpe 2 @1 o .

B o= =@ = | [atasver Oenast Sammpie [maser., » [=TT

CI wyyee

Master Detail Sample
3 e

v [DetaViewController.m
D Farse ssue
Unexpected ' in program
b Ll Semantic Insus
Froperty ‘masterFopaverCantrofe
» L Semasnic lssue
Fropesty ‘mateiPopoverControte.

ler ()
omic) UlPopoverController spasterPopoverController

gisplenentation DetailviewContraller

esize dctoilitem = _scta

2| #prages mark - Managing the detail item
{uoid) setDetailites: | id)nmtetailites

newbetailltea) {
etailites;

date the view.
configureview];

ueranisated: VES);

iten.

1f.detaillten description];

Debug -5

Debug shows you the calling sequence for each of your app’s threads (in the
simplest case, there is only one). For example, Figure 1.17 shows the app
stopped in DetailViewController viewWillAppear. That was called from
UISplitViewController viewWillAppear, and so on back to the bottom of the
calling sequence—main, which starts the program running.

23

FIGURE 1.16
The issue navi-
gator helps you
correct errors
as you type.

24

FIGURE 1.17
Use the debug
navigator to
track a calling
sequence.

HOUR 1: Introducing Xcode 4

800 [% Master Detall Sample xcodepro] — = DetailViewControllar.m]
- = - 1 [Running Matter Detail Sample on ikad 5.0 Simulstor
(») (@) [m_ipads05ma] [2 2 Ba @ EEG (3
Run Swp Scheme Mreakpoints L Anid Edivor View Organizer
0 Al=e B [z« P i [u]
ATy Queue n Tsa
Master Detall Sample . " e
¥ Paused " I
v -]
A Theaad 1) - (void)viewi\ Apaears (B00L] aninated
01 -NViewT prerv—— g1 Isuper wiewwillAppear:anisated]: Themad 1: Seapemd a2 besatpoint 1|
L af] }
[26 uwappikcationMain n
27 main = lvoidlviewbidAppear: (B0SL]aninated
sfl {
M Thread 2 . Lsuper wiewbidAppear tanisated]:
d B
* M Thread 3
7 = (usid)lvieweil106sappears (AO0Ljanisated
* B Thrasd 4 WabiThrasd wll {
2| lsuper viewWillbisappear:zanimated];
3
E = & & | 4 | MasterDesail Sampie o Thread 1 5 10 -[DersiviewComroller viewwillAppear:] |
Local 3 Q) A Output £ Clear) (0] JHI 1) |
¥ [self = DesafviewComrolier *) Cubd2chcd GNU ges 6.3,50-20058815 [Apple wersion gob-1708)
] cmd = (3L) Oxddcors wiewillagmear (Thu How 3 21 C 2911)
oy Copyright 2084 Free Softwsre Fousdation, Ine.
W snkmatad - M0CH) MY 63 is free ered by the GW) General
Pub d you are
it and/er distribute coples of it
+ the conditions.
rranty for G08. Type
antigured as ~xBb_Sd-apple
library apply-load-rules all
Attaching to srocess 5359,
Pending breakpaint 1 - ""BetailVicaController.s™s
597 resolved
Current langusge: suto; currently objective-c
web)
"= =
-
Breakpoint -6

Breakpoints let you stop program execution at specific lines of code. You place a
breakpoint in the breakpoint gutter to the left of the editor area and, when the pro-
gram is about to execute that line of code, it stops. You can then inspect the vari-
ables in the debug area. In Figure 1.17, a breakpoint was set in the editor area at
[super viewWillAppear:animated]. The program stopped just before executing
that line of code. The calling sequence is visible in the debug navigator. In the editor
areaq, you see the breakpoint, and, to its right, a small green arrow that points to the
line of code about to be executed. If you have several breakpoints, you need to know
which one has just stopped the app.

Beneath the editor area, the debug area shows you information about the break-
point. On the left is a view of the variables at this moment. On the right are console
messages. Buttons at the upper-right of the debug area let you choose which—or
both—views to display. In the view of variables, you can expand and collapse con-
tainers as you examine exactly what data is where.

TIP

Breakpoints can be useful even if they do not trip. When you cannot figure out why
a line of code does not work properly, set a breakpoint on it to examine the data. If
the breakpoint is not tripped, work backwards to see where the app goes off the
rails. Command-click on a breakpoint to edit it. For example, you can stop only
after the nth pass through the breakpoint and only if a certain data condition is
true. You can add actions to the breakpoint such as a sound; a log message; a
shell command; or even that trustworthy and powerful tool, an AppleScript script.

Using Editors

To remove a breakpoint, drag it out of the breakpoint gutter. You can also use the
breakpoint navigator to list the breakpoints. Clicking one will take you to the line of
code. You can drag breakpoints out of the breakpoint navigator to remove them if
you prefer not to drag them out of the breakpoint gutter.

TIP

Note that there is a global breakpoint control in the toolbar. Use it to turn all break-
points on or off. This is helpful in debugging when you are done with the break-
points but might want to turn the breakpoint back on the next time a bug appears.

Log 36-7

Finally, the log navigator keeps track of what you’ve been doing with this app.
Figure 1.18 shows the log navigator. The events are in reverse chronological order
(latest first). As always in the navigator, a filter bar lets you filter the entries so you
can easily find builds or other specific types of entries; you can also use the control
at the bottom-left to see the most recent log entries. Clicking a log entry shows you
the console results for that compile, build, or other action.

800 %4 Master Detall Sample.xcodepro] — m| DetallViewController.m]
@ @ T = | [Running Master Detall am; Eloz @EEo (&)
Run Swo Scheme Meeakpoints sl Editor View Organizer

M n ©® A= = (@ [z e e [Do Sampie) [Maser) m]
., Dbug Master Detail Sampls " Tsuper ! [
B 2112 242 PM b - the

o Buitd Master Detail Samphe o
21112 242 PM 4

WD - (vold)viewiliapenr: (B00L)aninated

e] Isuper wiewwillAppear:anisated]: Themad 1: Seapemd a2 besatpoint 1|
1 }

nll = {void)viewdidhppear: (8001) aninated

” [super wicwDidAppoa,
d B

of = (void)viemiliDisappear:
il {
s [super viewdillDisappear:zanisated];
ull }
EH - o> & %4 Master Deeail Sampde |+ §f Threas 1 5 110 - [DesaiviewCamrolier viesWillinnear:] |
Local 3 Q) A Output £ Clear) (0] JHI 1) |
* [self = DesafviewConrolier *) Cubd2ctcl
B cmd = (561 Oxddcns virwitilpoes
B animated = (BOOL) NO

CNU gn 6.3,58-20058815 [Apple version gob-1788)
111

(Thu New 3 21:50:82 UTC 29
Copyright 2084 Free Sof
COB s free s

are
e it andfor distribute copies of it
wnder certain conditions,
Type "show copying” to see the cenditisms.
There is absslutely no warranty for GOB. Type
“shoe "

9 = xBE_B4-apple
arwin®.sharedlibrary spply-load-rules all

597 resolved
Current langusge: suto; currently objective-c
wdb}

Using Editors

The center of the workspace window is reserved for editing your project and its files.
As you have seen, different editors are automatically opened for the different types
of files in your project.

25

FIGURE 1.18
The log naviga-
tor keeps track
of your work.

26

FIGURE 1.19
Select the
assistant you
want to use.

HOUR 1: Introducing Xcode 4

» This section focuses on text editors; other editors are discussed in Hour 6,
“Working with the Core Data Model Editor,” p. 117, and Hour 11, “Finding
Your Way Around Interface Builder: The Graphics Story,” p. 189.

Using Editing Modes
Three editing modes are available in Xcode:
» Standard—This displays a single file in the edit area.
» Assistant—This displays two or more related files in the edit area.

» Version—If you are using source control, you can compare a file with its
previous version or versions.

> Refer to “Working with Assistant” on p. 29 of this hour for details about the
Assistant mode.

You select the editing mode with the trio of buttons marked Editor at the right of the
top of the Xcode window, as shown in Figure 1.19. You can also use View, Editor to
choose among them.

800 [Master Detall Sample_scodepra] — [l AppDelegate.h
- - - Finished running Matter Detail Sample on ifad 5.0
@(.. M, ifad s0simul.] [d SnelLoniilRes 5 @ [E||:|E| =]
ey
MmO h=w@[m o v Bmseol, m =i+ » @ e - —
Master Detail Sample | ! [77
™ &3 1 arges, 05 S0€ 5.0 3| /7 Appelegate.h 3| 4/ AppDelegate.m
3 7 Master Datsil Saspie 1 Master Ontail Sasple
¥ [Master Dot ample | |) " il i "
& addpng s| i/ Created by Jesse Feller on 2/1/12. s| 4/ Crested by Jesse Feller on 3/1/12.
[AppCelegate.h s| 47 Coppright (&) 3012 Champisin Arte Corp. ALL | ¢4 Copyright [z) 2012 Champlsin Arts Carp. All
3 rights reserved, rights resereed,
m AppDelegare.m S, T
W Master_trodern |y H
i Master.. tredierm 9 Wimport <UIKit/UIKIT.h> 8| Wimpart “Apphelegate.h”
b Do, _retiers | ¥ W
s n|| ginterface Appbelegate 1 UIResponder < 1| #import “Master¥iewController.n®
m Detailvi,.o¥er.m IIIl;;\lraI)ﬂnn!l-il!-) ™)
% Master, honeaib | 13 1| #impart "BetailVicaController h=
% Master,, iPedoah | U @sreperty (stresp, nomatomic) UIWinsew euindow: i
: n) 15| ginglesentation AppDelegate
< Dewiif..onexib | | goraperty {seadenly, strong, nonatesic) "
< Dataitn,_ pad.xib antent 1| gsymthesize windew = u.
75 Master.modeld | 18| #oroperty {readanly, strong, nonatomic) 1|| gsynthesize Iunagennnju(tnmexc -
T gedosjec thadel i —_managedit jectConte
P (Dsuppenting Filts | | aonerty (readanly, 3trong, 1||m||ar||| 13| gsyathess T2 aunspcdlbjectHadel = _managedob]ecthodel
» (] Framewaris NSPersistentStoreCoordina
(] Producrs PR LS LENTEtarSEaerdinATars] thesise dinater =
1) prreistantStoraCeardinatars
1 - (vold)saveComtent: | gsysthesize navigationCentroller =
:| = (NSURL e)applicatiosocumentsDirectary; _n
:. 1| guysthesise splitviewCentroller =
1 eroperty (strong, nosatosic) UlNavigatisaControlles LY ientontroliors
snawigatioatontroller; u
! #| - [B00Llagslication: (UlAsplication s)application
3| goroperty (strong, nosstosic) UISplitviesControlles = 21dF imishLaunchingWithOpt ions: (NSDict isnary =)
splitviewCentraller: Launchdptions
o af {
2| gend » self window = [[UTWindow slloe] initWithFrame:

UTSereen mainScreen] bounds]]:
m ## Owerride point for customization after

agplication lawnch,
all &0 ([[UIBevice currentBovice] userlnterfaceldical =
- u(uu-xnuruceuu-mn:l i

1
T UTavigat ntreller siloc]
+I 0@ H (& | AnitWithAnatVisaCantraller:

Using Editors

Using the Jump Bar

The jump bar appears at the top of the editor area no matter what mode you are in.
As you can see in Figure 1.20, the jump bar above the editor area shows the path to
the file you are working on relative to the project and lets you quickly navigate to a
file, method, property, or class in the file. If you have several files open (as is often

the case in Assistant and Version editor panes), each has its own jump bar.
@ \!: (M. iPad 5.0 Simularor | [

HonSton Scheeme reakpesnts.
-naa—-ui-m»ﬁmmm |Master Desail Samgle)) AppCeh

Finished runeing Master Détad Samgle on iFad 5,05 |

Mo bisues

[y Mster Detat Samwsle

1 tarpen, K05 SDE 5.0
[Measter Decall Sample

B MasterViewContralier.h

m| MasterViewContralier.m

| DetaiViewControlier.h

m DesailViewControlier.m
 Masterviewd.. ller_iPhone xik
' MasterViewConoolier_iFad xib
' DecailViewCo...ller_iPhone xib
~ DerallViewController_iPad.xib

f on 2112,
[plain v Earp. AL rights rese

-anplieastion diginishLaunchingWahOmtiany.
applicavionwillResigrarmie:
-applicasionCidEnmerlackground

- anpliestiormllinter regeound
applicationDidBecomeAc tive:
~application®ilTerminase

gsynthesize window = _window
@eynthesise ssnagedCsjectContext =

1 Master_Detail “taveConsent
] Suppirting Files
¥ [Frameworks Core Data stack
[Produces 1 [-mansgedObjectContin
- {BOOLbagplication: (UIApplicatisn +lapplication didFinishi
Lsuacadptions [-ranagedObjeciMosel
4B ~persistentSioreCoondinator
self.window = lnul\unnn- allec] dnitWithFrame: [[UlScres L
i Dwerride point for customiration after applicatisn |
11 [ffuIDeviee curuunzuuel userInterfaceldion] == uzus APplication’s Documents directary
Hagtartima smattarvisController = [[Msstei (I -appleavionDecumentsDireetsey
" Haste t hone” b il
self.naviga ont ol'er = [[uINavis 1ounntnnre r atloc] InitWithRestViewCont rallers
sasterviewController);
n self.uindo, restyieaContreller « Self.mavigats
0 BagtarUinaCont ral lar, nansqeslh]actlonte
¥oelse {
Hastervien masterviewtontroller = [lMasterViewController allec] initWithhithose:
gMaste Ller_irad” bundleznills
UINavigatin ontrolter = | tonContratler alloch
An1tWIThRSSEY LeuCant rol LarsmastarvisaCont roller]
CetadlViewlon Ic sdetailViewlontreller = [[PetallViewController allec] initWithWitNase:
“0e: soller_irad™ bundle:nill;
ler sdetaliNavigationController = [[UINavigationControlier alloch
thAESEY LeuCont rol Ler s detad IV ieaCont roller] 3
aller = [lulsalitvienController allac) initl;
oller.delegate = detailvienCont raller
oller viewControllers « INSATray rrayWithdbjects:masterNovigatisnController,
ncontreiler, nill;
whndo, rasthieuontratier = selt tantralle
+ 0688 nn\kfr\‘lnﬂ'nnlrﬂ\\rr detad

AUV irwtant rellers

You can use it to quickly navigate to a file or to a method, property, or class in the
open file.

Thus, at the left, you see the icon for the project (Master Detail Sample); within that,
you see a group (Master Detail Sample—shown with a Finder folder icon), and with-
in that, the filename is shown (Hourl_AppDelegate.m). The next level down is a list
of the methods, properties, and classes in that file.

TIP

It is important to note that this is the logical structure of the project, files, and
groups. If you move the project to another folder, drive, or computer, this structure
will remain the same.

Organizing Your File’s Pop-Up Menu List
In addition to the names of the methods, properties, and classes, titles appear in the
pop-up list. You put titles into the file using a pragma directive:

#pragma mark - headingName

FIGURE 1.20
Jump bar in
action.

27

28 HOUR 1: Introducing Xcode 4

There actually are three variations on this directive:

» The example shown provides a bold-faced heading with a dividing line
above it, as shown in Figure 1.20.

» If you omit the hyphen, the dividing line is not shown and you only have
the name.

» If you omit the name but use the hyphen, you have an unnamed divid-
ing line.

You can use the bold-faced heading with a dividing line for major sections of your
code; then use dividing lines without headings to further divide each major section.
Using headers forces you to keep your file organized because related methods, prop-

erties, and classes are physically co-located in the file.

TIP
Be aware that the code that is commented out will not appear in the pop-up menu list.

Using Xcode’s Organization Tools

Xcode keeps track of the relationships among your files. At the left of the jump bar,
the related items menu lets you quickly jump to related files. You can see the related
items menu in Figure 1.21.

Related items menu

FIGURE 1.21

) [, T Finished running Master Decail Sample on #ad 5.0 5 =
Use the related () (W) (.o sosmunnd) 3 Eloo @20 (@
A F— Braskpeints Wo livees Ganor s ganizer
items menu. |.|n , & = = i < | [} Masies Dot sasmpte) s 0) —
B :luwwlsn::mh Recent Files *
L Unaved Files P ol
¥ (2] Master Detail Sample
u add.png
F) Ao h Se———T. ALL rights reserved.
T Superciasses (7) >

| MasserviewConsrallenh -t .\ » v

m MasaesviewConsroller.m Etegtes

T Camgeries = , prrotienh

| DetalViewContraller.m prtrlier.

2 MastervienC.. Ber_iPhone.xib st Ieterfaces

% MasterviewContralles_|Pad.xib flegote
% DetalvitwCo.. ber_IPhont.xib et L) P Lotnseuy
= DtV catroliar i3 1t olud biectlontent = _mar ageddbjectlontests
Al et bjectHodel = _manageddt
[M burat, uotsamodels | | reprocess hiktorecosrdimarer = sretonrdinstor;
Assembly pnContraller = _mavigatisaControllers

wContreller = _3plitViewController;

x-,i— wppsscesamns (UIAPEL ieaton s)application didFinishLaunchingWithOptisns: (NSDictionary]
Taunchont an

self.window = [[UIWindow alloc] imitWithframe: [[UIScreen -nﬂSLr::nI bounds]);

/f Drerride paint for customization after spplication Launc

€] userlnte; i

\:r\faeﬂ:nmml\er = [[Haster! ne-(’-\ roller alloc] indthithiibhase:
h dleznill

[ivINavigatisnContral

allsel initWitrAserViewCentroller:

Ler!
otViswController m selfunavigationContrall
nas(erl‘le-co'\(rnl\er RanagedlbjectContext a SELT.managedObjectContexts

ull 3 oelse {

» HasterViewlentroller roller = [[Hast roller alloc] ImitWithMibNase:
¢*Master¥iewController_iPad® bundle:mill;

" UINsvigatisatant roller sassteriavigatioaController = [[UNavigationtentroller alloc]

antroller: entrolierl:

ler wdetailvieutontroller = [[0etailvicutontroller slloe] Smitwithsiibase:
Cont rotier. ipag bondietatll:

raller sdnfailisvigatisatontroller = [[UINsvigatisnfontrollar silac]
ViewCentroller:dctalWiewController]:

aelf aplitVie = [[uIsplitviewtontroller alloc) imit];
self spl tVAEvControlier. delegate = detadivisvControlier:

Working with Assistant

At the top of the menu, submenus show you unsaved files and recent files. Submenus
show you these types of related files when you are looking at source code. Other
types of files, such as nib files and Core Data model editor files, have different
submenus:

» Counterparts—This means the .h files for .m files, and vice versa.

» Superclasses—There is always a superclass (except for NSObject). This list
is organized in order so that the last item at the bottom is always NSObject.

» Subclasses—If any.
» Siblings—These are classes that share the same immediate superclass.

» Categories—This is an Objective-C construct that allows you to add meth-
ods to an existing class.

» Protocols—This Objective-C features lets you declare a set of methods that
can be implemented by several classes in their own ways and with their
own data structures. Protocols provide functionality similar to multiple
inheritance in some other object-oriented languages.

» Both categories and protocols are discussed in Hour 3, p. 63.
» Includes—These are the files that are included in the file you are looking at.

» Included By—From an included file, you can return easily to this file; you
can also see the other files in your project that may include this file.

With these various navigational tools available and updated by Xcode, you might
want to use the adjacent forward and back arrows. They function just as forward
and back arrows do in a browser. This means that you can use the related items
menu to explore the rest of your project and get back to where you started from with
just a few mouse clicks.

Working with Assistant

Assistant lets you see several files in the same pane of the window, and it can take
advantage of the fact that Xcode keeps track of the relationships among files that
you have already seen in the related items menu. As soon as you think about dis-
playing several files in the same pane, the question arises as to how to display
them. Xcode gives you a variety of choices, as shown in Figure 1.22.

29

30 HOUR 1: Introducing Xcode 4

FIGURE 1.22

P chad nunnisa Mactes Detd Camsls on i#ad $0 5 []
Control the Iay— Assistant Editor [show Assistant Editar TR EFc @ @)
: Version Editor 3 M
out of assistant Add Assistant Editor Rosoet
) =g

Navigatars b | Ramove Assistant Editar AGEW Lo ple

panes. Debug Area B | Reset Editor oKz
Created by Jesse Fedler on 271012,
Urilities 4 Cobyriant () 3012 Chamslatn Arts Corn. A1L
i i ; ity
- A— [ssistant Editars on Right
Show Tab Bar B sssistant Editars on Battom fort <UTKLC/AUIKIL. h

Exlt Full Screen ~MF
Fimpart “DetailVi

erface Appdelegate s BERespanser <
Ulkzslicaticadalagater

1wl editors

cked Harizontally

5 Mol tadab | B E"“[i Stacked Vartically iperty [strong, nanatemie) UIWisdow suindew:
A DaalMewCon.. Mor_Bhonexib. | Jperty [ressesly, stresg, nonatemic]
7 DetatViewCentrelles Padnlb | 1| geyethasize windoo S COTRAEN |
{5 Master Datad acdsamodeld | 3 @synthesize Ranageotnjectcontext = toraperty Treadonly, strosg, nonatesicl
e e __ranagedthjectentents edlibjee tade] smanageddtjec Hodel;
» [supparing 1| @syathesioe unaurﬂuh;x:muﬂr! - 7 snmn.-m codoaly, skroag, NonMteal<)
¥ [Framewarks managedcs actmadal; NERersietentitoraloordinator =
» [Produas || asinesize SeraistentstareCosrdinator = pErsistentstereConréisatar;
stentStoreCeardinater: |
afl asysthasice aer igatisatontrolier = '.9| {voidhsavetonteat
naigat ieaCant rollers 2 komL w)apRlicat ionbocomentsDirectorys
El esr-mueun sglitVieviantrolier = nl
itvienCantralier; | gproperty (streng, nonatemic)
2 | UlNavigationtent, lees
#[= imoLlappication: (uiapplication wlapslication | 3|
didPinisstaunchingWithOptisas: [NEDict fanary = | | gproperty [strong, nonstemic)
¥launchst ions UTSslitViewController ssplitViewControlier;
afl ¢ 2
» selfyuindon w [Uikindou alloc] | gend
in uunnn—e [[uTScresn mainteraan] 7|
n 14 Uuerrise batnt for custsmization atter
application Launc
» i ([[Il!n-nr- (urrmln!vli!l
userIncerfaceldicn] ==
uxuurmuramampnnm i
#
- I:nm.-mm.... roller alloe]
AnLERLTh s
@ RasterViewianiralier_iPhone” bundles
n igationgameoll
uigatisncontrstier allecl
initWithhost¥imetont ratia
masterviewControllerd;
u seluinda.ro fmuContraller = selfs
E at Tler
L OEX S Ll -u!enruucu -managedibiectlantast =

Experiment with the various layouts. Most people switch back and forth among them,
depending on the size of their display and the files that they are working with. Sometimes,
you are dealing with short lines of code that look good side-by-side, but in other cases, you
have large chunks of code that need the width of your computer display.

Once you are using an assistant, you might be able to open additional panes in the
assistant. Figure 1.23 shows two panes displayed, one above the other. When you have
several panes in the assistant window, each has its own jump bar.

Also, note that small widget at the right of a jump bar let you close that pane or add
another pane.

FIGURE 1.23 T e e e 1

Finished renning Master Detal Samgle om F3d 5.0 5

You can open
additional "
assistant 'a__:_..mm’::"‘ i 7 sesvercgatens

o === | 7 masser Gatail tiagte
panes. < addpeg § 2 Created by Jesse Feiler on 371712,
) AccObpate.h 8| Fr Cespright (€] 7812 Champlain Arts Corp. ALL rights reserved.
1 K
|l MaszerviewComrailer.h % #import “AppOelegate.n”
i MasterViewContralier.m |
|, | simpsrt "MasterViesCestrsller.h”
= 1
Im CetailViewControlles,m 3 mport “DetailVisController. he

7 MaseenConaier P | T @lsplementotion Appdclegate
DetwilViewCo.. Jler_iPhoneal | 5y goynpmesize window = _window;

& CealViewConroller (Padadb | | @synthesice - stontests
7 Maseer_ Dot) ¥ - jectiodsl;
= = n 5;!\('\15 ze er: oardinator;
» [_Jsupporting Files 3| gy ice navigatiententratler = _wrigaiionconioiiers
[Framewnris. 2|| Bryntaecize eplitvieuCeatrollor = _TplitViwCantrolle
» [Produts = 4w | [Coumnerparts » [l AppDelegase.h 1 Mo Selection |o@

O
£ Mpsbelegate.
.r.r Rt eail cemste

H
3
i
U U Crested by Sesse Feiter an 317
i 75 Compriged” (21 3e1a chamslain Avts Cors. ALL rights reserved.
il ot
'
"
1
3
3

#import <UTKITAUINLE. B

nll g ppOslegate © ULRacp 4

1

3| mpreperty (strong, messtemic] UIWingow =windew:

=

3 goroperty [readunly, strang, nonatomic) NSHanagedOtiectContext smmrageddbjectContext;

3| @property [readonly, strang, nonates
nill ahreperty (rasdaniy, sirong, nanatemich miers wpr
)

18 = (weidlsaveContext:

BN uhyg\l:-!im«_!nlu‘urulnrr

4

4o EE = 1] gpreserty Lstrang, nesstomic) i roller t

Using Utilities—Inspectors

Getting Help in an Editor Window

You can option-click on a word in an editor window to bring up help and documen-
tation, as shown in Figure 1.24.

000 4 Master Datall Samplexcodepra] — i AppDelegate.h 2
O - 1 Firiithed numeing Master Detadl Sammple on 034 5,05 |
() (m) (M imasoso..] [=] v Boz @=0 3
Run_ Stoo Scheme treakpoints Do Ediar iew Organizer
| ® & = » @ [=) 9 » | [ool Sampie) [daser b} h) [3 nterface
=, Master Detail Sample A i
™ B fagen 165 50 5.0
w [Master Detail Sample
& add.pog | 44 d by Jesse Feiler on 271712,
' Apsd y 8 s7 Copyright () 2093 Chasplain Arte Corp. ALL rights reserved.
m AppOelegate.m "
! MasterviewConerolier rimport UIKLt/UIKIT.h>
m MastervienContrelier.m
) DecalViewConarolier.h pinterface Apgdelegate 1 UlResponder <UIApplicationDelegates
mi DetailViewContrallerm PEFCY (HTFON. MIARTARLAL T i st
 MasterViewl . Ber_iPhane. xib B vApplicationDelegate N E
< MasteViewControlier_Fad xib nly, st

Comtext:
' s: Mame: UlApplic stianDelegate :;! I
© Y Awailabiny 08 (2.0 and later) restoretordintor:

Amttract: The UlApplicationielegate pratecol declires methads that
the

< DetailViewto. . ber_|Phane.zib
< Detaiiewt ontroller_iPad.xib
| Master_Detad. sedatamodeld
F [Supparting Files
» (] Frameworis
» (] Products

= {void)saveontext;
= (NSURL =)applicationt are img

object. These methods peovide you with infeemation about key

hing, when it 14 3bout 16 e terminated, wh
% paroperty {strang, nonj and whes knpartsst changes occur, nplersenting these methods
» gives you a chance 1o respond to these system events and respond
s|| gend apprapriatly.

Dectared Inc UiApglication.h

Reference: UlApplicationDelegane Protecol Reference

Relaned Documents: Local and Push Notification Programeming
Cuide, i App Programming Cuide

+IGEE S

Where possible, there will be two links to the documentation—the filename is a link,
as is the file icon with .h in the upper-right of the window. The book in the upper-right
opens the reference in the Organizer window, which is described later in this hour.

» Find out more about help and documentation in the “Using the Organizer
Window” section on p. 45 of this hour.

Using Utilities—Inspectors

At the right of the workspace window is the utility area. This consists of two panes
stacked one above the other. You can drag the divider between them to change their
sizes, but they always fill the utility pane.

At the top of utilities are the inspectors. They change as you select objects in the edi-
tor window. The content of the pane depends on what is selected in the editor, as
well as on which of the buttons at the top of the inspector is selected. However, as
you will see, a consistent framework applies to all selected objects.

FIGURE 1.24

31

Use option-click

to get more
information
about code
syntax.

32

FIGURE 1.25
Use the file
inspector.

HOUR 1: Introducing Xcode 4

In Figure 1.25, you see the file inspector as it appears when a file is selected in the
project navigator; if a line of text within a file is selected in the text editor, the dis-

play may look the same.

A

|enon [Master Datail Sample.xcodeproj = [k] AppDelagate.h v
M = - 1 Finithed namsing Master Detad Sample on ad 5.0 5 1 r
(&) (@) (Morasosmi] £ = | BHoz EeE (=)
Bun 5o Scheme. Breakpoints —— L — Editor View Organizer

|z ® & = = @ =

A v | [aster et 5o,

1 (11 [n) Apabeiegate. s [5 gustestace AppOeiegate |

|8

Master Detail Sample
™ B 1 tagen 15 50 5.0
¥ (] Master Detail Tample
& add.pvy

m AppOelegare.m

[t MasterviewConeroller.

m MasterviewConerlier.m

|h DerailviewCanarciier

mi BetailViewContralierm

% MasberViewC. . lier_iPhone.aib

i ¥ identicy and Type
3| sF Apsbelegate.h f

£F Master Detsil Sasple

s it

A Created by Jesse Feiler on 21712,

8| Jf Eopyright (c] 2017 Chasplain Arts Corp. ALL righte ressrved.
o

¥ rispart <UIKEt/UIKAT.he

@interface Apgdclegate @ UIResponder ULApplicatichDelegates

goroperty (strang, nenatomic) UTMindow swindow;

@oroperty {readonly, strong, nonatomich
NiFersistentStored tor wpereis

= (void)saveContext;

File Name | AppDelegate.h
Fike Type | Detaule - € header

Locasion | Refative to Croup
AppDelegae h (]

Full Path [users/feder!
CurremProjects,/Object
C/Writes /335800, e/
Master Detail Sample
Master Detail Sample/

 MaterewCoreiter_Fad xis @oroperty (reagonly, strong, nonatesic) NSManagedlbjectContext eaDekgaah

: sansgedltiectCante I

~ Cetailiewcs. s| goraperty {reagonly, o nonatosic) NManagedObjectModel = | & Locakzasion —
mansgedlbjectiodels s

Py Master Detall Sample

¥ (] Producrs - (NSURL +lapplicatisndocusentsbirectarys |
2 eproperty {streng, nenatomic) UINavigatisnContreller = |xYen amiags
nawigatioatontrotler: Tet incoding | Detault - Unicode (TH-8) &
3| @araperty (strong, nenatosic) UTSalitViewCantroller = Uit Eningt [Default - Mac O3 X { Uni... *
splitViewontroller;
5 et Ling | Spaces
o Witk 2[i] 2|3
Tab indent
o Wrap lines
+ 0@ H (@ Djil| s =

At the left of the top of the inspector, the small icon lets you view the information
about the file you have selected. Information about the filename and file type is
available. Each section of the file inspector has its own heading; you can expand or

collapse each one.

These settings are self-explanatory, but one of them needs careful attention if you
want to avoid problems. The location of each file can be set to one of six settings:

» Absolute Path

» Relative to Group

» Relative to Project

» Relative to Build Products

» Relative to Developer Directory

» Relative to SDK
Relative to project means that if you move the project to another computer, folder,
or disk, all the files within the project move together and the internal file structure
stays intact. An absolute path is great if the path is to a location on a shared server

that a number of people will be using. In that case, the project files stay in one
place, but the developers can move from computer to computer.

Using Utilities—Inspectors 33

Relative to Group can be a good structure for a multiperson project where compo-
nents are being developed by different people at different times. Each person can
structure a group without worrying about how they will be arranged together. The
remaining choices are useful in specific cases that typically are involved with large
projects or special conditions.

TIP

Of course, by using a source code repository, you can handle the issues of sharing
and version control easily.

To the immediate right of the file inspector button is a Quick Help button. If an ele-
ment in the editor is selected and help is available, it will be displayed as shown in
Figure 1.26.

CEEE F Mastor Datall Samplexcodepra] — [N AppDelegate.h . FIGURE 1.26
Q \- ™ -Pzdsus-mul a Finithed romsieg Masier Detail Sampie on i3 3.0 5 Blos EeE (&) Quick Help is
o s
editor View, . Organirer X
Ihln 0 L = = -|_-1 > bmumlwr" Dmmh-ﬂmm| olBe| available
Master Detail Sample i i bl
¥ B0) cargen, 105 S0 5.0 3 47 Apsoelegate.h = e wherever
3| 4r Haster Detail Sasple Name: RSManagecObjectitodel X .
¥ (] Master Detail Sample
| 3| Jf Crested by Jease Feiler on 2/1/12. T LA Lt] pOSSIbIe in
@ ¢ 7 Copyright te) 3 asplain Arts Corp. ALL rights reserved. | AbstractAn edObjectiodel object .
ol| 45 coevriane ted awiz hasplain drts corp. AXL righe | Gecrtbes & petwman collecton of ennives the inspector
m AppOelegare.m H {data modets) that you use in your
i) MasterviewConsrolier.n ¥ #import UIKIt/UIKit.h =i pane
m MastervienCantreiier.m Dectared Ire NSMAnagedOBjectModelh .
- e e 1)\ pinterface Appdrlegate ¢ UlResponder <UlApplicationDelegates e T
m DetaiiewCentralierm 1l goreperty (strang, nenntoake] UIMindew swindowi e
MasterViewt . Ber_iPhane it . e
- MastrVRwCoroler ibad il | T s-smnerw {reasonly, ng, nonatsmic) NSManagedObjectContest « WHMWWWHMaHMﬁWHMMN
e ¥ X asegibiecttnte Guide, Core Data Programeming Guide, Cor
< Dl .. Mar_| Pacare. il morcperty treatonty nanatosic) NEMRRBGSEOBISCENGERY = Dara Uitey Turorial
-+ DetailViewdontrolier_iFad xib manafeainecins Sampis Code: DareSectionTities, Locations,
7 Master_Detad.. ucdammodeld | || @oroperty {readonly ng, nonatoaic) Phatolocations, TaggedLocatians,
R HiFersis < tor wpersis
» (] Framewarks) = tvoid)saveContext;
(] Products | - (NSURL +]agslicatienDocusentsbirectory;
2| goroperty {streng, nenatomic) UIKevigatisnController =
nawigatioatontrotler:
#| @oroperty (strong, nenstosic) UISslitViewController =
plitViewController;
5
)| gend
4100 E® | Dlilje =

In Figure 1.27, an Interface Builder document is open. The file inspector is still the
left-most button at the top of the window, and its data is much the same.
Immediately to its right, a help inspector will reflect information about the selected
item in the editor. However, new inspectors are available to let you inspect items in
the interface.

34 HOUR 1: Introducing Xcode 4

FIGURE 1.27 ®00 5 Master Detall Sample.xcodepro] — DetailViewController_iPhonexib F
Inspectors (m St tesimmem i o) [og @E=E =
change depend- £k =
ing on what is v B P B Paceholders] ¥ Sk
H G Lkl
selected in the R e e Sl & ries ommer T e
ditor. e— B
e . | drm on o multilie lines of static hext, sxch
s those you might use 10 identify other
interface. The base Liabel

parts of your user

class provides control over the appearasce of
your text, including whether it uses 3
shadow or draws with a highlght. If needed,
Yo €am customize e appearance of your
text further by ssbclassing.

+1 @@ 8o e bl Djije =

For example, in Figure 1.28, you see the Identity inspector in action. It identifies a
selected object in the interface.

FIGURE 1.28 - Fished reseing Master Ostad Sumeie o Fad 5.05
Use the Identity 2

inspector. v g Master v v Custom Gl
1 targer, 106 SDIEE.0 vy [T Shew the lentiny insgsetor|
v [Master Detall Sample: 5
& st png =] ¥ _User Defised Run
B n { [key Pach | Type Value
Agplitiegate.m
MasterViewCantralierh
MasterViewContralker.m
DetailViewControlier.h 1
DesailViewControlier.m T+l
A MasterViewC. . ller_Phone xib 1 ;" w‘
~ MasterVorwConoraller_iFad it
Lt [Kot Sowcific Label
XB e
17 Master_Deal.. xcdaamedeld ObfectiD 4
»E%_Imlm Lock | Inherited = Nothing)]
» o oducs Notes) Show With Selection

+IOBE® e] L bidhio m

» Refer to Hour 11, p. 189, to find out more about how you can use these
inspectors to set everything from an object’s location to its behavior as

people type in it.

Using Utilities—Libraries

Using Utilities—Libraries

The bottom pane of the utility area is for libraries. These are collections of items that
you can add to your apps just by dragging them to the appropriate place in an editor.

» More information on libraries is included in Hour 11, p. 189.

The selector bar at the top of the library pane lets you choose from four libraries:
» File templates—[ctrl][option] [command]1
» Code snippets—[ctrl][option][command]2
» Objects—[ctrl][option][command]3

» Media—[ctrl][option][command]4

You can also use the View, Utilities submenu to select the library you are interested
in. If the Utilities submenu is hidden, use the View menu or the rightmost of the
three View buttons at the upper-right of the workspace window to show it.

TIP

Alternatively, if the utility area is hidden, choosing View, Utilities, File Template
Library or any of the other commands in the View, Utilities menu will show utilities
and select the appropriate library with one command (or one keyboard shortcut).

Figure 1.29 shows the general components of the library pane. At the top of the
library pane, a pop-up menu lets you navigate to sections within that library. To its
right, buttons let you display the contents of that library as icons or in a list. The
icon view can make finding images or objects such as graphic elements very fast; for
other items such as code snippets, the list view is better.

At the bottom of the library pane, a search field lets you filter the library shown
above it.

When you select an item in the library, a description appears floating over the edi-
tor area, as shown in Figure 1.30. This description is generally somewhat lengthier
than the summary in the library list.

File Templates Library

These file templates give you a headstart for whatever type of code you want to
write. The pop-up menu at the top of the library pane lets you choose between iOS
and Mac OS X file templates.

35

36 HOUR 1: Introducing Xcode 4

FIGURE 1.29
Use the library
pane to take
advantage of
existing code, 5] "
objects, and
media.

o [Mster Dol Samin
1 rasper, W05 5D 5.0
[Master Decall Sample Clans [LiLabel &l
&) 384 g (=] ¥ User
1 | Key Pach | Type value

¥ [Frameworks B Gesture Mecogoizers gepes touch
I Otiecrs & Conroliers JEIs9E 23
[windows & tars -

(] Custom O8jects En

“Taxt Fiald - Diiplavs editabile text and
Tent | sends an action message 1 a e
eafect 3

TGP the COrurol o9 Toggh The valie.

Activity Indicator View - Frovides
fetdback on Ehe progress of 2 task o
oyt of unknows daratien,

| ress View - Depiet the progress
- ::'Illkmfm.

0 | (B Page Control - Disseys &t for cach
+IGEE B plc ;)])]

FIGURE 1.30
Select an item
in the library v [st e samaie
. 1 targer, W05 SDK 5.0
to see its [Maseer Deuall Sample
description. @ sestutsom

— r———
Clans [Litabel v

¥ User
{ |Key Parh | Type alue

BT

I TN N
i r———

Label - & varlabily sleed ameurd of
Lanel static et

L T iy - 1 Reund Rt Bution - nerepts teuth
-[]mmmﬂ-mm-ﬂwma

) Temt Freld Tarlt et wha W'y

e irensiea 7 Segmented Comarol - Displays
1 | 2 | rmutiple segrests, rach of wheh
Diaplays o e th furetions a3 3 digcrene Bunon.
When 3 uter Laps 2 text fleld, 3 keyboard appears whes 3 user
1ans Retur in the ieyhoard. the keyboard Sisappears and the | “Taxt Fiald - Ditpla ediabile text and
b die ¥he g 1 " SO WAy, Text | senes an actioe messape 12 rarge
UTexafield supports verley views to display addiional 3
iformarion, such as a bookmarks icon.
provides. clear text comtrol 3 user Lot 1o erase the contenty
tha test Meld.

. Stider - Displays a carsinusus ringe of
«r ot 240 Lhous e Ve 8
slaghe vake.

= Smitch - Ciiplays an eleroest showing
(Done) the bocikan state of valoe. Allows

T

l 1 Activity Indicaror View - Frovides
feddback on Ehe progres of 4tk or

peoses of unknowes daration,

| ress View - Desicts the progeess
- ::'Illkmm.

0 | [N Page Control - Bisslos o orcach
(=])

+IGEE B plc ;)

You select the appropriate file template from the file template library and drag it
into the project navigator, as shown in Figure 1.31.

TIP

Remember, that for this to work, you need to have both the project navigator and
the file template library visible.

Using Utilities—Libraries

|4 Master Detall Sample.xcodepra] — |m AppDelegate.m e
Finished running Master Detail Sample on #3d .03
#impart "MasterViewlontroller.h” ¥ Chuick Help.
¥ [Master Detall Sarogie 5| eispart "DetailienCentroller.h” PGt
rﬁm"h’.‘“ r 1| pimplementation Appbelegate Hame: UTableViewController
|| geynthesize window = _windous B & =m "
h) MasterViewControlierh @synthesd - i = ——
— o n = __manag 1:] Fite Template Libeary :] 2255
2t 2| gy P -
h! DetailViewContrelierh —persistentStorefoordinator; I
2 antraller = _navigatisalontroller; " Objective-C class - An Obpeaive-C
E“‘MM | = H et = ipil eliers . clads wth & heade fo Cocea Touch
- Phone. | Lo
£ MasteiewConroler WPed.b | | - (BOOL)epplication: (UIApplication nlspettetson OORCEReT SR
 CacailViewCo.. Mer_IFhoned | =N f&" SRlechra-C iw ceatioler bl for
e e Xl) selfowindow = [[UIWindow allec] indtWithFrase: [[UISereen
n_:"mhr_ﬂml uedatamadeld mainSereen] Boundsil: Objective-C
+ [Supporting Files | /4 Guerride point for customization after asplication launch. o :ww“""_.““,‘d"h
af 't | ot
» (5] Framewarka UluserInterfaceldionFhone) { —
» (] Producs » msuE\rm.cnn aller; smasterviewController = v
Mo tnrvimaController, allo] initWithibHames Objective-C protocel - An Dbjective-
#"HasterVicatant raller. iPhone® bundlesnills Tt ¢ protocel for Cocoa Touch
» self. aControtlier = | ontratler siloc) | -7
n Se11 window, roatVicuController = 3elf,navigatisatont rollers Objective—C tast case class - As
L . ontroller.] = self, © Dbjeceive € class containing an OCUni
N managedibjectContext] I S Case winh @ header for Cocod Teuch
) nlae {
» Haster¥icuontraller, ssastec¥iewCentraller » -
eralloc] initWitiiibHase | eader pie - A besder me
ns::xuam:nntro\l:r iPad” Bundleinill; 2
" uiNavig ther =
uumnuuauancemuuer alleel -
Alerl; C € File < A file.
» .
” Betail¥ienCantroller =detailVionontroller = =
[[Detailviewtontraller allocl initWithiibNese: e
“DetailviewCant raller_ifad® bundleinill; Cos Flin-ACes He
" UlNay igat ioncostraller sditailNavigat iancontroller = L
[fumavsgationcantrolier stiocl ——
: idetadl terl; e
+i0@8® | I o a8

You can also use file templates by choosing File, New, New File, as shown in Figure 1.32.
The templates in this interface are shown grouped by their SDK and area of func-
tionality. However, as you can see in Figure 1.32, by comparing the descriptions of
NSManagedObject subclass in the library and in the sheet, they are the same. The
menu command gives you the organization by SDK and area, while the library pro-
vides you with the ability to search with the filter at the bottom of the pane. The
choice is yours.

Choose a template for your new file:

B ios

i
i o
3

Cocoa Touch
Cand C++ L Es
Inverf; e =
LN Bgrines Objective-C class Objective-C Objective-C protocal Objective-C test
categary case class.

h < O £

Header File CFile 44 File Application

User Interface
Core Daa
Resource
Other

|"'|.

[T
=

' Objective-C class |
o

An Objective-C class, with implementation and header files. ‘

[Cancel | Previous | [EiNestis] |

37

FIGURE 1.31
Use a file
template.

FIGURE 1.32
Use either the
library or the
menu to access
a template.

38

FIGURE 1.33

Select a snip-

pet to see its
contents.

HOUR 1: Introducing Xcode 4

Code Snippet Library

Code snippets can only be dragged into text editing files. They provide common
examples and templates. The pop-up menu lets you choose from iOS, Mac OS X,
and your own snippets (which you can add).

If you select a code snippet, its code appears as shown in Figure 1.33. Sometimes, if
you have just forgotten a small piece of syntax, this refresher is enough and you do
not have to worry about actually dragging the snippet into your file. Other times,
the snippet gets you started with your own programming.

@ \!: (M. iPad 5.0 Simuluoe] [0 Finished ressing Master Detad Samebe on iPsd 5.0 5 [= (== L [=] C1 =]

Run Stop Scheere. Wreakpeints. B biawes Fetibess Cuganizer

|lnan-—--]-|<rl'_"|-. 1l] 1 o |||

[y e Detal Lamgle 7 ¥ Ok Help |
1 tarpe, 405 S0 5.0] I

3| pispart “appbalegate.n MastarViswController ;
UrTaseviewController
Mame: UNTableViewCantraller

w [Master Dietall Sample

#import “MasterViewfontroller.h®

= #import "DerailViewCentrsller.h” Awailabicy: 105 (2.0 and later)

Abstrace: The UITableViewController class
0 i #isp ation Apgbeleg Ermates. 3 comtroller chject that masages 3
| MasterViewContraller.m

rasle view. It impiements the foiowing
B BeeailVienControlier.h o

m) DerailViewControlier.m

' MasterViewC . ller_iPhone xib

~ MasterviewControler_iFad xib

~ DecailViewCo.. ller_iPhone xib

~ DetailViewController_iPad.xib n

17 Master_Desall._xedatamadeld | 5| = (B00LJagplication: (UlApplication =)application € Bhock rypedet - Used for defining 3
I) 444 LnishLaunchingMisnOp Lanss (NSDLCt Lanary +]launchOptians {}]

Beynthesise windo
ynthesize managedobye ext =

@eynthesize managedobiectModal =

Bsynthesiee persisteatStoreloording

sonjectContex Dactarad b LATablaViswCantraliorh
| Refmrnece: LETablaViswControllar Clas.

olilo = |

([l Code Snippet Library BIEIE

_persistentitaretoord
ynthesize navigatisntontroller =
@synthesize splitViewlantroller =

Cinline Biaek as Variable - Used fze
fer application launch, { } | saving 2 biock 3 varable 5o we .

ce c.rmnn:ncel perinterfaceldica) = pass 1t &3 &8 argurest mehipls times,
UtBserinter facels LR

er¥iewController =
sllac] Enituithiibians: { } | crvmeder - uscd tor definiog a rroe.
#*Ma: ler_iPhonc” busdle:nil
ler = [[UINavis Gaunncnnnc Aer nl\n(l
{ } Cé4+ Class Declaration - Used far
Gescribing & new dadt <ortai
{}] oot conch mack s b et enctioes
Al Maforms.
te
Ty d £} Sor Glaas Temotase - Used v deen
A S— a mew class templase.
¥ catcn | catch parameter) {
statements
{ €+ + Function Templace - Uied i
defise @ new function template.

C++ Kamespace Definition - Used
{ } | 10 detne & new namespsce o exsend an
« exasing namespace.

G Ty J Cateh Slock - Used for
{ } | 1myng o execine code that mis
hit et an eaceplion, i catehing 3

LI OEE e “ e . 3 o

Try It Yourself
Add Your Own Code to the Code Snippet Library

Add your own snippets to the library to save time or to enforce standards on your-
self or your colleagues in a multiperson project. (A particularly useful snippet would

be the copyright notice you place at the beginning of each file if you want to protect
your work.) Here’s how:

1. Show the User section of the Code Snippet library. If necessary, show utili-
ties and choose User from the pop-up menu at the top of the library pane.

2. Select the code you want to make into a snippet.

3. Drag the code into the Users pane of the code snippet library. It will appear
in the list, as shown in Figure 1.34.

Using Utilities—Libraries

Finished runnieg Mastes Detad Samgle on ifad 5.0 5 l

AR

Eas [=]]

2| @ipsthesiee fetchedRessltstontroller =
2| Beysthasize -

8., .
nibBungLEO MLl

i
self = (super

1
i fseund ¢ ,
self.title = NELocalizedbtring (@ Master™, @master~];
if [[[UlBeuice currantbevice] useristerfaceldioa] == ©
UTuserInterfaceldioaPas) {
self.elearselect LonboVinil Uissear = NO;

b
return selfy
H

u E twaidldideceivemenaryWarning

lsuper didReceiveMenaryMaraing]:

n | - Rilckse oy cechad Hates 186pass #T€ THAE BFEn'E 4 Wl
o

#pragma mark - View Lifeeyele

= Gesidlviedidlond
i

(super viewDidLosd);

| nib.
+ | DEE (™ - J7 58t up the adit sad add Buttons.

selficantentSireforvicuinPopover = COSiechahel320.B, 00.0);

£7 Do any additional setup after losfing the wiew, typically fros

hon i Mo lswas
BT ® b6 = = B [= 4> Fvase [m L@ | 0@ |
Master Denadl i -
™ By argen s 5ok 5.0 3| 4 MasterViesont AT
- 1 i7 aster Betatl MasterviewControlier :
¥ [Master Decall Sample oo UITableviswCantraller ; UNiwCantralles
4 addprg § /F Crested by Jesse Feiler on 3/1/12. ReceiveMemaryWa
K| AppDekegate.h © 1S Copyright (2) 2812 Champlain AFts Corp. ALL rights reserved. i o
legate.m o IveidldisRece iveRemerydaraing
h) MasteryiewCommalier + #impart Mastervimstontroller.s Aailabaliy: 135 (1.0 and Later)
= MasteriewControlier.m W Mastract Sent 1o the view conrolier when the
Th] Demavewconralerh i #imsert TDetailVieont roller. i eyt ek e e
| DetaiiewContraelier.m 1)) gistarface MastarviewCantroller [} Schied b TmCon .
4 MasterViewC...lier_Phoseain | 1| - T 1 sheell |
[HSIndexPath o] indexPaths Dt e =
e | (e — T
gimplenantation HasteriioControtler k
@systhesise detallViewtontroller = _detailViewControllers [[Ll H?MMM‘"'""MM-':WW
fetchediesy troller (i

{LLI. Rows for Saction Code

|

void)didReceiveenarydarning

4. Provide a title and summary. Also, check that the code is complete (check
the first and last characters in case of sloppy mousing).

5.

Provide the other information (optional). The more information you pro-

vide, the more useful your snippet will be. In particular, specifying the lan-

guage as shown in Figure 1.35 will remove it from the code snippet library
for files that cannot use it. And, of course, a title other than My Code

Snippet will increase the usability of the code.

AppleScript
ARM-Aszembly
Rourne Shell Seripr
c

C Shell

C++

Core Data Model
css

Intel-Assembly
Interface Builder

Java

JavaScript

JSON

Localization Strings File
Manual Page
Objective-C++

OpenCL

Perl

PHP

Plain

PPC-Assembly

Python

Ruby

Text Plist

Xcode Configuration File
XML

39

FIGURE 1.34
Drag the code
into the library.

FIGURE 1.35
Identify the
snippet
language.

40

HOUR 1: Introducing Xcode 4

6. Click Done, and your snippet is added to the library.

To change the snippet’s name, summary, or other data, select it and then click the
Edit button, as shown previously in Figure 1.33. Click Done to save the changes.

Object Library

The Obiject library contains objects you use in building interfaces. This includes visi-
ble interface elements, such as views and buttons, as well as objects that work
behind the scenes, such as view controllers.

» See Hour 11, p. 189, and Hour 12, “Finding Your Way Around Interface
Builder: The Code Story,” p. 209, for more details on developing your app’s
interface.

Media Library

The Media library brings together media files (icons, sounds, and images) from your
workspace or from the system. Particularly when you have large projects, this helps
you keep things organized. It also means that in creating your file groups, you can
organize them functionally rather than putting all media files in one group and all
code files in another.

Using the Text Editor

The text editor in Xcode is similar to many text editors that you have probably used
already. Two areas deserve your attention even if you are used to using text editors:

» Editing preferences—Xcode provides extensive preferences for displaying
and auto-completing code. Even if you have used other text editors, take a
quick look at these preferences so that you can find out what'’s new in
Xcode and, if you are used to another text editor, how to customize colors
and behaviors to what you are used to.

» Fix-it and Live Issues—The LLVM compiler in Xcode 4 is not just for formal
compiles. Its engine runs in the background checking syntax as you type so
that errant keystrokes are caught in many cases as soon as you make
them. Not only is the LLVM engine looking for misspellings, but it is aware
of common syntax errors that can take a long time to track down, even
though they are absurdly simply (once you know what the error is). One

Using the Text Editor

such error is demonstrated in this line of code that almost every developer
has typed more than once:

if (x=38) {...

That is a replacement statement, not a logical comparison. Fix-It would most
likely suggest the following:

If (x==38) {...

Setting Editing Preferences

As in most Mac apps, preferences are set from the application menu (that is, the
Xcode menu in this case). Tabs at the top let you set different collections of prefer-
ences, and, as in the case of text editing, further tabs let you set more details such as
the editing and indentation preferences.

Figure 1.36 shows the editing preferences. Most are familiar to users of other code
text editors, but two may be new to you. The code folding ribbon appears to the
right of the gutter and the left of the main text editing area. It lets you collapse
blocks of code so you can focus on other areas. If the code folding ribbon is shown,
you have a further option—to focus on code as you hover the pointer over it.

eno Text Editing

T N i

Ceneral l!llmnrs qu&cdnrs TextEditing I';wllndimu Dawﬂloud; lnuuoﬂ; Diswibuted Bullds

SEOEW Indentation |

Show: (¥ Line numbers

™ Code folding ribbon
_| Focus eade blacks an haver
Page guide at column; 80

™ Highlight instances of selected symbol
Delay 0.25 1] seconds

Code © jon: ™ Suggest « ions while typing
™ Automatically insert elasing "]

[Balance brackets in Objective-C method calls
Miaupe key shows code completions

Default text encoding: | Unicode (UTF-8)
Default line endings: | Mac 05 X/ Ui ()

Convert existing files on save

FIGURE 1.36
Set editing
preferences.

41

42

FIGURE 1.37
Highlight blocks
of code by
hovering

over them.

HOUR 1: Introducing Xcode 4

Figure 1.37 shows this behavior in action. Note the folded code in

shouldAutorotateToInterfaceOrientation.

Finished nansing Master Detad Samgle on iPad 5.0 5

Q M. iPad 5.0 Simulator | [
o s

Ha& & @HoE (=)
e Conoirecy |

Fatitar

A poes
.jﬂﬂ&—-ll-|1 b | P Masser.. ;1 | i |

v [By Master Detal fameiy [suger viewDidUslesd] s

1 tarpen, K05 SDE 5.0 .,- 74 Releste any retained subviews of the main view.
¥ (| Master Detail Sample #l, e seitmtetier - all;

& addpng =

h] AgsDelegate h &

= lvnid)viewWillAppear: (BOOL lanimated
i

" [super viewWilligpear saninated]:
ufl }

b DetailViewControlier.h &7 = {voidiviewDidAppear: (BDOLlanimated
| DerailViewControlier.m
A MasterViewC . ller_Phone xib
o~ MasterViewController_iPad xib
DecailViewCo.. ller_Phone xib
= DecallViewController_iPad.xib
1 Waster_Desail.. xcdasamodield

] Swpparting Fibes.
¥ [Frameworks.
[roducts

" [super viewDiddgpear:aninated]:
nfl }

1|l = {voidiviewillDisappear: (BOOL)anisated
i

[super wieWiliBissppear:aninated]s
¥

= lvoidhwiewDidDisappear: {D00L)aninated
i

[super viewbidDisappear:anisated]s
¥

- {nooL olnter
{UTImterfaceOrientat ion) interfacer ientat ion
al {=}

Customize the nusber of sections in the table view,

¥ Ouich Help

MastarViewControlier ¢
UlTasleViewController : UlviewController
Mame: didReceiveMemaryWarning
Declaration: -
(veid)didheceivedenoryWarning
Avalability: 105 (2.0 and later)

ABSIrack: Sent 10 the view controlier when the
application recehers & memary masning,
Declared Ix: UNViewControllerh

. Bafarasss: L saCanresdler Clase

I Diilie =
illur 3|83

{ 1| My coe saimper - Masage omar
e | bettan e i9ad retaticn

{‘.._ My Code Snlppet

{ ‘L-’ Rews for Section Cods

- [UITableView =

= INSInteger]tableView: (UITable¥iew) tableView
afRowsIngection: (N Integer] sect ioa
i

id Ltasectionlnfer
fetchedhesultstant
return IsectionInfo nusberdfosjects];

B3 ssasgpzaax

#¢ Customize the agsearance of table view cel
= AUTTableViewtell =) tableView: (UITableVies -]:.h\.—\r.n.
cellForRowAtIngexPath: (NSIndexPath) indexPath

static NSString sCellldentifier = @"Cell™;

UTTableVicwCell weell = [tableV.
cmu:u:ﬂeuu‘.\\gl::llifnh[cenuher Cellldentifier];
i (el me i
£ell = uulru\wm«:eu allog] fmitWithStyle:

+I B8 B

i
return ((self, fetemesResultsController sections] eoumtl:
¥

[selt,
Faller sections] cejectatindexssectionds

Many people have this option on at all times. As you move the mouse over code,
you will quickly spot unmatched brackets or quotation marks because the highlight-
ed block of code will be illogical.

Syntax-aware indenting can be set, as shown in Figure 1.38. Just as with the high-
lighting of code in the code ribbon, this can provide an early warning of unbal-
anced punctuation.

FIGURE 1.38
Syntax-aware
indentation
makes your
code neater

Text Editing

and catches Prefer indent using: | Spaces s]
some keystroke Tabwidth: | 2|[] spaces
errors as well. Indent width: | 2[2] spaces
Tab key: | Indents in leading whitespace 3
Line wrapping: (¥ Wrap lines ta editor width .
Indent wrapped lines by: | 4 |.] spaces

™ Syntax-aware indenting

Select vo automatically indent code when |
|typing or pasting, based an its syntax

lpaces Automatic indent for:

|_lindent // comments one level deeper
|| Align consecutive // comments

¥r @1 ¥v
™ M #Rewm

Using the Text Editor

The final preference you should look at is Fonts & Colors, as shown in Figure 1.39.

eno Fonts & Colors
4 [gay | A) B [H
General Behaviors | Fonts & Colors | Text Editing Key Bindings Downloads Locations - Distributed Bullds
Theme Source Editor | Console
— Plain Text
Comments
Default
Documentation Comments
i Documentation Comment Keyweords
Low Key Strings
Midnight Characters
fr—— 7 | Numbers
Keywords
Printing
Preprocessor Statements
Sunset URLS
Fomt .

= I
Selection

Background Cursor Invisibles

A variety of predefined styles is available, and you can switch back and forth
among them as you wish. The color wells at the bottom of the window bring up a
color picker for you to use to replace any of the colors in the theme for the syntax
element that you have highlighted in the main body of the window. The font for the
highlighted syntax element is identified in the font field; click the T at the right of
the field to bring up the font panel and change the size, style, or font.

Among the provided themes is one called Presentation. For some people, this is one
of the most frequently used themes. Whereas the other themes ship with fonts that
are 11 points, the Presentation theme ships with an 18-point font. Not only is Xcode
used to build Mac OS X and iOS as well as Apple apps, it is also often used to pre-
pare slides for conferences such as the Worldwide Developer Conference—and that is
where the presentation theme comes in handy. Even if you are not presenting at
WWDC, the Presentation theme can be useful for code reviews and documentation
in your own organization.

Using Fix-It and Code Completion

Xcode is constantly indexing your project and its files in the background. As it does
so, it can provide code completion (type-ahead) tips for you. Figure 1.40 shows this
feature in action. As you type each character in a symbol name, a list of the possi-
ble completions appears. You can select one of them or continue typing to narrow
down your search. In many cases (such as your own variables), there is no list; there
is just a grayed-out completion displayed. Pressing Return accepts the completion.

FIGURE 1.39
Set Fonts &
Colors.

43

44 HOUR 1: Introducing Xcode 4

FIGURE 1.40 @00 Master Dotall Sample xcodepra] — (1) AppDelegate.n 7
Finished ruseing Master Detad Sampile on 193 5.0 §
Use code L} . o« [E= 5]
A oo s
completion. =
‘Detail Sample IR Owick
e e 3 07 Agsbelegate.h ik ol
'._Imﬂ‘ n : ;; Master Detail Sample
& add.pog 8 /f Created by Jesse Feiler on 2/1/12.
e 8 27 Copyright (c) 2017 Champlain Arts Corp. ALL rights ressrved.
i AppOelegare.m 4|l
h) iasterViewConomlier.h ¥ pimpart <UIKLt/UIKEt.he
.5 s by «TAppl
h) DecailViewCenereiiern ull » : oy 9
1| Code Sni)
e S I (!]f'.r..,.,,‘.:..“ i
% MasterViewE Ber_[Phanexib |
e rviewt ontroiler_ Fad) goroperty (reasonly, strong, ontext «
£ b E Ill\n“!lﬂh]eﬁt:ﬂméﬂ‘i“
% DetailViewCo.. Ser_Phone b | || gocoperty (readonly, strong, nonatosic) NiMansgedObjectModel = {1} v Code Seiper
~ DetailViewController_iPad.xib managedlbjectiodel: 138
175 Master_Detad. sedatamedeld | ¥ oornnm,- {readonly, strong, nonatomich
* [Supporting Files . e ' L]1 Rerws for Section Code
(] Framewaris) = tvoldisaveContext; _[.'wv.'
hufmdtm M| - iNSURL ‘]l”llﬁl\mﬂﬂ.&ﬂtﬁﬂlmﬁ‘ﬂf’-
n
|| goroperty (streng, nenatomic) UIMvigatisnBar e
navigatioatontrotler;
n
% @oroperty (streng, nonatod [UiINavigationCentrolie
B C
E]
| gend @ v
L wint
uintik
B ummis_civi
B umris_nax
wintis t
uIntaz
410 EE pY | ®

You will note that in a case in which there are alternatives, Xcode indicates what
type of object each one is. Figure 1.40 shows several classes and typedefs.

Finally, the LLVM engine tries to catch syntax errors as soon as you type them. It
will flag them with warnings or errors in the gutter; clicking the symbol will bring
up the error itself and, if possible, a Fix-It, as shown in Figure 1.41.

FIGURE 1.41 : F Master Datall Sample xcodepro] — (1] AppDelegate
Use Fix-It.

'’
Apsdelegate.h
Master Detail Sample

Created by Jesse Feiler on 2/1/12.
Copyright fc) 2917 Champlain Arts Corp. ALL rights reserved.
#import <UIKAE/UIKEt.h-

o T “yTAppl

gproperty [strong, menatomic] UlWindow windew;

Soroperty (ressonly, strong, antext =
Ransgedls]ectContext;
Boroperty (ressonly, tiroeg, nonstosic) NiMansgedObjectModel =
manpprd0bjectiodel:
eroperty Ireadonly, strong, nonatomich
sistentStoretoordinator wpar

et
‘ _
» | lzvwe @ Expected " at end of deckararion st | || mows for Section Code
H| - ANSURL ""Dﬂ\lﬁl‘lﬁnﬂﬂﬂ-en‘tﬂlr!ﬁ‘
-
@ 12 gproperty (strong, monatomic] UIm snavigatioaControlle
,

3| gproperty (strong, sonatomic) UISplLitViewContraller =
splitViewantroller;

5|l mend

+1 06

You can press Return to accept the Fix-It.

Using the Organizer Window

NOTE

With both code completion and Fix-It, do pay attention to what you are accepting.
Certain types of errors can generate incorrect corrections or completions. The
main benefit may come simply from stopping you to let you know there is an error.
If you automatically accept any suggested correction, you are likely to make the
same type of mistake that can result in using the wrong word in English.

Using the Organizer Window

The companion to the Xcode workspace window is the Organizer window, shown in
Figure 1.42.

800 Organizer - Projects "l
Devices. |m Aschives
i MultipleDetailViews
Ecl;:‘;:.. T2, 2001 3.48 P L Location Users/jfeiler IPrajects Objextive-C/Research/MultipleDetailViews /MuipleDetailiews aodep) ©
- = Status Last opened December 12, 2011 4:46 FM
Py Junk —_
S December 10, 2011 10:28 AM
1y Testhed N -
= December 8, 2011 5:33 PM Derived Data =L o Delete...
%, Test Master Detall o S . .

L December 4, 2011 12:45 P Snapshots =L Ji itz © (_Delete...

y Testbed
5 november 28, 2011 246 PM

Simple Mae

:wﬁu;:n_‘fﬂuum CIECTETDD User Created Snapshots. Q
[y Simple Mac App SoapTyita

£ November 28, 2011 2:45 P10 § Before upgrading to latest recommended settings and perfarming project elean up

1, MinutesMachine §El Awromatically generated by Project Clean Up

£ Wovember 27, 2011 2.06 M

Simple 05
[~ oty ?h_.gngu 557 PM

unk
:Loxm‘xr 15, 2001 10:12 AM

Extimator
3 Grioher 22, 2011 2380

s Syntax Demo
] Gierabuer 22, 2011 11:06 AM

i test
= Getabar 2, 2010 457 PM

Extimarer
B 1t round.

Estimator
& Kot Found
Lstimator
B het Faund.
Estimater g
B R [¢ o
P Export Snapshot Delete Snapshot

The five tabs at the top let you switch from one view to another:

» Devices—Primarily for iOS, this is a list of devices you have provisioned
through Apple’s developer program. This process is described on developer.
apple.com. It is the process whereby you present your developer credentials
to Apple and receive a digitally signed signature that lets your app run on
specific devices that are listed here.

» Repositories—Xcode supports industry-standards Git and Subversion as
source code repositories for version control. Both are widely used

45

FIGURE 1.42
The Organizer
window keeps
track of files in
repositories
and archives,
projects,
devices, and
documentation.

46

FIGURE 1.43
Use snapshot
at critical
moments in
restructuring
your project.

HOUR 1: Introducing Xcode 4

open-source projects. Xcode puts a graphical user interface onto them. The
functionality of both is the same in Xcode as it is in other environments.

Projects—This tab lets you organize snapshots of your project created while
working on your project. You can create them manually from File, Create
Snapshot, but it is easier to have Xcode create them automatically at criti-
cal moments. As you can see in Figure 1.43, you can use File, Project
Settings and the Snapshots tab in your workspace window to turn on these
automatic snapshots and set the locations for their storage. (You can also
set these locations in the Locations tab of Xcode preferences.) Snapshots
require Git to be installed. (That is an option in the Xcode 4 install.)

Rulld | Snapshots |

Snapshots [Create snapshot of project before mass—editing cperations
Mass-editing operations inclede refactoring, praject renaming, find & replace, and
source control updates. Snapshots will appear in the projects organizer.

Snapshots Location | Default =

[Users|sams fLibrary/Developer fXcode/Snapshots ©

Archives—Archives can be used to create installable archives of your app
for deployment. There is more information at developer.apple.com.

Documentation—For many people, the most commonly used tab is for
documentation. When you click on a link in Quick Help, the detailed docu-
mentation opens in the documentation tab of the Organizer window. You
can use the jump bar at the top of the Organizer to select the appropriate
area in which to search for your topic.

Summary

Summary

Xcode 4 is not just a cosmetic change to previous versions; it is a new development
environment complete with a new compiler (LLVM) that includes an engine that
runs in the background to catch basic errors as you (occasionally) make them. This
hour helps you get ready to write code using the latest and greatest technologies for
software development.

The workspace window gives you all of a project’s data and controls in a single multi-
paned window. You can control which panes are shown, and, to a certain extent, you
can even rearrange their positions as they are shown. For most people, this is not a
matter of setting up a preferred workspace and sticking with it: Depending on what
you are doing, you often show and hide parts of the workspace window so you can
focus on the task at hand.

Xcode 4 includes interfaces to source code management tools such as Git and Subver-
sion (Git is preferred). As a result, you can manage your code—even on a multiperson
project—and keep track of revisions. In addition, Xcode provides a snapshot feature
that can capture your entire project at specific moments, such as when you ask and
when you are about to perform project-wide automated changes.

Q&A

Q. What is the best way to get started with Xcode?

A. Use it. Open it and create a test project based on one of the built-in templates.
Explore and experiment, and then throw it away. If you start working with it
on a real project, your beginning mistakes will be around to haunt you for a
long time.

Q. What is the best way to handle the periodic updates to operating systems
and SDKs?

A. Registered developers are notified in advance of these updates; you can down-
load the pre-release versions of both OSs and SDKs as well as new releases of
Xcode. This enables you to test your apps with the new environmental software
and prepare to use new features. Typically, you are warned not to use this soft-
ware for production use. Apps developed with the new OS and SDK cannot be
submitted to either App Store until a few weeks before the release of the soft-
ware to the public. This process allows developers to get up to speed with the
new technologies. The period of a few weeks before the public release of the
new software allows the App Store to be stocked when the software is in final

versions.

47

48

HOUR 1: Introducing Xcode 4

Workshop

Quiz
1. How do you get a copy of Xcode?

2. If you are used to another development environment, can you use it to
develop software for Mac 0OS X and iOS?

Quiz Answers

1. Register at developer.apple.com. Various registration categories are designed
for different types of developers. The paid levels of developer registration
include technical support assistance (two incidents for the basic programs).
There are also free registrations that provide no support but do allow you to
download Xcode. You can also buy Xcode through the Mac App Store. It is cur-
rently free.

2. Only with great difficulty, and you will not be able to submit your apps to the
App Store.

Activities

As you start to work with Xcode, take advantage of its productivity features such as
code snippets. In particular, add your own snippets as you think of them. It generally
is best not to sit down and make a list of snippets that you think you will need—that
is often a waste of time. Instead, keep alert and, whenever you find yourself typing
something that might be useful as a snippet, add it right then and there. These snip-
pets are stored in your environment—not just in a single project.

Many people shy away from the debugging tools, but you will find that they can
save you a large amount of time and effort. Some of them are for advanced develop-
ers but practice using breakpoints. This is a simple technology, and it is very easy to
just click in the gutter of the editor to set a breakpoint. The debug area will let you
examine local variables; it also will help you track the path of execution so you can
see why a certain section of code is or is not being executed.

A

Abstract Entity entity setting
(Data Model inspector), 322

abstractions, data models,
101-103

Access the Persistent Store
Coordinator listing (4.6), 94-95

Accessing the Fetched Results
Controller listing (4.8), 97-98

Accessing the Managed Object
Model listing (4.7), 95

Accessor attribute (declared
property), 72

accessory view, 345

ad hoc display order, table rows,
handling, 378-380

adaptors, 156

Add a Detail Disclosure
Accessory to Row listing (23.1),
414-415

Add a New Field to insert
NewObject listing (12.3), 218

Add buttons, inserting, 371

Adopting the
UlISplitViewControllerDelegate

Index

Protocol listing (3.12), 79

Advanced setting (Data Model
inspector), 325-327

aggregate operators, 174
ALL aggregate operator, 174
ANY aggregate operator, 174

AppDelegate.h for a Core Data
Project listing (4.3), 92

Apple documentation, 73

Apple’s Xcode Quick Start
Guide, 11

applicationDocumentsDirectory
(i0S) listing (5.2), 114
applicationFilesDirectory (Mac
0S) listing (5.1), 113
apps
architectures, 154
building, 52-53
creating, 195-198
storyboards, 239-241
delegates, 293-299
document-based, 154
Mac 0OS, 305-311
i0S
creating, 53-56

444
apps

exploring, 58-59
integrating views and
data, 147-151
library/shoebox, 154, 291
library/shoebox apps, creat-
ing, 292-305
Mac
creating, 56-58
exploring, 58-59
Master-Detail App, creating,
263-267
navigation-based apps
finishing interface,
275-276
implementing saving,
267-272

NSTableView, building,
366-372

structures, 292

universal, creating, 190-192,
279-281

architectures, 153-154, 292

Archives tab (Organizer
window), 46

areas, workspace window, 14

Arranged setting (Data Model
inspector), 327

array controllers, 148
array operators, 174
arrays, predicates, 175-176

assistant editing mode
(Xcode), 26

Assistant editor, 232-233

Atomicity attribute (declared
property), 72

attribute settings, Data Model
inspector, 324-325

Attribute Type setting (Data
Model inspector), 325

attributes, 72, 87
data model, 216
declared properties, 72
displayOrder, 379-380

entities, adding to, 105-107,
123-125

renaming, 432-433
Attributes inspector, 205
setting entity names, 368

automatic lightweight
migration, 423

data models, 432-434

bars, workspace window, 14

batteryLevel property
(UlDevice), 190

batteryMonitoringEnabled
property (UlDevice), 190

batteryState property
(UlDevice), 190

BEGINSWITH string, 174
bidirectional relationships, 127
binary data, entities, 106-107

Binary Large Objects
(BLOBs), 106

bindings, 144, 148-149
examining, 150
NSTableView, 366

Bindings inspector, 205

BLOBs (Binary Large

Objects), 106

Boolean data, entities, 107
breaking connections, 213-215

breakpoint gutters, workspace
window, 14

breakpoint navigator, 24-25
breakpoints, 24
debugger, 268-270
toggling, 25
building data stacks, 91-96
buttons, Add, inserting, 371

C

C Programming Language, The, 8

canvas (Interface Builder),
197-205

cardinality, 126, 327
relationships, 127
cascade delete rule, 128

Categories submenu (model
editor files), 29

cellForRowAtIndexPath listing
(19.3), 352

cells
table views, 345
tables
creating labels, 357
styled, 355-357
Change setValue: forKey listing
(13.4), 229
Change the Attribute for the Sort
Descriptor listing (13.2), 229
Change the Entity for the Fetched
Result Controller listing
(13.1), 227

Change valueForKey in
configureCell listing (13.3), 229

changed views, 413

Character Large Objects
(CLOBs), 106

Class entity setting (Data Model
inspector), 322

Class from i.e
RootViewController.m listing
(3.13), 80

classes
NSSortDescriptor, 185
Objective-C, 66
Clauses, WHERE, 171, 173

CLOBs (Character Large Objects),
106

Cocoa

dictionaries, key-value pairs,
172-173

frameworks, 63-64
code
code snippet library, adding
to, 38-40

completing, 43-45

glue
Document.h, 396
MyDocument.m, 397-399
nib file, 399-401

Objective-C, 64-66
classes, 66
declarations, 82

declared properties,
68-73

delegates, 75-76, 81
instances, 66

messaging, 73-75

MVC (model/view/con-
troller) design pattern,
81-82

naming conventions,
7475

object-oriented program-
ming, 66-68

objects, 66-68

protocols, 75-80

synthesizing properties,
70-72

Objective-C language, 63

saving, 284-286

code listings

Access the Persistent Store
Coordinator, 94-95

Accessing the Fetched
Results Controller, 97-98

Accessing the Managed
Object Model, 95

Add a Detail Disclosure
Accessory to the Row,
414-415

Add a New Field to
insertNewObject, 218

Adopting the
UlISplitViewController
Delegate Protocol, 79

AppDelegate.h for a Core
Data Project, 92

applicationDocuments
Directory (i0S), 114

applicationFilesDirectory (Mac
0S), 113

cellForRowAtindexPath, 352

Change setValue:
forKey, 229

445

code listings

Change the Attribute for the
Sort Descriptor, 229

Change the Entity for the
Fetched Result
Controller, 227

Change valueForKey in
configureCell, 229

Class from i.e
RootViewController.m, 80

configureView, 284

Create a Predicate with a
Format String, 184

Create a Predicate with a
Format String and Runtime
Data, 184

Creating a Fetch
Request, 160

Creating a Managed Object
Context, 159

Creating a Popover View
Controller, 417

Customer.h, 333
Customer.m, 334
Defining the Protocol, 77
didSelectRowAtindexPath, 251
Executing a Fetch
Request, 161
Existing Private Declaration in
DetailViewController.m, 330
Getter for
managedObjectContext in
AppDelegate.h, 93
Getter for
numberFormatter, 330
Handle the Tap in the
Selected Row, 415
Handling the Move, 389

How can we make this index more useful? Email us at indexes@samspublishing.com

446

code listings

Header for a Custom
NSManagedObject
Class, 384

Header for a Document-based
Mac OS App, 308

Hello, World, 8

Implementation for a Custom
NSManagedObject
Class, 385

Implementation for a
Document-based Mac 0OS
App, 309-311

Implementation of the
Protocol with a Navigation
Bar, 78

Implementation of the
Protocol with a Toolbar, 78

Implementing the Mac OS
App Delegate, 295-299

insertNewObject As It Is in
the Template, 216

Interface for
DetailViewController with
Table View, 349

iOS App Delegate
Implementation, 301-305

iOS Application Delegate, 300

Legacy Class Declaration,
68-69

Legacy Class Declaration with
Accessors, 69

Marking Protocol Methods
Required or Optional, 77

MasterViewController.h, 211

Modern Class
Declaration, 69

Moving Related Objects into a
Mutable Array, 388

Moving the Top-Level Objects
into a Mutable Array, 387

MyDocument.h, 396
MyDocument.m, 397-398
numberOfRowsInSection, 351

Opening a Persistent Store,
433-434

Place.h, 88
Place.m, 89

prepareForSegue in
MainViewController.m, 250

Protocol Adoption with a
Navigation Bar, 77

Protocol Adoption with a
Toolbar, 77

saveNameData, 285
Saving the Data, 390

Set Section Header and
Footer Titles, 354-355

Set the New View
Controller, 415

setDetailltem, 276
Setting Up the App
Delegate, 294

Setting Up the Fetch Request,
377-378

Styling Cells, 356-357
Swapping the View, 245
Synthesize Directives to
Match Listing 3.3, 70
Synthesize the Core Data
Stack Properties, 93
Transforming an Image to and
from NSData, 141
Use a Predicate Template
with Hard-coded
Data, 183

Use a Predicate Template
with Runtime Data, 183

Use More than One
Section, 354

Using a Private Variable in a
Property, 71

Using a Sort Descriptor, 186
viewWillAppear, 273
viewWillDisappear, 274
code property (NSError), 404
code samples, 50-52
code snippet library, 38
adding code to, 38-40
columns, 87

comparison operators, predicates,
173-175

compatibility, data models ver-
sions, determining, 430-431

compound indexes, 323
configureView, 284
configureView listing (16.1), 284
connections

creating, 213-215

trace, 149

Connections inspector, 149, 205,
209-210

connections, creating,
213215

outlets, 210-212
referencing, 212-213
CONTAINS string, 174

contexts, managed objects,
90-91, 148, 153, 158

creating, 158-159
saving, 274

continuum, migration, 423

control-drag, building interfaces,

232-236

controller concept (MVC

(model/view/controller) design

pattern), 82

controllers
array controllers, 148
dictionary controllers, 149
navigation, 151
object controllers, 148
page view, 151
split view, 151
tab bar, 151
table view, 151
terminology, 410

tree controllers, 149

user defaults controllers, 149

view, 10S, 148-151
converting dates to strings, 216
Core Data, 85

documents, 291

examining at runtime,
90-96

origins, 85-87

UlTableView, 357-359

user interface, 195
Core Data faulting, 155

Core Data model editor, 86,
117-119

Core Data Model editor
data models

adding entities to,
119-123

adding relationships to,
126-127

styles, choosing, 125-126

“Core Data Programming
Guide”, 403

Core Data stack, implementing,
307-311

Count setting (Data Model inspec-
tor), 327

Counterparts submenu (model
editor files), 29

Create a Predicate with a Format
String and Runtime Data listing
(10.4), 184

Create a Predicate with a Format
String listing (10.3), 184

Create the Cell Labels, 358

Creating a Fetch Request listing
(9.2), 160

Creating a Managed Object
Context listing (9.1), 159

Creating a Popover View
Controller lisitng (23.4), 417

Customer.h listing (18.3), 333
Customer.m listing (18.4), 334

data
databases, adding, 161-162
flattening, 271-272
integrating
i0S, 151
Mac 0S, 147-150

interfaces, entering into,
327-331

moving and saving, 273-274

normalizing, 106

447

Data Model inspector

sorting, sort descriptors,
185-186

data elements, IBOutlets,
215-216

data encapsulation, objects, 67

data fetching, 154

fetch requests, creating,
159-161

metrics, 156-158
paradigms, 155
performance, 156-158

representing results, 158

data fields, model, adding to,
217-221

Data Model inspector, 320-321

Advanced setting, 325-327
Arranged setting, 327
Attribute setting, 325
attribute settings, 324-325
Count setting, 327

Default Value setting, 325
Delete Rule setting, 327

Destination setting,
326-327

entity settings, 321
Abstract Entity, 322
Class, 322
indexes, 323
Name, 321
Parent Entity, 323

Inverse setting, 326

Name setting, 324-326

Properties setting, 326

Property setting, 324

Regular Expression
setting, 325

How can we make this index more useful? Email us at indexes@samspublishing.com

448

Data Model inspector

relationship settings,
325-327

Validation setting, 325
data models, 101
abstractions, 101-103
adjusting code, 226-229
attributes, 216

Core Data Model editor,
117-119

styles, 125-126
Core Data stack, 153
creating, 226-227, 426-427

Data Model inspector,
320-321

attribute settings,
324-325

entity settings, 321-323

relationship settings,
325-327

data quality rules, 318-319
deleting, 313

designing, 102-103
entities, 103-104

adding attributes to,
105-107

adding to, 119-123
binary data, 106-107
Boolean data, 107
dates, 106

linking with relationships,

107-108
external, 436
mapping models, 434-437
migration, 423-424

automatic lightweight
migration, 432-434

managing, 424-426
moving, 311-314
moving data into, 327-331
naming, 101-102

relational integrity rules,
318319

relationships
adding to, 126-127,
129131
cardinality, 127
delete rule, 128
rules, setting up, 320-327
validation rules, 317-319
versions, 426-430
creating, 426-430

determining compatibility,
430-431

forcing incompatibility, 432
data quality, 319

data quality rules, data model,
318-319

setting up, 320-327
data retrieval, predicates, 176
data stacks, 90-96

building, 91-96

CHANGE TO Core Data

stack, 153

data model, 153

initialization, 153

persistent stores, 153
data stores, 258
data types, choosing, 88

data updates, changing,
284-286

data validation, 319
free, 393-394

summarizing on Mac OS,
401-402

testing, 401-402
Mac 0OS, 394-402
managing, 393-394
programming, 402-406
rules

data model, 317-327

database management systems

(DBMSs), 171

database manager, sorting

data, 186

databases

adding data, 161-162

Core Data faulting, 155

data retrieval, 154
fetch requests, 159-161
metrics, 156-158
paradigms, 155
performance, 156-158
representing results, 158

load-a-chunk design
pattern, 155

load-then-process design pat-
tern, 155

locating, 109-111
relational, 87
rules
cardinality, 127
delete, 128
schemas, 424
sorting data, 185-186
tables, 87

dates

converting to strings, 216
entities, 106

DBMSs (database management
systems), 171

debug navigator, 23-24
Debug pane, displaying, 270-272
debugger, 267-268
breakpoints, 268-270
Debug pane, 270-272
debugging connections, 213-215
declarations, 82
declarative programming
paradigms, 9-10
declared properties, 64, 441
attributes, 72
Objective-C, 68-73
Default Value setting (Data Model
inspector), 325

Defining the Protocol listing
(3.6), 77

delegates, 293
apps, 295-299
Objective-C, 75-76, 81
delete rule, relationships, 128

Delete Rule setting (Data Model
inspector), 327

deleting
data models, 313
document types, 307
deny delete rule, 128
design patterns
Core Data faulting, 155
load-a-chunk, 155
load-then-process, 155

MVC (model/view/controller),
143-144

controlling data, 144
controlling views, 144-147

designing data models, 102-103

Destination setting (Data Model
inspector), 326

detail disclosure accessories,
rows, adding, 414-415

Detail views, swapping, 244-245

DetailViewController, 231,
266, 268

detailltem instance
variable, 272

outlets, 225-226
DetailViewController.m, 330

devices, i0S, swapping views,
241-243

Devices tab (Organizer
window), 45

dictionaries, key-value pairs,
172-173

dictionary controllers, 149

didSelectRowAtIndexPath listing
(14.3), 251

dismissing modal windows and
sheets, 421

Disney, Walt, 246

display order, table rows, han-
dling, 378-380

displayOrder attribute, 379-380,
387-390

document structure area,
199-201

objects, 204-205
placeholders, 201-204

document outline area
(Xcode), 199

document types, 306
deleting, 307
document-based apps, 154

449

entities

Mac OS, creating, 305-311

document-based Mac OS apps,
creating, 292-299

Document.h, glue code, building
in, 396

documentation, Apple, 73

Documentation tab (Organizer
window), 46

documents, 110, 289-291

app structure, 292

Core Data, 291

tracking data in, 108-111
domain property (NSError), 404

editing data

navigation interfaces,
257-262

users, 409
editing interfaces, 409-412

communicating with users,
413-418

editing modes (Xcode), 25-30
editing preferences, 40-43
editing window (Xcode), 31
editing-in-place, 409-411
ENDSWITH string, 174

Enterprise Objects Framework
(EOF), 85, 109, 156, 176

entires, 172
entities, 87

attributes, adding to,
123-125

data models, 103-104

How can we make this index more useful? Email us at indexes@samspublishing.com

450

entities

adding attributes to,
105-107

adding to, 119-123
binary data, 106-107
Boolean data, 107
dates, 106

linking with relationships,
107-108

names, setting, 368

NSManagedObject,
subclasses, 331-334

Place, 89

relationships
moving, 389
rules, 126

renaming, 432-433

entity settings, Data Model
inspector, 321

Abstract Entity, 322

Class, 322

indexes, 323

Name, 321

Parent Entity, 323
environments, multiuser, 312

EOF (Enterprise Objects
Framework), 85

error messages, 413
Estimator interface, 342

Executing a Fetch Request listing
(9.3), 161

Existing Private Declaration in
DetailViewController.m listing
(18.1), 330

expressions, regular, 319, 325
external data models, 436

external objects, iOS, 151

F

faulting, 155
fetch request controllers, 96
fetch requests, 96-98
creating, 159-161, 178-183
setting up, 377
fetches, 133
fetching data, 154
metrics, 156-158
paradigms, 155
performance, 156-158
representing results, 158
fields, 87
IBOutlets, adding, 230-231
removing, table view, 345-349

second interface, adding to,
281-284

file inspector, 32
file templates library, 35, 37
File's Owner object, 201-202
outlets, 210-211
FileMaker Pro, 157
FileMaker Server, 157
files
declarations, 82
identifying, 52-53
rearranging, 120
renaming, 120
semi-hidden, 110-111
creating, 111-115
i0S, 114
Mac OS X, 110-115
tracking data in, 108-111

filter bar, workspace window, 14

First Responder, 203, 212
Fix It, 40, 43-45
flattening data, 271-272

Focus ribbon, workspace
window, 14

folders, Inside Applications, 193

footers, tables, setting,
354-355

format strings, predicates,
177,184

formatters, 216, 329

type conflict issue, solving,
329-331

frameworks, Cocoa, 63-64
free validation, 393-394

summarizing on Mac 0S,
401-402

testing, 401-402

full-screen view (Interface
Builder), 197

generatesDeviceOrientation
Notifications property
(UlDevice), 190

Getter for managedObjectContext
in AppDelegate.h listing
(4.5), 93

Getter for numberFormatter
listing (18.2), 330

Git repository, 55
Git source code repository, 49, 57
glue code

Document.h, building in, 396

MyDocument.m
building in, 397-399
nib file, 399-401

Go menu, Libabry folder, adding
to, 193

Gone with the Wind, 246
groups, rearranging, 120

Handle the Tap in the Selected
Row listing (23.2), 415

Handling the Move listing (21.6),
389

Header for a Custom
NSManagedObject Class listing
(21.2), 384

Header for a Document-based
Mac OS App listing (17.5), 308

headers, tables, setting,
354-355

Hello, World listing, 8
hidden primary keys, 162

IBOutlets
data elements, 215-216
new fields, adding, 230-231
iCloud, 107
identifiers, predicates, 173
Identity inspector, 34, 205
imperative programming
paradigms, 9-10

Implementation for a Custom
NSManagedObject Class listing
(21.3), 385

Implementation for a Document-
based Mac OS App listing
(17.6), 309-311

Implementation of the Protocol
with a Navigation Bar listing
(3.11), 78

Implementation of the Protocol
with a Toolbar listing (3.10), 78

Implementing the Mac OS App
Delegate listing (17.2), 295-299

IN aggregate operator, 174

incompatibility, data models,
forcing, 432

indexes, 323

insertNewObject As It Is in the
Template listing, 216

Inside Applications folder, 193
inspectors, 31-34, 205
Attributes, 205
Bindings, 205
Connections, 205, 209-210

creating connections,
213215

outlets, 210-213

file, 32

Identity, 34, 205

Size, 205

View Effects, 205
instances

adding, 259

Objective-C, 66
Interface Builder editor,

document structure area,
199-201

451

interfaces

objects, 204-205

placeholders, 201-204
inter-property validation, 405-406
Interface Builder, 7

Connections inspector,
209-210

creating connections,
213215

outlets, 210-212

referencing outlets,
212-213

storyboards, 442

Interface Builder editor, 189-190,
198-200, 344

apps, creating, 195-198
canvas, 197-205
full-screen view, 197

iOS apps, locating sandbox,
192-194

macros, 230-231
Project navigator, 198
storyboards, 192

table views, 199-200
type qualifiers, 230-231

universal apps, creating,
190-191

Interface for DetailViewController
with Table View listing
(19.1), 349

interfaces

building, control-drag,
232-236

cleaning up, 275-276
comparing, 339-344
editing interfaces, 409-412

communicating with
users, 413-418

How can we make this index more useful? Email us at indexes@samspublishing.com

452

interfaces

entering data into, 327-331
Estimator, 342
integrating views and data
i0S, 151
Mac 0S, 147-150
iOS features, 165-167
iPhone, 343
Mac OS features, 163-165

navigation-based apps,
finishing, 275-276

optimizing, 162-167
removing, table view, 345-349

second, adding fields to,
281-284

text fields, adding to,
217-221

initialization, Core Data
stack, 153

Inverse setting (Data Model
inspector), 326

i0oS
apps
creating, 53-56
exploring, 58-59
integrating views and
data, 151

locating sandbox,
192-194

structure, 292
development process, 258

devices, swapping views,
241-243

interfaces, 339-344
features, 165-167

library/shoebox apps,
creating, 299-305

popovers, 416-418
semi-hidden files, 114
settings, 339-344
swapping views, 413-415
table rows

allowing movement,
380-382

moving, 382-390
ordering, 375-380

table views, comparing,
337-338

UlTableView, 337-345
accessory view, 345
cells, 345

implementing methods,
350-357

interface removal, 345-349

removing fields, 345-349
sections, 345

using with Core Data,
357-359

using without Core Data,
344-357

user interaction, 338-339

validation, programming,
402-406

versions, 190

iOS App Delegate
Implementation listing (17.4),
301-305

i0OS Application Delegate listing
(17.3), 300

iPad, 279

split view controllers,
250, 311

storyboards, 247-248

universal apps, creating,
279-281

iPhone
interface, 343
storyboards, 246-247
iPhone apps

Master-Detail apps, creating,
263-267

navigation-based apps

adding managed objects,
272273

finishing interfaces,
275-276

implementing saving,
267-272

issue navigator, 23

Jobs, Steve, 363
join tables, 127

jump bars (Xcode), 27,
294-295, 301

K

Kernighan, Brian, 8
key-value coding (KVC), 144
key-value observing (KVO), 144

key-value pairs, dictionaries,
172-173

key-value validation, 403-404
KVC (key-value coding), 144
KVO (key-value observing), 144

L

labels, cells, creating, 357
launching Xcode, 12
legacy class declaration, 68

Legacy Class Declaration listing
(3.1), 68-69

Legacy Class Declaration with
Accessors listing (3.2), 69

legacy versions, Objective-C, 64
libraries, 35-38
adding code snippets, 38-40
file templates, 35-37
Media, 40
Object, 40
SQLite, 156
Library folder, Go menu, adding
to, 193

library/shoebox apps, 154, 291
i0S, creating, 299-305
Mac OS, creating, 292-299
lightweight migration, 423

automatic, data models,
432-434

LIKE string, 174

linking entities with relationships,

107-108
list elements, moving, 389
listings
Access the Persistent Store
Coordinator, 94-95
Accessing the Fetched
Results Controller,
97-98
Accessing the Managed
Object Model, 95

Add a Detail Disclosure
Accessory to Row, 414-415

Add a New Field to
insertNewObject, 218

Adopting the
UISplitViewControllerDelegate
Protocol, 79

AppDelegate.h for a Core
Data Project, 92
applicationDocumentsDirectory
(i0S), 114
applicationFilesDirectory (Mac
0S), 113
cellForRowAtIndexPath, 352
Change setValue: forKey, 229

Change the Attribute for the
Sort Descriptor, 229

Change the Entity for the
Fetched Result
Controller, 227

Change valueForKey in
configureCell, 229

Class from i.e
RootViewController.m, 80

configureView, 284

Create a Predicate with a
Format String, 184

Create a Predicate with a
Format String and Runtime
Data, 184

Creating a Fetch Request, 160

Creating a Managed Object
Context, 159

Creating a Popover View
Controller, 417

Customer.h, 333

Customer.m, 334

453

listings

Defining the Protocol, 77
didSelectRowAtindexPath, 251
Executing a Fetch
Request, 161
Existing Private Declaration in
DetailViewController.m, 330
Getter for
managedObjectContext in
AppDelegate.h, 93
Getter for numberFormatter,
330

Handle the Tap in the
Selected Row, 415

Handling the Move, 389

Header for a Custom
NSManagedObject
Class, 384

Header for a Document-based
Mac OS App, 308

Hello, World, 8

Implementation for a Custom
NSManagedObject
Class, 385

Implementation for a
Document-based Mac OS
App, 309-311

Implementation of the
Protocol with a Navigation
Bar, 78

Implementation of the
Protocol with a Toolbar, 78

Implementing the Mac OS
App Delegate, 295-299

insertNewObject As It Is in
the Template, 216

Interface for
DetailViewController with
Table View, 349

How can we make this index more useful? Email us at indexes@samspublishing.com

454

listings

iOS App Delegate
Implementation, 301-305

iOS Application Delegate, 300

Legacy Class Declaration,
68-69

Legacy Class Declaration with
Accessors, 69

Marking Protocol Methods
Required or Optional, 77

MasterViewController.h, 211
Modern Class Declaration, 69

Moving Related Objects into a
Mutable Array, 388

Moving the Top-Level Objects
into a Mutable Array, 387

MyDocument.h, 396
MyDocument.m, 397-398
numberOfRowsInSection, 351

Opening a Persistent Store,
433-434

Place.h, 88
Place.m, 89

prepareForSegue in
MainViewController.m, 250

Protocol Adoption with a
Navigation Bar, 77

Protocol Adoption with a
Toolbar, 77

saveNameData, 285
Saving the Data, 390

Set Section Header and
Footer Titles, 354-355

Set the New View
Controller, 415

setDetailltem, 276

Setting Up the App
Delegate, 294

Setting Up the Fetch Request,
377-378

Styling Cells, 356-357
Swapping the View, 245

Synthesize Directives to
Match Listing 3.3, 70

Synthesize the Core Data
Stack Properties, 93

Transforming an Image to and
from NSData, 141

Use a Predicate Template
with Hard-coded Data, 183

Use a Predicate Template
with Runtime Data, 183

Use More than One
Section, 354

Using a Private Variable in a
Property, 71

Using a Sort Descriptor, 186

viewWillAppear, 273

viewWillDisappear, 274
literals, predicates, 173
load-a-chunk design pattern, 155

load-then-process design
pattern, 155

loading mutable arrays, 386-388

localizedModel property
(UlDevice), 190

log navigator, 25

logical operators, predicates,
171-173,176-177

arrays, 175-176

comparison operators,
173-175

constructing, 177-183
format strings, 177, 184
identifiers, 173

literals, 173
syntax, 173-175

Mac 0S
app structure, 292

apps
creating, 56-58
exploring, 58-59

integrating views and
data, 147-150

development process, 258

document-based applications,
creating, 305-311

free validation, summarizing,
401-402

interfaces, 339-344
features, 163-165

library/shoebox apps,
creating, 292-299

modal windows, 419-421
NSTableView
building app, 366-372
new features, 363-365
sheets, 419-421
system preferences, 339-344

table views, comparing,
337-338

user interaction, 338-339
validation, 394-402

programming, 402-406
versions, 190

Mac OS X, semi-hidden files,
110-115

macros, Interface Builder editor,
230-231

managed objects, 91, 133
adding, 272-273
context, saving, 274

contexts, 90-91, 148,
153, 158

creating, 158-159
NSManagedObject

creating subclasses of,
331-334

overriding, 134-140

transformations, 136,
140-141

validation, 136
managedObjectContext, 400
many-to-many relationships, 127
mapping

migration, 424
models, 434-437

Marking Protocol Methods
Required or Optional listing
(3.7), 77

master views, 258

Master-Detail App, creating,
263-267

Master-Detail Application tem-
plate, 242, 343-344, 409-410

repurposing, 223-230

Master-Detail template,
166-167, 263

MasterViewController, 97
outlets, 225-226

MasterViewController.h listing
(12.1), 211

MATCHES string, 174

Media library, 40

messaging, Objective-C, 73-75

methods
NSDictionary, 172
protocols, 442
saveAction, 293
saveNameData, 285

table view, implementing,
350-357

viewWillAppear, 269, 273
viewWillDisappear, 269

windowWillReturnUndo
Manager, 293

metrics, data retrieval,
156-158

migration, 423-424
continuum, 423
data models
automatic lightweight
migration, 432-434
managing, 424-426
lightweight, 423
mapping, 424
modal windows, 419-421

model concept (MVC
(model/view/controller) design
pattern), 82

model property (UlDevice), 190

model/view/controller (MVC)
design pattern. See MVC
(model/view/controller) design
pattern

models, data fields, adding to,
217-221

Modern Class Declaration listing
(3.3), 69

455

names, entities, setting

movement, table rows, allowing,
380-382

moving
data, 273-274
table rows, 382-390

Moving Related Objects into
a Mutable Array listing
(21.5), 388

Moving the Top-Level Objects
into a Mutable Array lisitng
(21.4), 387

multitaskingSupported property
(UlDevice), 190

multiuser environments, 312
mutable arrays, loading, 386-388

MVC (model/view/controller)
design pattern, 81-82, 143-144

controlling data, 144
controlling views, 144-147
MyDocument.h lisitng (22.1), 396

MyDocument.m, glue code,
building in, 397-399

MyDocument.m lisitng (22.2),
397-398

Name attribute setting (Data
Model inspector), 324

Name entity setting (Data Model
inspector), 321

name property (UlDevice), 190

Name relationship setting (Data
Model inspector), 326

names, entities, setting, 368

How can we make this index more useful? Email us at indexes@samspublishing.com

456

naming data models

naming data models, 101-102

naming conventions, Objective-C,
74-75
navigation bars, 241, 259, 271
navigation controllers, 151
navigation interfaces, 257-262
navigation-based apps
implementing saving,
267-272
interface, finishing, 275-276

managed objects, adding,
272273

navigator pane (Xcode), 15-25
navigators
breakpoint, 24-25
debug, 23-24
issue, 23
log, 25
project, 16-20
search, 21-22
symbol, 20-21
NeXT, 85, 290
NeXTSTEP, 7
nib file, glue code, building in,
399-401

no action delete rule, 128
non-unique user identifiers, 162
NONE aggregate operator, 174
normalizing data, 106

NSApplicationDelegate protocol,
300

NSDictionary method, 172
NSError, 404-405
NSFormatter, 329

NSKeyValueCoding protocol,
403-404

NSManagedObject, 133, 382-388
creating override, 383
creating subclasses, 331-334
overriding, 134-140
subclasses, matching, 140

transformations, 136,
140-141

using directly, 134

validation, 136
NSManagedObjectContext, 91
NSPersistentDocument, 305
NSPersistentStore, 91
NSSortDescriptor class, 185
NSTableView

apps, building, 366-372

bindings, 366

new features, 363-365
NSWindowDelegate protocol, 293
nullify delete rule, 128
numberFormatter, 330

numberOfRowsInSection listing
(19.2), 351

o

object controllers, 148
Object library, 40
Object library (i0S), 151
object stores
persistent, 90
object-oriented databases, 86
object-oriented programming
Objective-C

classes, 66

instances, 66
objects, 66-68

object-oriented programming
(00P), 10-11

Objective-C, 64-66
classes, 66
declarations, 82
declared properties, 68-73
delegates, 75-76, 81
instances, 66
legacy versions, 64
messaging, 73-75
MVC (model/view/controller)

design pattern, 81-82

naming conventions,
74-75

object-oriented programming,
66-68
objects, 66-67
purposes, 67-68
properties, synthesizing prop-
erties, 70-72
protocols, 75-80
Objective-C language, 63
object-oriented programming,
Objective-C, 66-68
objects
data encapsulation, 67

document structure area,
204-205

external, i0S, 151
File’s Owner, 201-202
i0S, 151
Mac 0S, 148
managed, 91

adding, 272-273

contexts, 90-91, 148,
153, 158-159

saving context, 274

managed objects,
NSManagedObject, 134-141

Objective-C, 66-68
persistent object stores, 91
placeholders, 201-204
receiving and sending mes-
sages, 67
runtime, 153
state, 67
one-to-many relationships, 127
OOP (object-oriented program-
ming), 10-11
opening persistent stores,
433-434

Opening a Persistent Store listing
(24.1), 433-434

operating systems, versions, 190
operators

aggregate, 174

array, 174

comparison, predicates,
173175

logical, predicates, 171-183
optimizing interfaces, 162-167
ordered relationships, 442
ordering table rows, 375-380
Organizer window (Xcode), 45-46

orientation property
(UlDevice), 190

outlets, 210-212

DetailViewController,
225-226

File’s Owner, 210-211

IBOutlets, adding fields,
230-231

MasterViewControl, 225-226
referencing, 210, 212-213

overriding NSManagedObject,
134-140

P

page view controllers, 151
panes, workspace window, 14

Parent Entity entity setting (Data
Model inspector), 323

performance, data retrieval,
156-158

persistent object stores, 90-91
persistent stores, 86, 108, 133
Core Data stack, 153
opening, 433-434
types, 108-109
Place entity, 89
Place.h listing (4.1), 88
Place.m listing (4.2), 89
placeholders, 201-204
First Responder, 203

Plural/Cardinality setting (Data
Model inspector), 327

pop-up menu lists, organizing,
27-28
popovers, i0S, 416-418
predicates, 171-173, 176-177
arrays, 175-176

comparison operators,
173-175

constructing, 177-183

457

projects

data retrieval, 176

format strings, 177, 184

identifiers, 173

literals, 173

syntax, 173-175

templates, 177
hard-coded data, 182-183
runtime data, 183

prepareForSegue, 250

prepareForSegue in
MainViewController.m listing
(14.2), 250

primary keys, hidden, 162

programming validation,
402-406

programming languages. See
Objective-C

Project Builder, 7, 189

project navigator, 16-20

Project navigator (Interface
Builder), 198

projects
building, 52-53
creating, 195-198
storyboards, 239-241
identifying, 52-53
i0S
creating, 53-56
exploring, 58-59
iOS library/shoebox-based
apps, creating, 299-305

Mac
creating, 56-58
exploring, 58-59
Mac OS document-based
apps, creating, 305-311

How can we make this index more useful? Email us at indexes@samspublishing.com

458

projects

Mac OS library/shoebox-
based apps, creating,
292-299

Master-Detail App, creating,
263-267

moving data models between,
312-314

renaming, 120
storyboards, setting, 251-252

Projects tab (Organizer
window), 46

properties
declared, 441
declared properties, 64
attributes, 72
Objective-C, 68-73
synthesizing, 70-72
UlDevice, 190-191

Properties setting (Data Model
inspector), 326

Property attribute setting (Data
Model inspector), 324

Protocol Adoption with a
Navigation Bar listing (3.9), 77

Protocol Adoption with a Toolbar
listing (3.8), 77

protocols
methods, 442
Objective-C, 75-80
Protocols submenu (model editor
files), 29

proximityMonitoringEnabled prop-
erty (UlDevice), 190

proximityState property
(UlDevice), 190
proxy objects, 201-204

Q

quality edits, 319, 405-406
Quick Help, 33

records (tables), 87
referencing outlets, 210-213

referential integrity,
preserving, 318

Regular Expression setting (Data
Model inspector), 325

regular expressions, 319, 325
relational databases, 87
relational integrity, 128

relational integrity rules, data
model, 318-319

setting up, 320-327
relationship entities, moving, 389

relationship settings, Data Model
inspector, 325-327

relationships
bidirectional, 127
data models
adding to, 126-131
cardinality, 127
delete rule, 128
entities
linking with, 107-108
rules, 126
many-to-many, 127
one-to-many, 127
ordered, 442

renaming attributes entities,
432-433

renaming project files, 120

Repositories tab (Organizer
window), 45

repurposing templates, 223-230
requests, fetch, 96-98
retrieving data, 154
metrics, 156-158
paradigms, 155
performance, 156-158
Ritchie, Dennis, 8
RootViewController, 79
rows

detail disclosure accessories,
adding, 414-415

tables

allowing movement,
380-382

moving, 382-390
ordering, 375-380
taps, handling, 415
rows (tables), 87
rules
data model, 318-319
setting up, 320-327
validation rules, 317-319

runtime, Core Data, examining,
90-96

runtime objects, 153

S

sample code, 50-52

sandboxes, iOS apps, locating,
192-194

saveAction method, 293
saveNameData listing (16.2), 285

saveNameData method, 285

saving
code, 284-286
data, 273-274
managed object context, 274

navigation-based apps,
implementing, 267-272

Saving the Data listing
(21.7), 390

scenes, storyboards, 246
schemas, databases, 424
Seagull, The, 246
search navigator, 21-22
second interface

fields, adding to, 281-284

implementing, 281
sections, table views, 345
segues, storyboards, 246
SELECT statement, 171
semi-hidden files, 110-111

creating, 111-115

i0s, 114

Mac OS X, 110-115

Set Section Header and Footer
Titles listing (19.5), 354-355

Set the New View Controller
listing (23.3), 415

setDetailltem listing (15.3), 276

Setter attribute (declared
property), 72

Setting Up the App Delegate
listing (17.1), 294

Setting Up the Fetch Request
listing (21.1), 377-378

settings, i0S, 339-344
sheets, 161
creating, 419-420

459

systemVersion property (UlDevice)

dismissing, 421
Mac 0OS, 419-421

Siblings submenu (model editor
files), 29

simulator, iOS app sandboxes,
locating, 192-194

Size inspector, 205
SOME aggregate operator, 174
sort descriptors, 185-186

split view controller,
iPad, 250

split view controllers, 151

split view controllers
(iPad), 311

split views, 271-272

SQLite, 90, 96
document types, 306
libraries, 156

standard editing mode
(Xcode), 26

Stanislavski, Constantin, 246
state, objects, 67
statements, SELECT, 171

storyboards, 87, 146, 192,
239-241, 246-251, 442

creating, 251-253
iPad, 247-248
iPhone, 246-247
scenes, 246
setting, 251-252

view controllers, adding and
deleting, 252-253

storyboards, segues, 246
strings
BEGINSWITH, 174
CONTAINS, 174

converting to dates, 216
ENDSWITH, 174
format, predicates, 177, 184
LIKE, 174
MATCHES, 174

structures, apps, 292

styled cells, tables, creating,
355-357

Styling Cells listing (19.6),
356-357

subclasses, NSManagedObject
creating from, 331-334
matching, 140

Subclasses submenu (model
editor files), 29

summarizing free validation, Mac
0S, 401-402

Superclasses submenu (model
editor files), 29

Swapping the View listing
(14.1), 245
swapping views, 248-251
Detail views, 244-245
i0S, 413-415
devices, 241-243
symbol navigator, 20-21
syntax, predicates, 173-175
Synthesize Directives to Match
Listing 3.3 listing (3.4), 70
Synthesize the Core Data Stack
Properties listing (4.4), 93
synthesizing properties, 70-72
system preferences, Mac OS,
339-344

systemVersion property
(UlDevice), 190

How can we make this index more useful? Email us at indexes@samspublishing.com

460

tab bar controllers

T

tab bar controllers, 151
table view controllers (i0S), 151
table views, 345
accessory view, 345
adding, 369
cells, 345
fields, removing, 345-349
interface, removing, 345-349

methods, implementing,
350-357

sections, 345

table views (Interface Builder
editor), 199-200

tables, 87
cells
creating labels, 357
styled, 355-357
footer titles, setting, 354-355

header titles, setting,
354-355

multiple sections, 354
rows

allowing movement,
380-382

moving, 382-390
ordering, 375-380
templates, 52

Master-Detail Application,
166-167, 242, 263,
343-344, 409-410

predicates, 177
hard-coded data, 182-183
runtime data, 183
repurposing, 223-230

testing free validation, 401-402
text editor (Xcode), 40-45
code completion, 43-45

editing preferences, setting,
40-43

Fix It, 40, 43-45

text fields, interfaces, adding to,
217-221

“Three Little Pigs”, 246
trace connections, 149

transformations,
NSManagedObject, 136,
140-141

Transforming an Image to and
from NSData listing (7.1), 141

tree controllers, 149
type conflict issue, 328-329
solving, formatters, 329-331

type qualifiers, Interface Builder
editor, 230-231

U

UlApplicationDelegate
protocol, 300

UlDevice, properties, 190-191
UIResponder, 300
UISplitViewControllerDelegate, 79
UlTableView

accessory view, 345

cells, 345

fields, removing, 345-349

interface, removing,
345-349

i0S, 337-345

using with Core Data,
357-359

using without Core Data,
344-357

methods, implementing,
350-357

sections, 345
UlUserInterfaceldiom, 231

unique user-visible identifiers,
generating, 162

universal apps, creating,
190-192, 279-281

Use a Predicate Template with
Hard-coded Data listing
(10.1), 183

Use a Predicate Template with
Runtime Data listing
(10.2), 183

Use More than One Section
listing (19.4), 354

user defaults controllers, 149
user interaction, 338-339
user interface, Core Data, 195

user-visible identifiers,
generating, 162

userinfo property (NSError), 405

userinterfaceldiom property
(UlDevice), 190

users
communicating with, 413-418
editing data, 409

Using a Private Variable in a
Property listing (3.5), 71

Using a Sort Descriptor listing
(10.5), 186

utilities

inspectors, 31-34

libraries, 35-38
code snippet, 38-40
file templates, 35, 37

'/

validation
free, 393-394

summarizing on Mac OS,
401-402

testing, 401-402
inter-property, 405-406
key-value, 403-404
Mac 0OS, 394-402
managing, 393-394
NSManagedObject, 136
programming, 402-406

validation rules, data model,
317-319

setting up, 320-327

Validation setting (Data Model
inspector), 325

validity edits, 319
valueForKey, 134-136
version editing mode (Xcode), 26
versions, data models, 426-430
creating, 426-430
determining compatibility,
430-431
forcing incompatibility, 432
view concept (MVC

(model/view/controller) design
pattern), 82

view controllers

creating, 244

i0S, 151
Mac OS, 148
popover, 417
setting, 415

storyboards, adding and
deleting, 252-253

View Effects inspector, 205

View menu commands, Welcome
to Xcode, 50

views
changed, 413
controlling, 144-147
Detail, swapping, 244-245
integrating
i0S, 151
Mac 0S, 147-150
swapping, 248-251
i0S, 413-415
iOS devices, 241-243
viewWillAppear, 284
viewWillAppear listing (15.1), 273

viewWillAppear method,
269, 273

viewWillDisappear method,
284-285

viewWillDisappear listing
(15.2), 274

viewWillDisappear method, 269

viewWillDisappearAndBeSaved,
284

w

WebObjects, 156

Welcome to Xcode command, 50

461

Xcode

WHERE clauses, 171-173
windows (modal)
creating, 421
dismissing, 421
Mac OS, 419-421

windowWillReturnUndoManager
method, 293

workspace window (Xcode),
13-15

areas, 14
bars, 14
breakpoint gutters, 14
filter bar, 14
Focus ribbon, 14
navigator pane, 15-25
panes, 14

Worldwide Developers
Conference, 64

X

xcdatamodeld files, 313

Xcode, 8, 13, 49-50
automatic installation, 12
code samples, 50-52

control-drag, building inter-
faces, 232-236

Core Data model editor, 86

declarative programming para-
digms, 9-10

document structure area, 199

editing modes, 25-30

editing window, 31

fetch requests, creating,
178183

How can we make this index more useful? Email us at indexes@samspublishing.com

462

Xcode

files, identifying, 52-53

imperative programming
paradigms, 9-10

jump bar, 294-295, 301

launching, 12

Master-Detail template, 263

navigator pane, 15-25

breakpoint navigator,
24-25

debug navigator, 23-24
issue navigator, 23

log navigator, 25
project navigator, 16-20
search navigator, 21-22

symbol navigator,
20-21

organization tools, 28-29
Organizer window, 45-46

predicates, constructing,
177-183

projects
building, 52-53
identifying, 52-53
i0S, 53-56, 58-59
Mac, 56-59
storyboards, 192
templates, 52
text editor, 40-45
code completion, 43-45
Fix It, 40, 43-45
setting editing
preferences, 40-43
workspace window, 13-15
Xcode 4, 7

	Table of Contents
	Introduction
	Who Should Read This Book
	Some Points to Keep in Mind
	How This Book Is Organized
	HOUR 1: Introducing Xcode 4
	Getting to Know Xcode
	Goodbye “Hello, World”
	Hello, App Development for Mac OS X and iOS
	Getting Started with Xcode
	Using the Navigator
	Using Editors
	Working with Assistant
	Getting Help in an Editor Window
	Using Utilities—Inspectors
	Using Utilities—Libraries
	Using the Text Editor
	Using the Organizer Window
	Summary
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	S
	T
	U
	V
	W
	X

