

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Jesse Feiler

SamsTeachYourself

24in

Hours

Core Data for
Mac® and iOS

Second Edition

Sams Teach Yourself Core Data for Mac® and iOS in 24 Hours,
Second Edition
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33619-5
ISBN-10: 0-672-33619-7

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: June 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Loretta Yates

Development
Editor
Sondra Scott

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Indexer
Brad Herriman

Proofreader
Megan Wade

Technical Editor
Robert McGovern

Publishing
Coordinator
Cindy Teeters

Designer
Gary Adair

Compositor
Mark Shirar

Contents at a Glance
Introduction. 1

Part I: Getting Started with Core Data

HOUR 1: Introducing Xcode 4 . 7

2: Creating a Simple App. 49

3: Understanding the Basic Code Structure. 63

Part II: Using Core Data

HOUR 4: Getting the Big Core Data Picture . 85

5: Working with Data Models . 101

6: Working with the Core Data Model Editor . 117

7: What Managed Objects Can Do. 133

8: Controllers: Integrating the Data Model with Your Code 143

9: Fetching Data . 153

10: Working with Predicates and Sorting . 171

Part III: Developing the Core Data Interface

HOUR 11: Finding Your Way Around the Interface Builder Editor:

The Graphics Story . 189

12: Finding Your Way Around the Interface Builder Editor:

The Code Story. 209

13: Control-Dragging Your Way to Code. 223

14: Working with Storyboards and Swapping Views . 239

Part IV: Building the Core Data Code

HOUR 15: Saving Data with a Navigation Interface . 257

16: Using Split Views on iPad. 279

17: Structuring Apps for Core Data, Documents,

and Shoeboxes. 289

18: Validating Data . 317

iii

iv

Part V: Managing Data and Interfaces

HOUR 19: Using UITableView on iOS . 337

20: Using NSTableView on Mac OS. 363

21: Rearranging Table Rows on iOS . 375

22: Managing Validation . 393

23: Interacting with Users . 409

24: Migrating Data Models . 423

Appendix

A What’s Old in Core Data, Cocoa, Xcode, and Objective-C 441

Index . 443

Table of Contents

Introduction 1

Who Should Read This Book . 1

Some Points to Keep in Mind . 2

How This Book Is Organized. 3

Part I: Getting Started with Core Data

HOUR 1: Introducing Xcode 4 7

Getting to Know Xcode . 8

Goodbye “Hello, World” . 8

Hello, App Development for Mac OS X and iOS . 11

Getting Started with Xcode . 13

Using the Navigator . 15

Using Editors . 25

Working with Assistant . 29

Getting Help in an Editor Window . 31

Using Utilities—Inspectors . 31

Using Utilities—Libraries . 35

Using the Text Editor . 40

Using the Organizer Window . 45

Summary . 47

Workshop . 48

Activities . 48

HOUR 2: Creating a Simple App 49

Starting to Build an App . 49

Building the Project . 52

Exploring the App. 58

Summary . 60

Workshop . 60

Activities . 61

v

vi

HOUR 3: Understanding the Basic Code Structure 63

Working with the Code . 63

Looking at Object-Oriented Programming in the Context
of Objective-C . 66

Using Declared Properties. 68

Messaging in Objective-C . 73

Using Protocols and Delegates. 75

Using the Model/View/Controller Concepts . 81

Importing and Using Declarations in Files . 82

Summary . 83

Workshop . 84

Activities . 84

Part II: Using Core Data

HOUR 4: Getting the Big Core Data Picture 85

Starting Out with Core Data . 85

Examining Core Data at Runtime: The Core Data Stack . 90

Working with Fetched Results . 96

Summary . 99

Workshop . 99

Activities . 99

HOUR 5: Working with Data Models 101

Making the Abstract Concrete . 101

Working with Entities. 103

Adding Attributes to Entities . 105

Linking Entities with Relationships. 107

Keeping Track of Your Data in Files and Documents . 108

Summary. 116

Workshop . 116

Activities . 116

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

HOUR 6: Working with the Core Data Model Editor 117

Moving the Data Model from Paper to Xcode and
the Core Data Model Editor . 117

Adding Entities to the Data Model . 119

Choosing the Editor Style . 125

Adding Relationships to a Data Model . 126

Summary . 132

Workshop . 132

Activities . 132

HOUR 7: What Managed Objects Can Do 133

Using Managed Objects . 133

Deciding Whether to Override NSManagedObject . 134

Overriding NSManagedObject . 136

Implementing Transformation in an NSManagedObject Subclass 140

Summary. 142

Workshop . 142

Activities . 142

HOUR 8: Controllers: Integrating the Data Model with Your Code 143

Looking Inside Model/View/Controller . 143

Integrating Views and Data on Mac OS . 147

Integrating Views and Data on iOS . 151

Summary. 152

Workshop . 152

Activities . 152

HOUR 9: Fetching Data 153

Choosing the Core Data Architecture . 153

Exploring the Core Data Fetching Process . 154

Using Managed Object Contexts . 158

Creating and Using a Fetch Request . 159

Stopping the Action to Add New Data . 161

Optimizing Interfaces for Core Data. 162

vii

Contents

viii

Summary. 168

Workshop . 168

Activities . 169

HOUR 10: Working with Predicates and Sorting 171

Understanding Predicates . 171

Constructing Predicates . 177

Creating a Fetch Request and Predicate with Xcode . 178

Sorting Data. 185

Summary. 187

Workshop . 187

Activities . 187

Part III: Developing the Core Data Interface

HOUR 11: Finding Your Way Around the Interface Builder Editor:
The Graphics Story 189

Starting to Work with the Interface Builder Editor in Xcode . 189

Working with the Canvas . 197

Summary. 206

Workshop . 206

Activities . 207

HOUR 12: Finding Your Way Around the Interface Builder Editor:
The Code Story 209

Using the Connections Inspector . 209

Using IBOutlets for Data Elements . 215

Summary. 222

Workshop . 222

Activities . 222

HOUR 13: Control-Dragging Your Way to Code 223

Repurposing the Master-Detail Application Template . 223

Adding New Fields as IBOutlets . 230

Summary. 237

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

Workshop . 237

Activities . 238

HOUR 14: Working with Storyboards and Swapping Views 239

Creating a Project with a Storyboard . 239

Swapping Views on iOS Devices. 241

Swapping Detail Views (the Old Way). 244

Understanding the Storyboard Concept. 246

Looking at the Estimator Storyboard and Code . 248

Creating a Storyboard . 251

Summary. 254

Workshop . 255

Activities . 255

Part IV: Building the Core Data Code

HOUR 15: Saving Data with a Navigation Interface 257

Using a Navigation Interface to Edit and Save Data . 257

Starting from the Master-Detail Template . 263

Using the Debugger to Watch the Action. 267

Adding a Managed Object . 272

Moving and Saving Data . 273

Cleaning Up the Interface . 275

Summary. 277

Workshop . 278

Activities . 278

HOUR 16: Using Split Views on iPad 279

Moving to the iPad . 279

Implementing the Second Interface . 281

Changing the Data Update and Saving Code . 284

Summary. 287

Workshop . 287

Activities . 288

ix

Contents

x

HOUR 17: Structuring Apps for Core Data, Documents, and Shoeboxes 289

Looking at Apps from the Core Data Point of View:
The Role of Documents . 289

Exploring App Structure for Documents, Mac OS, and iOS . 292

Moving Data Models . 311

Moving a Data Model from One Project to Another . 312

Summary. 315

Workshop . 316

Activities . 316

HOUR 18: Validating Data 317

Using Validation Rules in the Data Model . 317

Setting Up Rules in Your Data Model . 320

Entering Data into the Interface and Moving It to the Data Model
(and Vice Versa) . 327

Creating Subclasses of NSManagedObject for Your Entities . 331

Summary. 335

Workshop . 336

Activities . 336

Part V: Managing Data and Interfaces

HOUR 19: Using UITableView on iOS 337

Working with Table Views and iOS, Mac OS, and Core Data . 337

Comparing Interfaces: Settings on iOS and System Preferences
on Mac OS . 339

Using UITableView Without Core Data . 344

Using UITableView with Core Data . 357

Summary. 360

Workshop . 361

Activities . 361

HOUR 20: Using NSTableView on Mac OS 363

Exploring the New NSTableView Features . 363

Building an NSTableView App . 366

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

Summary. 373

Workshop . 374

Activities . 374

HOUR 21: Rearranging Table Rows on iOS 375

Handling the Ordering of Table Rows . 375

Allowing a Table Row to Be Moved . 380

Doing the Move . 382

Summary. 391

Workshop . 392

Activities . 392

HOUR 22: Managing Validation 393

Validation for Free. 393

Validation on Mac OS . 394

Programming Validation for iOS or Mac OS . 402

Summary. 407

Workshop . 407

Activities . 408

HOUR 23: Interacting with Users 409

Choosing an Editing Interface . 409

Communicating with Users. 413

Using Sheets and Modal Windows on Mac OS . 419

Summary. 422

Workshop . 422

Activities . 422

HOUR 24: Migrating Data Models 423

Introducing the Core Data Migration Continuum. 423

Managing Data Model Migration . 424

Working with Data Model Versions . 426

Using Automatic Lightweight Migration . 432

Looking at a Mapping Model Overview . 434

xi

Contents

xii

Summary. 438

Workshop . 438

Activities . 439

APPENDIX A: What’s Old in Core Data, Cocoa, Xcode, and Objective-C 441

Declared Properties . 441

Required and Optional Methods in Protocols . 442

Storyboards in Interface Builder. 442

Ordered Relationships . 442

Index 443

Sams Teach Yourself Core Data for Mac and iOS in 24 Hours, Second Edition

About the Author
Jesse Feiler is a developer, web designer, trainer, and author. He has been an Apple devel-

oper since 1985 and has worked with mobile devices starting with Apple’s Newton and con-

tinuing with the iOS products such as the iPhone, iPod touch, and iPad. Feiler’s database

expertise includes mainframe databases such as DMS II (on Burroughs), DB2 (on IBM), and

Oracle (on various platforms), as well as personal computer databases from dBase to the

first versions of FileMaker. His database clients have included Federal Reserve Bank of New

York; Young & Rubicam (advertising); and many small and nonprofit organizations, pri-

marily in publishing, production, and management.

Feiler’s books include the following:

. Sams Teach Yourself Objective-C in 24 Hours (Sams/Pearson)

. Data-Driven iOS Apps for iPad and iPhone with FileMaker Pro, Bento by FileMaker, and

FileMaker Go (Sams/Pearson)

. FileMaker 12 in Depth (Sams/Pearson)

. Using FileMaker Bento (Sams/Pearson)

. iWork for Dummies (Wiley)

. Sams Teach Yourself Drupal in 24 Hours (Sams/Pearson)

. Get Rich with Apps! Your Guide to Reaching More Customers and Making Money NOW

(McGraw-Hill)

. Database-Driven Web Sites (Harcourt)

. How to Do Everything with Web 2.0 Mashups (McGraw-Hill)

. The Bento Book (Sams/Pearson)

He is the author of MinutesMachine, the meeting management software for iPad—get more

details at champlainarts.com.

A native of Washington, D.C., Feiler has lived in New York City and currently lives in

Plattsburgh, NY. He can be reached at northcountryconsulting.com.

xiii

xiv

Acknowledgments
Thanks go most of all to the people at Apple, along with the developers and users who have

helped to build the platform and imagine possibilities together to make the world better.

At Pearson, Loretta Yates, Executive Editor, has taken a concept and moved it from an idea

through the adventures along the way to printed books and eBooks in a variety of formats.

She is always a pleasure to work with.

Mandie Frank, Project Editor, has done a terrific job of keeping things on track with a

complex book full of code snippets, figures, and cross references in addition to the text.

Technical Editor Robert McGovern caught numerous technical typos and added comments

and perspectives that have clarified and enhanced the book.

As always, Carole Jelen at Waterside Productions has provided help and guidance in bring-

ing this book to fruition.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

As an Editor-in-Chief for Sams Publishing, I welcome your comments. You can email or

write me directly to let me know what you did or didn’t like about this book—as well as

what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do

have a User Services group, however, where I will forward specific technical questions related to the

book.

When you write, please be sure to include this book’s title and author as well as your name,

email address, and phone number. I will carefully review your comments and share them

with the author and editors who worked on the book.

Email: feedback@amspublishing.com

Mail: Greg Wiegand

Editor-in-Chief

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at amspublishing.com/register for convenient access

to any updates, downloads, or errata that might be available for this book.

xv

This page intentionally left blank

Who Should Read This Book 1

Introduction

Organizing things is an important human activity. Whether it is a child organizing

toys in some way (by size, color, favorites, and so forth) or an adult piecing together

a thousand-piece jigsaw puzzle, the desire to “make order out of chaos” (as one

inveterate puzzler put it) reflects a sense that somehow if we try hard enough or just

have enough information, we can find or create an understandable view of the

world. Or at least an understandable view of the left overs in the refrigerator or the

photos in an album.

Core Data is a powerful tool that you can use with the Cocoa and Cocoa Touch

frameworks on iOS and Mac OS to help you make order out of the chaos of the hun-

dreds, thousands, and even billions of data elements that you now can store on your

computer or mobile device.

Who Should Read This Book
This book is geared toward developers who need to understand Core Data and its

capabilities. It’s also aimed at developers who aren’t certain they need the combina-

tion of Core Data and Cocoa. It places the technologies in perspective so that you

can see where you and your project fit in. Part of that is simply analytical, but for

everyone, the hands-on examples provide background as well as the beginnings of

applications (apps) that you can create with these two technologies.

If you are new to databases or SQL, you will find a basic introduction here. If you

are familiar with them, you will find a refresher as well as details on how the con-

cepts you know already map to Core Data terminology.

Likewise, if you are new to development on Mac OS, iOS, or Cocoa and Cocoa

Touch, you will find a fairly detailed introduction. If you are already familiar with

them, you will see how some of the basic concepts have been expanded and

rearranged to work with Core Data.

There is a theme that recurs in this book: links and connections between interface

and code as well the connections between your app and the database. Much of what

you find in this book helps you develop the separate components (interface, data-

base, and code) and find simple ways to link them.

2 Introduction

Some Points to Keep in Mind
Not everyone starts from the same place in learning about Core Data (or, indeed,

any technology). Learning and developing with new technologies is rarely a linear

process. It is important to remember that you are not the first person to try to learn

these fairly complex interlocking technologies. This book and the code that you

experiment with try to lead you toward the moment when it all clicks together. If

you do not understand something the first time through, give it a rest, and come

back to it another time. For some people, alternating between the graphical design

of the interface, the logical design of the code processes, and the organizational

structure of the database can actually make things seem to move faster.

Here are some additional points to consider.

Acronyms
In many books, it is a convention to provide the full name of an acronym on its first

use—for example, HyperText Markup Language (HTML). It is time to recognize that

with wikipedia.org, dictionaries built into ebooks and computers, and so many other

tools, it is now safe to bring a number of acronyms in from the cold and use them

without elaboration. Acronyms specific to the topic of this book are, indeed,

explained on their first use in any chapter.

There is one term that does merit its own little section. In this book, as in much

usage today, SQL is treated as a name and not as an acronym. If you look it up on

Wikipedia, you will see the evolution of the term and its pronunciation.

Development Platforms
It is not surprising that the development of Mac OS X apps takes place on the Mac

itself. What may surprise some people, though, is that iOS apps that can run on

iPad, iPod touch, and iPhone must be developed on the Mac. There are many rea-

sons for this, not the least of which is that the development tool, Xcode, takes

advantage of many dynamic features of Objective-C that are not available on other

platforms. Also, Xcode has always served as a test bed for new ideas about develop-

ment, coding, and interfaces for the Apple engineers. Registered Apple developers

have access to preview versions of the developer tools. As a result, the Apple devel-

opers had access to features of Lion such as full-screen apps nine months before the

general public. In fact, Xcode 4 is optimized for Lion in both speed and interface

design.

How This Book Is Organized 3

Assumptions
Certain things are assumed in this book. (You might want to refer to this section as

you read.) They are as follows:

. Cocoa, as used in this book, refers to the Cocoa framework on Mac OS and,

unless otherwise specified, also to the Cocoa Touch framework on iOS.

. iPhone refers to iPhone and iPod touch unless otherwise noted.

Formatting
In addition to the text of this book, you will find code samples illustrating various

points. When a word is used in a sentence as computer code (such as NSTableView),

it appears like this. Code snippets appear set off from the surrounding text.

Sometimes they appear as a few lines of code; longer excerpts are identified with

listing numbers so they can be cross-referenced.

Downloading the Sample Files
Sample files can be downloaded from the author’s website at northcountryconsulting.

com or from the publisher’s site at www.informit.com/9780672335778.

How This Book Is Organized
There are five parts to this book. You can focus on whichever one addresses an

immediate problem, or you can get a good overview by reading the book straight

through. Like all of the Teach Yourself books, as much as possible, each chapter (or

hour) is made to stand on its own so that you can jump around to learn in your

own way. Cross-references throughout the book help you find related material.

Part I, “Getting Started with Core Data”
This part introduces the basic issues of the book and shows you principles and tech-

niques that apply to all of the products discussed:

. Chapter 1, “Introducing Xcode 4”—Xcode is the tool you use to build Mac

OS and iOS apps. It includes graphical editors for designing your interface

and data model. The current version, Xcode 4, represents a significant step

forward from previous development environments. You’ll get started by

learning the ins and outs of Xcode 4. After you use it, you’ll never look

back.

www.informit.com/9780672335778

4 Introduction

. Chapter 2, “Creating a Simple App”—This hour walks you through the

process of creating an app from one of the built-in Xcode templates. It’s

very little work for a basic app that runs.

. Chapter 3, “Understanding the Basic Code Structure”—This hour introduces

design patterns used in Objective-C as well as some of the features (such as

delegates and protocols) that distinguish it from other object-oriented pro-

gramming languages.

Part II, “Using Core Data”
Here you will find the basics of Core Data and its development tools in Xcode:

. Chapter 4, “Getting the Big Core Data Picture”—Here you’ll find an

overview of Core Data and a high-level introduction to its main

components.

. Chapter 5, “Working with Data Models”—Data models have been around

since the beginning of databases (and, in fact, since long before, if you

want to include data models such as the classifications of plants and ani-

mals). This hour lets you learn the language of Core Data.

. Chapter 6, “Working with the Core Data Model Editor”—In this hour, you

will learn how to build your data model graphically with Xcode’s table and

grid styles.

. Chapter 7, “What Managed Objects Can Do”—In this hour, you’ll discover

the functionality of managed objects and what you can do to take advan-

tage of it and to expand it.

. Chapter 8, “Controllers: Integrating the Data Model with Your Code”—The

key point of this book is to show you how to link your database and data

model to interface elements and your code. This hour provides the basics

for Mac OS and for Cocoa.

. Chapter 9, “Fetching Data”—Just as the SQL SELECT statement is the heart

of data retrieval for SQL databases, fetching data is the heart of data

retrieval for Core Data. Here you’ll learn the techniques and terminology.

. Chapter 10, “Working with Predicates and Sorting”—When you fetch data,

you often need to specify exactly what data is to be fetched—that is the

role of predicates. In addition, you will see how to build in sorting to your

fetch requests so that the data is already in the order you need.

How This Book Is Organized 5

Part III, “Developing the Core Data Interface”
Now that you understand the basics of Core Data, you can use it to drive the com-

mands, controls, and interfaces of your apps:

. Chapter 11, “Finding Your Way Around Interface Builder: The Graphics

Story”—The Interface Builder editor in Xcode 4 (a separate program until

now) provides powerful tools and a compact workspace to help you develop

your interface and app functionality.

. Chapter 12, “Finding Your Way Around Interface Builder: The Code

Story”—This hour shows you the graphical tools to link the code to the

interface.

. Chapter 13, “Control-Dragging Your Way to Code”—A special aspect of

linking your interface to your code is using the tools in Xcode 4 to actually

write the interface code for you.

. Chapter 14, “Working with Storyboards and Swapping Views”—One of the

major advances in Xcode 4, storyboards not only create and manage the views

and controllers that make up your interface, but also let you manage the

sequences in which they are presented (segues). You will find that storyboards

can replace a good deal of code that you would otherwise have to write for

each view you display.

Part IV, “Building the Core Data Code”
Yet another aspect of the connections between Core Data, your code, and your inter-

face consists of the data source protocol and table views. This part explains them:

. Chapter 15, “Saving Data with a Navigation Interface”—Originally

designed for iPhone, navigation interfaces are an efficient use of screen

space for organized data. This hour shows you how to use them.

. Chapter 16, “Using Split Views on iPad”—Split views on iPad provide a larger-

screen approach to data presentation than navigation interfaces. As you see

in this hour, you can combine navigation interfaces with a split view on iPad.

Data sources provide your Core Data data to the table view. This hour shows

how that happens and moves on to how you can work with tables and their

rows and sections. You’ll also see how to format cells in various ways.

. Chapter 17, “Structuring Apps for Core Data, Documents, and

Shoeboxes”—This hour goes into detail about how and where your data

can actually be stored.

. Chapter 18, “Validating Data”—When you use Xcode and Core Data to

specify what data is valid, you do not have to perform the validation your-

self. This hour shows you how to set up the rules

6 Introduction

Part V, “Managing Data and Interfaces”
. Chapter 19, “Using UITableView on iOS”—Table views let you manage

and present data easily. The UITableView structure on iOS is designed for

seamless integration with Core Data.

. Chapter 20, “Using NSTableView on Mac OS”—NSTableView on Mac OS is

revised in Lion. The older versions of table views still work, but as you see

in this hour, some of the new features of UITableView have been back-

ported to Mac OS.

. Chapter 21, “Rearranging Table Rows on iOS”—The ability to rearrange

table rows by dragging them on the screen is one of the best features of

iOS. It is remarkably simple once you know the table view basics.

. Chapter 22, “Managing Validation”—This hour shows you how to build on

the validation rules from Hour 18 to actually implement them and let users

know when there are problems.

. Chapter 23, “Interacting with Users”—On both iOS and Mac OS, it is

important to let users know when they are able to modify data and when it

is only being displayed.

. Chapter 24, “Migrating Data Models”—You can have Core Data automati-

cally migrate your data model to a new version. This hour shows you how

to do that, as well as how to use model metadata and alternative types of

data stores.

Appendixes
. Appendix A, “What’s Old in Core Data, Cocoa, Xcode, and Objective-C”—

There are some legacy features in the sample code you’ll find on developer.

apple.com and in apps you might be working with. This appendix helps

you understand what you’re looking at and how to modernize it.

NOTE

Due to the complexity of the topics discussed, some figures in this book are very
detailed and are intended only to provide a high-level view of concepts. Those
figures are representational and not intended to be read in detail. If you prefer to
view these figures on your computer, you can download them at
informit.com/title/9780672336195.

7

HOUR 1

Introducing Xcode 4

What You’ll Learn in This Hour:
. Understanding the new development paradigms

. Exploring the Xcode workspace window

. Defining projects and workspaces

. Debugging with breakpoints

. Caring for your source code with repositories and versions

The Origins of Xcode 4
Xcode 4 has its roots in Project Builder and Interface Builder, the two development
tools created for NeXTSTEP. The NeXTSTEP operating system ran on the NeXT com-
puter, which was manufactured by NeXT, the company Steve Jobs founded when he
left Apple in 1985. The hardware side of the business was not successful, and
NeXTSTEP morphed into OPENSTEP, which ran on Sun’s Solaris operating system,
and later on Windows. After Apple purchased NeXT in 1996, the software became
Rhapsody and, later, Mac OS X. A branch of the software became the iPhone oper-
ating system which, after the introduction of iPad, became iOS.

Project Builder and Interface Builder remained the developer tools through all this time.
Project Builder was the tool you used to write code, and Interface Builder was the
graphically oriented tool you used to draw the interface. Project Builder was renamed
Xcode in 2003; it contained significant changes to its user interface at that time.

At Apple’s 2010 Worldwide Developer Conference, Xcode 4 was given its debut. It
was released as the official version in spring 2011. One of its most significant fea-
tures was the integration of Project Builder and Interface Builder in a single tool.

This book is based on Xcode 4. If you are using an earlier version, it is time for you
to update to the latest software because by the time this book is published, Xcode
4 will be more than a year old (depending on whether you start counting from the
demonstrations or from the official release). Now that you know the history and ori-
gins of Xcode 4, there is no reason to distinguish it from its predecessors: From
this point on, it is simply referred to as .

8 HOUR 1: Introducing Xcode 4

Getting to Know Xcode
Everything you do in the development of Mac and iOS apps is done in the context

of Xcode. First demonstrated at Apple’s Worldwide Developers Conference in June

2010, it was released in several preview versions until the final release in the spring

of 2011. Xcode 4 is not just a revision to the interface of Xcode 3; it is a rethinking of

the way in which developers work on their apps.

This hour helps you understand this new way of working and why it is so relevant

to apps written for Mac and iOS in today’s world. Not only will you find out how to

use Xcode 4, but you will see why it is structured the way it is and how you can best

take advantage of its new features.

As you use Xcode 4, try to use the new features and new ways of working so that

you understand what the people at Apple think a productive development process

can look like today. And bear in mind one important point about Apple’s developer

tools: for many years, these tools have been testing and proving grounds for new

ideas about interface design. What you see in Xcode 4 includes some novel

approaches to interface design that you may consider using for your own apps both

on Mac and iOS.

. One of the most important features of Xcode is its simulator: software that

lets you test iOS apps on your Mac. You’ll find out more about the simula-

tor in Part II of this book, “Using Core Data.”

Goodbye “Hello, World”
For many people, their first program was something along the lines of the well-

known Hello World program shown in Listing 1.1. It is from the classic The C

Programming Language by Brian Kernighan and Dennis Ritchie (1978).

LISTING 1.1 Hello, World
main() {

printf(“hello, world”);
}

Many people still think of this as a model of what programming is all about: You

start with a blank piece of paper or a blank screen, you type in your code, you run

it, you make revisions, and you continue on to the next program on its own blank

piece of paper or blank screen.

Goodbye “Hello, World” 9

Today’s programming is based on several commonly used paradigms. Two of the

most important have to do with how programs function—declarative and impera-

tive paradigms. A third, object-oriented programming, has to do with the structure

of programs.

Working with Imperative and Declarative
Programming Paradigms
Today’s apps are much more complex than just printing or displaying a line of text.

How do you get from Hello, World to an app such as iTunes? Even an app that

appears to be text-based such as Pages in the iWork suite is a far cry from Hello,

World. And when you consider that Mac OS X and iOS are basically just very large

apps, it is hard to see how they evolved from Hello, World.

When Hello, World first was written, the programming world was already

moving away from this linear do this/do that paradigm (called imperative or

procedural programming) to a new paradigm called declarative programming, in

which the mechanics of how something is done are less important than what is

done.

Procedural programming is used in the code you write; most of that is Objective-C

when you are writing for Mac OS X and iOS. For most people, writing procedural

code “feels” like programming. (In addition to its procedural programming con-

cepts, Objective-C uses object-oriented programming, hence its name.)

Languages that are declarative (that is, focusing on what is done) are particularly

common on the Web. Most people consider Cascading Style Sheets (CSS), regular

expressions, and the basics of SQL (SELECT statements, for example) to be examples

of declarative languages. Markup languages in general—including HTML itself—are

declarative rather than procedural because they describe what the end result should

look like. For many people, designing databases and web pages doesn’t “feel” like

programming (and many people do not think that it is).

The distinction between these two programming paradigms is not a matter of

good versus bad or old versus new: It is simply a contrast between two ways of

developing software. As you approach Xcode, Mac OS X, and iOS, you do not

have to make a choice because both paradigms are supported in Xcode. Most of

the time, a specific editing function is implemented only in procedural or declara-

tive styles because one or the other is the natural way of editing that particular set

of instructions.

10 HOUR 1: Introducing Xcode 4

NOTE

In at least one case—the creation of interface views—you can choose between
procedural and declarative styles. In those cases, this book will point out some of
the differences that affect your finished app.

If you are starting building apps for Mac OS X or iOS that use Core Data, you

will use descriptive editors for the Core Data side of things just as you do with

many SQL-based development environments, and you will use procedural editors

for the text-based code that you write to manipulate the interface and the

database.

Working with Object-Oriented Programming
Object-oriented programming is now so pervasive that for many people, it is the

only kind of programming they do. Instead of the simple and relatively unstructured

code shown in Listing 1.1, objects are created that encapsulate data and functionali-

ty. These objects interact with one another to get the work of the program done.

When people first started using object-oriented programming techniques, some

critics pointed out that it took much more code and programming time to use

object-oriented techniques and languages than to use traditional techniques and

languages. The idea of writing a program with the three lines shown in Listing 1.1

is unthinkable in the object-oriented programming world.

However, the arguments made by proponents of object-oriented programming and

borne out by decades of experience are that

. Object-oriented programming is easier to maintain and modify over time

in part because of its inherent structures.

. It might take many more lines to write a very simple program using object-

oriented programming techniques, but as the complexity of the program

increases, the incremental effort to build each new feature can be signifi-

cantly less than with traditional techniques.

When you put these points together, you can see that there is a significant difference

between simple and complex programs no matter whether you are using object-

oriented programming or traditional programming. The benefits of object-oriented

programming really only appear in complex programs, whereas the limitations of

traditional programming methods do not appear in short programs.

In practical terms, this means that to learn how to use the tools of Mac OS X and

iOS along with Xcode, you have to work with hefty examples. And if you try to use a

Hello, App Development for Mac OS X and iOS 11

simplified example, you might wind up thinking that these tools are overly complex.

That is true in one sense: Using these tools to write something very simple is overkill.

But not using tools like this to write complex software is frequently self-defeating.

As you begin to work with Xcode, Core Data, Mac OS X, and iOS, you will find your-

self at the helm of a sophisticated and powerful development environment. In this

book, you will see how to start small and build up to very complex apps. In the ini-

tial hours, because the examples are small, you may be tempted to worry about the

complexity, but just remember that the complexity will pay off as the examples

become more complex.

. With that overview, you might be interested in the Tutorial “Using Xcode to

Write ‘Hello, World’” in Hour 1 of Apple’s Xcode Quick Start Guide. It is 20

pages long and demonstrates precisely these points.

TIP

If you have not done so already, register as a developer with Apple at developer.
apple.com. A variety of developer programs are available, but the most common
are the Mac OS X developer program ($99/year), the iOS developer program
($99/year), and the Safari developer program (free). All these programs are built
on your registration as a developer with Apple, which is free.

Without even registering, you have access to libraries of documentation. All Apple
documentation referred to in this book is available through developer.apple.com. Any
documentation that is not available through developer.apple.com will be identified.

You can visit http://developer.apple.com/programs/which-program/ to compare
the various developer programs and to choose the one that makes sense for you.

Hello, App Development for Mac OS X
and iOS
To get started, register and sign up for a developer program so you can download

Xcode from developer.apple.com. If you are not certain that you want to register as

a developer, you can purchase Xcode alone from the Mac App store. It is currently

free. Starting with Xcode 4.3.1, it is an app just like any other you download from

the App Store. It comes with a variety of tools as shown in Figure 1.1. (Prior to Xcode

4.3.1, it and the tools were installed in a special Developer folder.)

Launch Xcode to open the window shown in Figure 1.2. (While you are at it, you

might want to set the option to keep it in the Dock. Some people like to launch

http://developer.apple.com/programs/which-program/

12 HOUR 1: Introducing Xcode 4

FIGURE 1.1
Xcode comes
with a variety of
developer apps.

FIGURE 1.2
Launch Xcode.

TIP

If you have run Xcode before, preferences might have changed and you may see a
different welcome screen—or none at all.

As you can see in Figure 1.2, from this point you can create a new project, get help,

and generally get started with Xcode.

. At this point, you can get started using Xcode by creating a simple app as

described in Hour 2, “Creating a Simple App,” p. 49.

This hour continues with an exploration of the Xcode window and how to use it.

Xcode directly; others launch it by opening the Xcode project document they are

currently working on.)

Getting Started with Xcode 13

Getting Started with Xcode
Whether you are creating a new Xcode project or reopening an old one, you see the

Xcode workspace window shown in Figure 1.3. Note that depending on your project

and your Xcode preferences, the details of the window (not to mention the code) will

very likely be different.

Toolbar

Editor area

Filter bar

Inspector Selector barJump bar

Utility area

Inspector
pane

Navigation
Selector bar

Navigator area

Breakpoint
gutter
Breakpoint
gutter

Focus ribbon

Libraries
pane

Library
Selector
bar

FIGURE 1.3
You work inside
the Xcode work-
space window.

Using the Workspace Window
As noted previously, Apple developer tools often provide a test bed for new interface

features (and, under the hood, performance advances such as advanced threading).

In its first demonstration of Mac OS X 10.7 (Lion), Apple showed how full-screen

apps could take over the screen in much the same way that all apps do on mobile

iOS devices. As Apple has moved forward, Xcode has provided an example of how a

full-screen app can work. It was compelling and relatively simple to demonstrate

14 HOUR 1: Introducing Xcode 4

full-screen implementations of existing apps such as Preview, iCal, iPhoto, and Mail,

which Apple did as long ago as fall of 2010.

But how would full-screen apps work with data that is not visual the way that pho-

tos, calendars, and the documents shown in Preview are? The answer was under

developers’ eyes right at the first preview: They just had to download a beta version

of Xcode 4.

The window is a combination of panes and panes-within-panes that can be shown

or hidden as well as resized. At first glance, Figure 1.3 can be daunting. But when

you look at it a second time, you will see that it is actually fairly simple. It uses and

reuses three components. Each component exhibits the same behavior wherever it

appears. In addition, you can show or hide almost all the components, rearrange

them, and resize them.

These are the main components of the workspace window:

. Areas—There are three areas shown in Figure 1.3. At the left is the naviga-

tor area, at the right is the utility area, and hidden at the bottom is the

debug area. Each of these can be shown or hidden by using the three View

buttons at the upper right of the workspace window. The editor area, in the

center of the workspace window, is always visible.

. Bars—At the top of the navigator, editor, and debug areas, you will find a

bar you can use to select different views for the area. The bar above the

editor area is the jump bar, but the others are the navigator selector bar

and the debug bar.

. Panes—The utility area is divided into two panes, each of which can be

resized. The combined height of the utility area remains constant within

the window size, so if you enlarge the height of the library pane, you auto-

matically reduce the height of the inspector pane. Selector bars appear at

the top of the panes in the utility area.

There are three lesser components in the workspace window:

. Filter bar—At the bottom of the navigator area, this lets you filter the lists

in the navigator to include or exclude certain types of items, such as class

symbols, files with unsaved changes, and so forth.

. Breakpoint gutter—This appears in the editor area and lets you insert and

delete breakpoints for debugging.

. Focus ribbon—This lets you expand or collapse sections of code in the editor.

Using the Navigator 15

TIP

The best way to explore the workspace window is to open or create a project and
then explore the menu bar. This hour can only provide a high-level summary of the
workspace window.

There you have it: The workspace window is a compact and powerful environment

to let you manage your development process. The same interface elements are used

over and over, which means you do not have to learn a multitude of interfaces and

functions. This is the result of the consolidation of Project Builder and Interface

Builder along with a great deal of hard work and imagination.

Xcode is designed to be customizable with all kinds of preferences; these, together

with the basic interface components, allow you to work the way you want to work

on the projects you want to work on. (An iPhone app? A Mac OS app? And if you

work for Apple, Mac OS X itself?) For these reasons, there is no sequential way to

start working with Xcode. The sections that follow highlight some of the main

components: Feel free to skip around.

NOTE

This overview of Xcode walks through the workspace window. There is an Xcode
menu bar, as you would expect in a Mac app, but menus today are not nearly so
important as they were many years ago. If this book had been written 10 years
ago, it is quite likely that the overview would have walked you through each menu
and each command in that menu. Now, however, we are in a world of direct manipu-
lation where buttons, commands, and hot items are located throughout the
interface—they are placed where you want to use them. This means that that
lengthy mouse trip up to the menubar is often not necessary because the interface
element that does what you want to have done is right on the window itself.
(Hmmm, just like on an iOS device.) The menu commands are more often than
ever available with keyboard equivalents. For many people, the menubar and its
commands serve largely as a place to go to find the keyboard equivalent for a
command. For these reasons, you will find the menu commands scattered through
this hour; they are dealt with in the interface elements they affect.

Using the Navigator
The starting point for this exploration is the navigator pane at the left of the work-

space window. You show or hide it with the leftmost View button, as pointed out in

Figure 1.3. At the top of the navigator is a selector bar. The seven items in it control

which navigator is displayed. You can use commands in the Navigators submenu of

the View menu or keyboard equivalents instead of the selector bar if you want.

16 HOUR 1: Introducing Xcode 4

TIP

If the navigator is not visible, the menu command will automatically open it.

If you want to hide the navigator, use the leftmost View button or the View >

Navigators > Hide Navigator command (�–0).

The next sections explain the navigators, their keyboard equivalents, and what

they do.

Project �–1
Figure 1.4 shows the project navigator. When you have first created a new project, it

will very likely look like this. At the top of the navigator is a single item with a dis-

closure triangle to its left.

Click the disclosure triangle, and the single project item opens revealing its files and

groups, as you see in Figure 1.5.

NOTE

Groups are shown with folder icons, but they are not file system folders. The
groups into which you organize your project’s files are a construct within Xcode.
The files can be anywhere you want.

Figure 1.5 also demonstrates another feature of Xcode: the parts of the workspace

window know about one another. When you click the project icon at the top of the

navigator, the editor area of the workspace window shows information about the

project, as you can see in Figures 1.4 and 1.5.

FIGURE 1.4
The project is
shown in a col-
lapsed form in
the navigator
right after you
have created it.

Using the Navigator 17

FIGURE 1.5
You can expand
groups in
the project
navigator.

Click one of the files in the project, and it appears in the editor area shown in Figure 1.6.

FIGURE 1.6
Click a file to
edit it.

Clicking a file opens it in the editor area no matter what kind of file it is. Figure 1.7

shows an interface file (a nib file) in the editor area. Note that new projects for iOS

have the option to use storyboards instead of nib files; for older projects and on Mac

OS, nibs remain the standards.

. Learn more about storyboards in Hour 14, “Working with Storyboards and

Swapping Views.”

Figure 1.8 shows a Core Data data model file in the editor area.

In Figure 1.9, you see that if you have added an image file to your project, clicking

it opens the image in the editor area.

18 HOUR 1: Introducing Xcode 4

FIGURE 1.7
Edit a nib file in
Xcode.

FIGURE 1.8
Edit your data
model in Xcode.

FIGURE 1.9
Open resource
files.

Using the Navigator 19

In other words, no matter what kind of file it is, select it in the project navigator and

edit it in the editor (for the file types that Xcode supports).

You have seen how to use the navigator to explore your project and its files, but how

do you manage the files themselves? When you create a project, as you will see in

Hour 2, the files are automatically created for you. In your own projects, you might

need to add files to it. Control-click in the project navigator to bring up the shortcut

menu shown in Figure 1.10. For many people, right-clicking the mouse will have the

same effect. You can add the new file anywhere you want and move it to the right

position in the navigator just by dragging it. If you control- or right-click in a group,

the file will be added to that group and you might not have to move it.

FIGURE 1.10
Use the short-
cut menu to
add files to the
project.

Once you have selected a file to add, the sheet shown in Figure 1.11 opens.

FIGURE 1.11
Specify a file to
add.

20 HOUR 1: Introducing Xcode 4

The most important part of this dialog other than the filename is the Destination

checkbox. This determines whether the project will use the file that may be some-

where else on your disk or network or whether it will copy it into your project.

Normally, you do want to copy the file into the project so that you can then move

the entire project folder to another computer if necessary.

TIP

Sometimes, a filename will appear in red. This indicates that it is part of the proj-
ect but that it is missing. For example, before you have built your project, the file
named <MyProjectName>.app appears in red. After you have successfully built
your project, the name appears in black.

The filter bar at the bottom of the project navigator lets you filter by filename (or

part thereof). The + in the bottom-left lets you add a new file with a template (it is

not the same as the add file to project command shown in the shortcut menu in

Figure 1.10). Three symbols to the right of the + limit your navigation. From left,

here are their effects:

. Show only recently edited files

. Show only files with source-control status such as modified

. Show only files with unsaved changes

Symbol �–2
The symbol navigator, shown in Figure 1.12, shows you the symbols in your project:

the classes (indicated with C), methods (M), and properties (P). Interface Builder

actions (A) and outlets (O) manage the interactions between your code and your

interface.

FIGURE 1.12
Use the symbol
navigator.

Using the Navigator 21

Properties are identified by P unless they are Interface Builder outlets—a special kind

of property. The synthesize directive that is the companion to a property directive

is flagged with a V (for variable).

. You will find out more about the property and synthesize directives in Hour

3, “Understanding the Basic Code Structure,” p. 63.

At the bottom of the symbol navigator, you can filter the display. Use the search box

to type text to search for in symbol names. To the left of the filter bar, symbols let

you choose what to display and hide. From left, the following effects are available:

. Show only class symbols—that is, no globals

. Show only symbols defined in the project

. Show only containers such as classes and categories; do not show members

Search �–3
The search navigator packs a lot of searching into a small space. You can use it by

simply typing a search term into the box; Xcode will search for it through the proj-

ect. The list of results (if any) is shown in the search navigator. You will see the rele-

vant filename, a symbol such as the ones shown previously in Figure 1.12, and the

beginning of the line of code. The search term is highlighted in yellow in each line.

Sometimes this means that you do not see the beginning of the line, but never

fear—a click on the line will display it in the editor area, or you can hover the

pointer over it to see a tooltip with the full text.

You can switch between searching and replacing text at the upper-left, as shown in

Figure 1.13. In addition, at the bottom of the search navigator, the filter bar lets you

search within the results. In Figure 1.13, for example, the find was executed on

“detail.” (You can see this because “detail” is highlighted in all of the search results.)

The filter bar is used to filter on “item.” If you look at the search results, you will see

that “detail” is always found, but each of those results also contains “item,” which is

not highlighted because it was not part of the original search. You can duplicate

these results for yourself. Conduct a search without a filter, and then add a filter.

You’ll see that the number of results is reduced.

Just to the right of the magnifying glass in the search field, a disclosure triangle lets

you show or hide the Find Options shortcut, as shown in Figure 1.14. It also lets you

repeat recent searches.

22 HOUR 1: Introducing Xcode 4

FIGURE 1.13
Specify a
search.

The search navigator searches throughout the project. The Edit menu has traditional

single-file Find commands, as shown in Figure 1.15.

FIGURE 1.14
Show or hide
Find Options
shortcuts.

FIGURE 1.15
The Edit menu
provides a mul-
titude of search
and replace
options.

Using the Navigator 23

Issue �–4
The issue navigator lets you view the issues with your project. In the old days, these

used to be called compile errors, but with Xcode, you will have many fewer compile

errors. Do not get your hopes up, though. That is because Xcode has a powerful

parser that checks your code as you type. It is as lively as a spell-checker, but it looks

for syntax errors as well as ordinary misspellings. This means that compile errors

now show up much earlier—just as you are typing them in many cases. The issue

navigator lets you see them. You can display them by file (the traditional way of

showing compile errors), but you can also display them by type so that like errors

are grouped together. Sometimes that can make fixing the errors faster, particularly

if you are consistently mistyping a variable name.

Figure 1.16 shows the issue navigator. In addition, note that, in the breakpoint gut-

ter at the left of the editor area, symbols show up as soon as you have made the

offending keystroke. (An extra s has just been added to synthesize—synthessize.)

Debug �–5
Debug shows you the calling sequence for each of your app’s threads (in the

simplest case, there is only one). For example, Figure 1.17 shows the app

stopped in DetailViewController viewWillAppear. That was called from

UISplitViewController viewWillAppear, and so on back to the bottom of the

calling sequence—main, which starts the program running.

FIGURE 1.16
The issue navi-
gator helps you
correct errors
as you type.

24 HOUR 1: Introducing Xcode 4

Breakpoint�–6
Breakpoints let you stop program execution at specific lines of code. You place a

breakpoint in the breakpoint gutter to the left of the editor area and, when the pro-

gram is about to execute that line of code, it stops. You can then inspect the vari-

ables in the debug area. In Figure 1.17, a breakpoint was set in the editor area at

[super viewWillAppear:animated]. The program stopped just before executing

that line of code. The calling sequence is visible in the debug navigator. In the editor

area, you see the breakpoint, and, to its right, a small green arrow that points to the

line of code about to be executed. If you have several breakpoints, you need to know

which one has just stopped the app.

Beneath the editor area, the debug area shows you information about the break-

point. On the left is a view of the variables at this moment. On the right are console

messages. Buttons at the upper-right of the debug area let you choose which—or

both—views to display. In the view of variables, you can expand and collapse con-

tainers as you examine exactly what data is where.

TIP

Breakpoints can be useful even if they do not trip. When you cannot figure out why
a line of code does not work properly, set a breakpoint on it to examine the data. If
the breakpoint is not tripped, work backwards to see where the app goes off the
rails. Command-click on a breakpoint to edit it. For example, you can stop only
after the nth pass through the breakpoint and only if a certain data condition is
true. You can add actions to the breakpoint such as a sound; a log message; a
shell command; or even that trustworthy and powerful tool, an AppleScript script.

FIGURE 1.17
Use the debug
navigator to
track a calling
sequence.

Using Editors 25

To remove a breakpoint, drag it out of the breakpoint gutter. You can also use the

breakpoint navigator to list the breakpoints. Clicking one will take you to the line of

code. You can drag breakpoints out of the breakpoint navigator to remove them if

you prefer not to drag them out of the breakpoint gutter.

TIP

Note that there is a global breakpoint control in the toolbar. Use it to turn all break-
points on or off. This is helpful in debugging when you are done with the break-
points but might want to turn the breakpoint back on the next time a bug appears.

Log �–7
Finally, the log navigator keeps track of what you’ve been doing with this app.

Figure 1.18 shows the log navigator. The events are in reverse chronological order

(latest first). As always in the navigator, a filter bar lets you filter the entries so you

can easily find builds or other specific types of entries; you can also use the control

at the bottom-left to see the most recent log entries. Clicking a log entry shows you

the console results for that compile, build, or other action.

Using Editors
The center of the workspace window is reserved for editing your project and its files.

As you have seen, different editors are automatically opened for the different types

of files in your project.

FIGURE 1.18
The log naviga-
tor keeps track
of your work.

26 HOUR 1: Introducing Xcode 4

. This section focuses on text editors; other editors are discussed in Hour 6,

“Working with the Core Data Model Editor,” p. 117, and Hour 11, “Finding

Your Way Around Interface Builder: The Graphics Story,” p. 189.

Using Editing Modes
Three editing modes are available in Xcode:

. Standard—This displays a single file in the edit area.

. Assistant—This displays two or more related files in the edit area.

. Version—If you are using source control, you can compare a file with its

previous version or versions.

. Refer to “Working with Assistant” on p. 29 of this hour for details about the

Assistant mode.

You select the editing mode with the trio of buttons marked Editor at the right of the

top of the Xcode window, as shown in Figure 1.19. You can also use View, Editor to

choose among them.

FIGURE 1.19
Select the
assistant you
want to use.

Using Editors 27

Using the Jump Bar
The jump bar appears at the top of the editor area no matter what mode you are in.

As you can see in Figure 1.20, the jump bar above the editor area shows the path to

the file you are working on relative to the project and lets you quickly navigate to a

file, method, property, or class in the file. If you have several files open (as is often

the case in Assistant and Version editor panes), each has its own jump bar.

You can use it to quickly navigate to a file or to a method, property, or class in the

open file.

Thus, at the left, you see the icon for the project (Master Detail Sample); within that,

you see a group (Master Detail Sample—shown with a Finder folder icon), and with-

in that, the filename is shown (Hour1_AppDelegate.m). The next level down is a list

of the methods, properties, and classes in that file.

TIP

It is important to note that this is the logical structure of the project, files, and
groups. If you move the project to another folder, drive, or computer, this structure
will remain the same.

Organizing Your File’s Pop-Up Menu List
In addition to the names of the methods, properties, and classes, titles appear in the

pop-up list. You put titles into the file using a pragma directive:

#pragma mark – headingName

FIGURE 1.20
Jump bar in
action.

28 HOUR 1: Introducing Xcode 4

There actually are three variations on this directive:

. The example shown provides a bold-faced heading with a dividing line

above it, as shown in Figure 1.20.

. If you omit the hyphen, the dividing line is not shown and you only have

the name.

. If you omit the name but use the hyphen, you have an unnamed divid-

ing line.

You can use the bold-faced heading with a dividing line for major sections of your

code; then use dividing lines without headings to further divide each major section.

Using headers forces you to keep your file organized because related methods, prop-

erties, and classes are physically co-located in the file.

TIP

Be aware that the code that is commented out will not appear in the pop-up menu list.

Using Xcode’s Organization Tools
Xcode keeps track of the relationships among your files. At the left of the jump bar,

the related items menu lets you quickly jump to related files. You can see the related

items menu in Figure 1.21.

Related items menu

FIGURE 1.21
Use the related
items menu.

Working with Assistant 29

At the top of the menu, submenus show you unsaved files and recent files. Submenus

show you these types of related files when you are looking at source code. Other

types of files, such as nib files and Core Data model editor files, have different

submenus:

. Counterparts—This means the .h files for .m files, and vice versa.

. Superclasses—There is always a superclass (except for NSObject). This list

is organized in order so that the last item at the bottom is always NSObject.

. Subclasses—If any.

. Siblings—These are classes that share the same immediate superclass.

. Categories—This is an Objective-C construct that allows you to add meth-

ods to an existing class.

. Protocols—This Objective-C features lets you declare a set of methods that

can be implemented by several classes in their own ways and with their

own data structures. Protocols provide functionality similar to multiple

inheritance in some other object-oriented languages.

. Both categories and protocols are discussed in Hour 3, p. 63.

. Includes—These are the files that are included in the file you are looking at.

. Included By—From an included file, you can return easily to this file; you

can also see the other files in your project that may include this file.

With these various navigational tools available and updated by Xcode, you might

want to use the adjacent forward and back arrows. They function just as forward

and back arrows do in a browser. This means that you can use the related items

menu to explore the rest of your project and get back to where you started from with

just a few mouse clicks.

Working with Assistant
Assistant lets you see several files in the same pane of the window, and it can take

advantage of the fact that Xcode keeps track of the relationships among files that

you have already seen in the related items menu. As soon as you think about dis-

playing several files in the same pane, the question arises as to how to display

them. Xcode gives you a variety of choices, as shown in Figure 1.22.

30 HOUR 1: Introducing Xcode 4

Experiment with the various layouts. Most people switch back and forth among them,

depending on the size of their display and the files that they are working with. Sometimes,

you are dealing with short lines of code that look good side-by-side, but in other cases, you

have large chunks of code that need the width of your computer display.

Once you are using an assistant, you might be able to open additional panes in the

assistant. Figure 1.23 shows two panes displayed, one above the other. When you have

several panes in the assistant window, each has its own jump bar.

Also, note that small widget at the right of a jump bar let you close that pane or add

another pane.

FIGURE 1.22
Control the lay-
out of assistant
panes.

FIGURE 1.23
You can open
additional
assistant
panes.

Using Utilities—Inspectors 31

Getting Help in an Editor Window
You can option-click on a word in an editor window to bring up help and documen-

tation, as shown in Figure 1.24.

FIGURE 1.24
Use option-click
to get more
information
about code
syntax.

Where possible, there will be two links to the documentation—the filename is a link,

as is the file icon with .h in the upper-right of the window. The book in the upper-right

opens the reference in the Organizer window, which is described later in this hour.

. Find out more about help and documentation in the “Using the Organizer

Window” section on p. 45 of this hour.

Using Utilities—Inspectors
At the right of the workspace window is the utility area. This consists of two panes

stacked one above the other. You can drag the divider between them to change their

sizes, but they always fill the utility pane.

At the top of utilities are the inspectors. They change as you select objects in the edi-

tor window. The content of the pane depends on what is selected in the editor, as

well as on which of the buttons at the top of the inspector is selected. However, as

you will see, a consistent framework applies to all selected objects.

32 HOUR 1: Introducing Xcode 4

In Figure 1.25, you see the file inspector as it appears when a file is selected in the

project navigator; if a line of text within a file is selected in the text editor, the dis-

play may look the same.

FIGURE 1.25
Use the file
inspector.

At the left of the top of the inspector, the small icon lets you view the information

about the file you have selected. Information about the filename and file type is

available. Each section of the file inspector has its own heading; you can expand or

collapse each one.

These settings are self-explanatory, but one of them needs careful attention if you

want to avoid problems. The location of each file can be set to one of six settings:

. Absolute Path

. Relative to Group

. Relative to Project

. Relative to Build Products

. Relative to Developer Directory

. Relative to SDK

Relative to project means that if you move the project to another computer, folder,

or disk, all the files within the project move together and the internal file structure

stays intact. An absolute path is great if the path is to a location on a shared server

that a number of people will be using. In that case, the project files stay in one

place, but the developers can move from computer to computer.

Using Utilities—Inspectors 33

Relative to Group can be a good structure for a multiperson project where compo-

nents are being developed by different people at different times. Each person can

structure a group without worrying about how they will be arranged together. The

remaining choices are useful in specific cases that typically are involved with large

projects or special conditions.

TIP

Of course, by using a source code repository, you can handle the issues of sharing
and version control easily.

To the immediate right of the file inspector button is a Quick Help button. If an ele-

ment in the editor is selected and help is available, it will be displayed as shown in

Figure 1.26.

FIGURE 1.26
Quick Help is
available
wherever
possible in
the inspector
pane.

In Figure 1.27, an Interface Builder document is open. The file inspector is still the

left-most button at the top of the window, and its data is much the same.

Immediately to its right, a help inspector will reflect information about the selected

item in the editor. However, new inspectors are available to let you inspect items in

the interface.

34 HOUR 1: Introducing Xcode 4

For example, in Figure 1.28, you see the Identity inspector in action. It identifies a

selected object in the interface.

FIGURE 1.27
Inspectors
change depend-
ing on what is
selected in the
editor.

FIGURE 1.28
Use the Identity
inspector.

. Refer to Hour 11, p. 189, to find out more about how you can use these

inspectors to set everything from an object’s location to its behavior as

people type in it.

Using Utilities—Libraries 35

Using Utilities—Libraries
The bottom pane of the utility area is for libraries. These are collections of items that

you can add to your apps just by dragging them to the appropriate place in an editor.

. More information on libraries is included in Hour 11, p. 189.

The selector bar at the top of the library pane lets you choose from four libraries:

. File templates—[ctrl][option][command]1

. Code snippets—[ctrl][option][command]2

. Objects—[ctrl][option][command]3

. Media—[ctrl][option][command]4

You can also use the View, Utilities submenu to select the library you are interested

in. If the Utilities submenu is hidden, use the View menu or the rightmost of the

three View buttons at the upper-right of the workspace window to show it.

TIP

Alternatively, if the utility area is hidden, choosing View, Utilities, File Template
Library or any of the other commands in the View, Utilities menu will show utilities
and select the appropriate library with one command (or one keyboard shortcut).

Figure 1.29 shows the general components of the library pane. At the top of the

library pane, a pop-up menu lets you navigate to sections within that library. To its

right, buttons let you display the contents of that library as icons or in a list. The

icon view can make finding images or objects such as graphic elements very fast; for

other items such as code snippets, the list view is better.

At the bottom of the library pane, a search field lets you filter the library shown

above it.

When you select an item in the library, a description appears floating over the edi-

tor area, as shown in Figure 1.30. This description is generally somewhat lengthier

than the summary in the library list.

File Templates Library
These file templates give you a headstart for whatever type of code you want to

write. The pop-up menu at the top of the library pane lets you choose between iOS

and Mac OS X file templates.

36 HOUR 1: Introducing Xcode 4

FIGURE 1.29
Use the library
pane to take
advantage of
existing code,
objects, and
media.

You select the appropriate file template from the file template library and drag it

into the project navigator, as shown in Figure 1.31.

TIP

Remember, that for this to work, you need to have both the project navigator and
the file template library visible.

FIGURE 1.30
Select an item
in the library
to see its
description.

FIGURE 1.31
Use a file
template.

Using Utilities—Libraries 37

You can also use file templates by choosing File, New, New File, as shown in Figure 1.32.

The templates in this interface are shown grouped by their SDK and area of func-

tionality. However, as you can see in Figure 1.32, by comparing the descriptions of

NSManagedObject subclass in the library and in the sheet, they are the same. The

menu command gives you the organization by SDK and area, while the library pro-

vides you with the ability to search with the filter at the bottom of the pane. The

choice is yours.

FIGURE 1.32
Use either the
library or the
menu to access
a template.

▼

38 HOUR 1: Introducing Xcode 4

Code Snippet Library
Code snippets can only be dragged into text editing files. They provide common

examples and templates. The pop-up menu lets you choose from iOS, Mac OS X,

and your own snippets (which you can add).

If you select a code snippet, its code appears as shown in Figure 1.33. Sometimes, if

you have just forgotten a small piece of syntax, this refresher is enough and you do

not have to worry about actually dragging the snippet into your file. Other times,

the snippet gets you started with your own programming.

Try It Yourself

Add Your Own Code to the Code Snippet Library
Add your own snippets to the library to save time or to enforce standards on your-

self or your colleagues in a multiperson project. (A particularly useful snippet would

be the copyright notice you place at the beginning of each file if you want to protect

your work.) Here’s how:

1. Show the User section of the Code Snippet library. If necessary, show utili-

ties and choose User from the pop-up menu at the top of the library pane.

2. Select the code you want to make into a snippet.

3. Drag the code into the Users pane of the code snippet library. It will appear

in the list, as shown in Figure 1.34.

FIGURE 1.33
Select a snip-
pet to see its
contents.

Using Utilities—Libraries 39

4. Provide a title and summary. Also, check that the code is complete (check

the first and last characters in case of sloppy mousing).

5. Provide the other information (optional). The more information you pro-

vide, the more useful your snippet will be. In particular, specifying the lan-

guage as shown in Figure 1.35 will remove it from the code snippet library

for files that cannot use it. And, of course, a title other than My Code

Snippet will increase the usability of the code.

FIGURE 1.34
Drag the code
into the library.

FIGURE 1.35
Identify the
snippet
language.

40 HOUR 1: Introducing Xcode 4

6. Click Done, and your snippet is added to the library.

To change the snippet’s name, summary, or other data, select it and then click the

Edit button, as shown previously in Figure 1.33. Click Done to save the changes.

Object Library
The Object library contains objects you use in building interfaces. This includes visi-

ble interface elements, such as views and buttons, as well as objects that work

behind the scenes, such as view controllers.

. See Hour 11, p. 189, and Hour 12, “Finding Your Way Around Interface

Builder: The Code Story,” p. 209, for more details on developing your app’s

interface.

Media Library
The Media library brings together media files (icons, sounds, and images) from your

workspace or from the system. Particularly when you have large projects, this helps

you keep things organized. It also means that in creating your file groups, you can

organize them functionally rather than putting all media files in one group and all

code files in another.

Using the Text Editor
The text editor in Xcode is similar to many text editors that you have probably used

already. Two areas deserve your attention even if you are used to using text editors:

. Editing preferences—Xcode provides extensive preferences for displaying

and auto-completing code. Even if you have used other text editors, take a

quick look at these preferences so that you can find out what’s new in

Xcode and, if you are used to another text editor, how to customize colors

and behaviors to what you are used to.

. Fix-it and Live Issues—The LLVM compiler in Xcode 4 is not just for formal

compiles. Its engine runs in the background checking syntax as you type so

that errant keystrokes are caught in many cases as soon as you make

them. Not only is the LLVM engine looking for misspellings, but it is aware

of common syntax errors that can take a long time to track down, even

though they are absurdly simply (once you know what the error is). One

▲

Using the Text Editor 41

such error is demonstrated in this line of code that almost every developer

has typed more than once:

if (x = 3) {...

That is a replacement statement, not a logical comparison. Fix-It would most

likely suggest the following:

If (x == 3) {...

Setting Editing Preferences
As in most Mac apps, preferences are set from the application menu (that is, the

Xcode menu in this case). Tabs at the top let you set different collections of prefer-

ences, and, as in the case of text editing, further tabs let you set more details such as

the editing and indentation preferences.

Figure 1.36 shows the editing preferences. Most are familiar to users of other code

text editors, but two may be new to you. The code folding ribbon appears to the

right of the gutter and the left of the main text editing area. It lets you collapse

blocks of code so you can focus on other areas. If the code folding ribbon is shown,

you have a further option—to focus on code as you hover the pointer over it.

FIGURE 1.36
Set editing
preferences.

42 HOUR 1: Introducing Xcode 4

Figure 1.37 shows this behavior in action. Note the folded code in

shouldAutorotateToInterfaceOrientation.

Many people have this option on at all times. As you move the mouse over code,

you will quickly spot unmatched brackets or quotation marks because the highlight-

ed block of code will be illogical.

Syntax-aware indenting can be set, as shown in Figure 1.38. Just as with the high-

lighting of code in the code ribbon, this can provide an early warning of unbal-

anced punctuation.

FIGURE 1.37
Highlight blocks
of code by
hovering
over them.

FIGURE 1.38
Syntax-aware
indentation
makes your
code neater
and catches
some keystroke
errors as well.

Using the Text Editor 43

The final preference you should look at is Fonts & Colors, as shown in Figure 1.39.

FIGURE 1.39
Set Fonts &
Colors.

A variety of predefined styles is available, and you can switch back and forth

among them as you wish. The color wells at the bottom of the window bring up a

color picker for you to use to replace any of the colors in the theme for the syntax

element that you have highlighted in the main body of the window. The font for the

highlighted syntax element is identified in the font field; click the T at the right of

the field to bring up the font panel and change the size, style, or font.

Among the provided themes is one called Presentation. For some people, this is one

of the most frequently used themes. Whereas the other themes ship with fonts that

are 11 points, the Presentation theme ships with an 18-point font. Not only is Xcode

used to build Mac OS X and iOS as well as Apple apps, it is also often used to pre-

pare slides for conferences such as the Worldwide Developer Conference—and that is

where the presentation theme comes in handy. Even if you are not presenting at

WWDC, the Presentation theme can be useful for code reviews and documentation

in your own organization.

Using Fix-It and Code Completion
Xcode is constantly indexing your project and its files in the background. As it does

so, it can provide code completion (type-ahead) tips for you. Figure 1.40 shows this

feature in action. As you type each character in a symbol name, a list of the possi-

ble completions appears. You can select one of them or continue typing to narrow

down your search. In many cases (such as your own variables), there is no list; there

is just a grayed-out completion displayed. Pressing Return accepts the completion.

44 HOUR 1: Introducing Xcode 4

You will note that in a case in which there are alternatives, Xcode indicates what

type of object each one is. Figure 1.40 shows several classes and typedefs.

Finally, the LLVM engine tries to catch syntax errors as soon as you type them. It

will flag them with warnings or errors in the gutter; clicking the symbol will bring

up the error itself and, if possible, a Fix-It, as shown in Figure 1.41.

FIGURE 1.40
Use code
completion.

FIGURE 1.41
Use Fix-It.

You can press Return to accept the Fix-It.

Using the Organizer Window 45

NOTE

With both code completion and Fix-It, do pay attention to what you are accepting.
Certain types of errors can generate incorrect corrections or completions. The
main benefit may come simply from stopping you to let you know there is an error.
If you automatically accept any suggested correction, you are likely to make the
same type of mistake that can result in using the wrong word in English.

Using the Organizer Window
The companion to the Xcode workspace window is the Organizer window, shown in

Figure 1.42.

FIGURE 1.42
The Organizer
window keeps
track of files in
repositories
and archives,
projects,
devices, and
documentation.

The five tabs at the top let you switch from one view to another:

. Devices—Primarily for iOS, this is a list of devices you have provisioned

through Apple’s developer program. This process is described on developer.

apple.com. It is the process whereby you present your developer credentials

to Apple and receive a digitally signed signature that lets your app run on

specific devices that are listed here.

. Repositories—Xcode supports industry-standards Git and Subversion as

source code repositories for version control. Both are widely used

46 HOUR 1: Introducing Xcode 4

. Archives—Archives can be used to create installable archives of your app

for deployment. There is more information at developer.apple.com.

. Documentation—For many people, the most commonly used tab is for

documentation. When you click on a link in Quick Help, the detailed docu-

mentation opens in the documentation tab of the Organizer window. You

can use the jump bar at the top of the Organizer to select the appropriate

area in which to search for your topic.

open-source projects. Xcode puts a graphical user interface onto them. The

functionality of both is the same in Xcode as it is in other environments.

. Projects—This tab lets you organize snapshots of your project created while

working on your project. You can create them manually from File, Create

Snapshot, but it is easier to have Xcode create them automatically at criti-

cal moments. As you can see in Figure 1.43, you can use File, Project

Settings and the Snapshots tab in your workspace window to turn on these

automatic snapshots and set the locations for their storage. (You can also

set these locations in the Locations tab of Xcode preferences.) Snapshots

require Git to be installed. (That is an option in the Xcode 4 install.)

FIGURE 1.43
Use snapshot
at critical
moments in
restructuring
your project.

47Summary

Summary
Xcode 4 is not just a cosmetic change to previous versions; it is a new development

environment complete with a new compiler (LLVM) that includes an engine that

runs in the background to catch basic errors as you (occasionally) make them. This

hour helps you get ready to write code using the latest and greatest technologies for

software development.

The workspace window gives you all of a project’s data and controls in a single multi-

paned window. You can control which panes are shown, and, to a certain extent, you

can even rearrange their positions as they are shown. For most people, this is not a

matter of setting up a preferred workspace and sticking with it: Depending on what

you are doing, you often show and hide parts of the workspace window so you can

focus on the task at hand.

Xcode 4 includes interfaces to source code management tools such as Git and Subver-

sion (Git is preferred). As a result, you can manage your code—even on a multiperson

project—and keep track of revisions. In addition, Xcode provides a snapshot feature

that can capture your entire project at specific moments, such as when you ask and

when you are about to perform project-wide automated changes.

Q&A
Q. What is the best way to get started with Xcode?

A. Use it. Open it and create a test project based on one of the built-in templates.

Explore and experiment, and then throw it away. If you start working with it

on a real project, your beginning mistakes will be around to haunt you for a

long time.

Q. What is the best way to handle the periodic updates to operating systems
and SDKs?

A. Registered developers are notified in advance of these updates; you can down-

load the pre-release versions of both OSs and SDKs as well as new releases of

Xcode. This enables you to test your apps with the new environmental software

and prepare to use new features. Typically, you are warned not to use this soft-

ware for production use. Apps developed with the new OS and SDK cannot be

submitted to either App Store until a few weeks before the release of the soft-

ware to the public. This process allows developers to get up to speed with the

new technologies. The period of a few weeks before the public release of the

new software allows the App Store to be stocked when the software is in final

versions.

48 HOUR 1: Introducing Xcode 4

Workshop

Quiz
1. How do you get a copy of Xcode?

2. If you are used to another development environment, can you use it to
develop software for Mac OS X and iOS?

Quiz Answers
1. Register at developer.apple.com. Various registration categories are designed

for different types of developers. The paid levels of developer registration

include technical support assistance (two incidents for the basic programs).

There are also free registrations that provide no support but do allow you to

download Xcode. You can also buy Xcode through the Mac App Store. It is cur-

rently free.

2. Only with great difficulty, and you will not be able to submit your apps to the

App Store.

Activities
As you start to work with Xcode, take advantage of its productivity features such as

code snippets. In particular, add your own snippets as you think of them. It generally

is best not to sit down and make a list of snippets that you think you will need—that

is often a waste of time. Instead, keep alert and, whenever you find yourself typing

something that might be useful as a snippet, add it right then and there. These snip-

pets are stored in your environment—not just in a single project.

Many people shy away from the debugging tools, but you will find that they can

save you a large amount of time and effort. Some of them are for advanced develop-

ers but practice using breakpoints. This is a simple technology, and it is very easy to

just click in the gutter of the editor to set a breakpoint. The debug area will let you

examine local variables; it also will help you track the path of execution so you can

see why a certain section of code is or is not being executed.

A

Abstract Entity entity setting

(Data Model inspector), 322

abstractions, data models,

101-103

Access the Persistent Store

Coordinator listing (4.6), 94-95

Accessing the Fetched Results

Controller listing (4.8), 97-98

Accessing the Managed Object

Model listing (4.7), 95

Accessor attribute (declared

property), 72

accessory view, 345

ad hoc display order, table rows,

handling, 378-380

adaptors, 156

Add a Detail Disclosure

Accessory to Row listing (23.1),

414-415

Add a New Field to insert

NewObject listing (12.3), 218

Add buttons, inserting, 371

Adopting the

UISplitViewControllerDelegate

Protocol listing (3.12), 79

Advanced setting (Data Model

inspector), 325-327

aggregate operators, 174

ALL aggregate operator, 174

ANY aggregate operator, 174

AppDelegate.h for a Core Data

Project listing (4.3), 92

Apple documentation, 73

Apple’s Xcode Quick Start

Guide, 11

applicationDocumentsDirectory

(iOS) listing (5.2), 114

applicationFilesDirectory (Mac

OS) listing (5.1), 113

apps

architectures, 154

building, 52-53

creating, 195-198

storyboards, 239-241

delegates, 293-299

document-based, 154

Mac OS, 305-311

iOS

creating, 53-56

Index

exploring, 58-59

integrating views and

data, 147-151

library/shoebox, 154, 291

library/shoebox apps, creat-

ing, 292-305

Mac

creating, 56-58

exploring, 58-59

Master-Detail App, creating,

263-267

navigation-based apps

finishing interface,

275-276

implementing saving,

267-272

NSTableView, building,

366-372

structures, 292

universal, creating, 190-192,

279-281

architectures, 153-154, 292

Archives tab (Organizer

window), 46

areas, workspace window, 14

Arranged setting (Data Model

inspector), 327

array controllers, 148

array operators, 174

arrays, predicates, 175-176

assistant editing mode

(Xcode), 26

Assistant editor, 232-233

Atomicity attribute (declared

property), 72

attribute settings, Data Model

inspector, 324-325

Attribute Type setting (Data

Model inspector), 325

attributes, 72, 87

data model, 216

declared properties, 72

displayOrder, 379-380

entities, adding to, 105-107,

123-125

renaming, 432-433

Attributes inspector, 205

setting entity names, 368

automatic lightweight

migration, 423

data models, 432-434

B

bars, workspace window, 14

batteryLevel property

(UIDevice), 190

batteryMonitoringEnabled

property (UIDevice), 190

batteryState property

(UIDevice), 190

BEGINSWITH string, 174

bidirectional relationships, 127

binary data, entities, 106-107

Binary Large Objects

(BLOBs), 106

bindings, 144, 148-149

examining, 150

NSTableView, 366

Bindings inspector, 205

BLOBs (Binary Large

Objects), 106

Boolean data, entities, 107

breaking connections, 213-215

breakpoint gutters, workspace

window, 14

breakpoint navigator, 24-25

breakpoints, 24

debugger, 268-270

toggling, 25

building data stacks, 91-96

buttons, Add, inserting, 371

C

C Programming Language, The, 8

canvas (Interface Builder),

197-205

cardinality, 126, 327

relationships, 127

cascade delete rule, 128

Categories submenu (model

editor files), 29

cellForRowAtIndexPath listing

(19.3), 352

cells

table views, 345

tables

creating labels, 357

styled, 355-357

Change setValue: forKey listing

(13.4), 229

Change the Attribute for the Sort

Descriptor listing (13.2), 229

Change the Entity for the Fetched

Result Controller listing

(13.1), 227

444

apps

Change valueForKey in

configureCell listing (13.3), 229

changed views, 413

Character Large Objects

(CLOBs), 106

Class entity setting (Data Model

inspector), 322

Class from i.e

RootViewController.m listing

(3.13), 80

classes

NSSortDescriptor, 185

Objective-C, 66

Clauses, WHERE, 171, 173

CLOBs (Character Large Objects),

106

Cocoa

dictionaries, key-value pairs,

172-173

frameworks, 63-64

code

code snippet library, adding

to, 38-40

completing, 43-45

glue

Document.h, 396

MyDocument.m, 397-399

nib file, 399-401

Objective-C, 64-66

classes, 66

declarations, 82

declared properties,

68-73

delegates, 75-76, 81

instances, 66

messaging, 73-75

MVC (model/view/con-

troller) design pattern,

81-82

naming conventions,

74-75

object-oriented program-

ming, 66-68

objects, 66-68

protocols, 75-80

synthesizing properties,

70-72

Objective-C language, 63

saving, 284-286

code listings

Access the Persistent Store

Coordinator, 94-95

Accessing the Fetched

Results Controller, 97-98

Accessing the Managed

Object Model, 95

Add a Detail Disclosure

Accessory to the Row,

414-415

Add a New Field to

insertNewObject, 218

Adopting the

UISplitViewController

Delegate Protocol, 79

AppDelegate.h for a Core

Data Project, 92

applicationDocuments

Directory (iOS), 114

applicationFilesDirectory (Mac

OS), 113

cellForRowAtIndexPath, 352

Change setValue:

forKey, 229

Change the Attribute for the

Sort Descriptor, 229

Change the Entity for the

Fetched Result

Controller, 227

Change valueForKey in

configureCell, 229

Class from i.e

RootViewController.m, 80

configureView, 284

Create a Predicate with a

Format String, 184

Create a Predicate with a

Format String and Runtime

Data, 184

Creating a Fetch

Request, 160

Creating a Managed Object

Context, 159

Creating a Popover View

Controller, 417

Customer.h, 333

Customer.m, 334

Defining the Protocol, 77

didSelectRowAtIndexPath, 251

Executing a Fetch

Request, 161

Existing Private Declaration in

DetailViewController.m, 330

Getter for

managedObjectContext in

AppDelegate.h, 93

Getter for

numberFormatter, 330

Handle the Tap in the

Selected Row, 415

Handling the Move, 389

How can we make this index more useful? Email us at indexes@samspublishing.com

code listings

445

Header for a Custom

NSManagedObject

Class, 384

Header for a Document-based

Mac OS App, 308

Hello, World, 8

Implementation for a Custom

NSManagedObject

Class, 385

Implementation for a

Document-based Mac OS

App, 309-311

Implementation of the

Protocol with a Navigation

Bar, 78

Implementation of the

Protocol with a Toolbar, 78

Implementing the Mac OS

App Delegate, 295-299

insertNewObject As It Is in

the Template, 216

Interface for

DetailViewController with

Table View, 349

iOS App Delegate

Implementation, 301-305

iOS Application Delegate, 300

Legacy Class Declaration,

68-69

Legacy Class Declaration with

Accessors, 69

Marking Protocol Methods

Required or Optional, 77

MasterViewController.h, 211

Modern Class

Declaration, 69

Moving Related Objects into a

Mutable Array, 388

Moving the Top-Level Objects

into a Mutable Array, 387

MyDocument.h, 396

MyDocument.m, 397-398

numberOfRowsInSection, 351

Opening a Persistent Store,

433-434

Place.h, 88

Place.m, 89

prepareForSegue in

MainViewController.m, 250

Protocol Adoption with a

Navigation Bar, 77

Protocol Adoption with a

Toolbar, 77

saveNameData, 285

Saving the Data, 390

Set Section Header and

Footer Titles, 354-355

Set the New View

Controller, 415

setDetailItem, 276

Setting Up the App

Delegate, 294

Setting Up the Fetch Request,

377-378

Styling Cells, 356-357

Swapping the View, 245

Synthesize Directives to

Match Listing 3.3, 70

Synthesize the Core Data

Stack Properties, 93

Transforming an Image to and

from NSData, 141

Use a Predicate Template

with Hard-coded

Data, 183

Use a Predicate Template

with Runtime Data, 183

Use More than One

Section, 354

Using a Private Variable in a

Property, 71

Using a Sort Descriptor, 186

viewWillAppear, 273

viewWillDisappear, 274

code property (NSError), 404

code samples, 50-52

code snippet library, 38

adding code to, 38-40

columns, 87

comparison operators, predicates,

173-175

compatibility, data models ver-

sions, determining, 430-431

compound indexes, 323

configureView, 284

configureView listing (16.1), 284

connections

creating, 213-215

trace, 149

Connections inspector, 149, 205,

209-210

connections, creating,

213-215

outlets, 210-212

referencing, 212-213

CONTAINS string, 174

contexts, managed objects,

90-91, 148, 153, 158

creating, 158-159

saving, 274

continuum, migration, 423

446

code listings

control-drag, building interfaces,

232-236

controller concept (MVC

(model/view/controller) design

pattern), 82

controllers

array controllers, 148

dictionary controllers, 149

navigation, 151

object controllers, 148

page view, 151

split view, 151

tab bar, 151

table view, 151

terminology, 410

tree controllers, 149

user defaults controllers, 149

view, IOS, 148-151

converting dates to strings, 216

Core Data, 85

documents, 291

examining at runtime,

90-96

origins, 85-87

UITableView, 357-359

user interface, 195

Core Data faulting, 155

Core Data model editor, 86,

117-119

Core Data Model editor

data models

adding entities to,

119-123

adding relationships to,

126-127

styles, choosing, 125-126

“Core Data Programming

Guide”, 403

Core Data stack, implementing,

307-311

Count setting (Data Model inspec-

tor), 327

Counterparts submenu (model

editor files), 29

Create a Predicate with a Format

String and Runtime Data listing

(10.4), 184

Create a Predicate with a Format

String listing (10.3), 184

Create the Cell Labels, 358

Creating a Fetch Request listing

(9.2), 160

Creating a Managed Object

Context listing (9.1), 159

Creating a Popover View

Controller lisitng (23.4), 417

Customer.h listing (18.3), 333

Customer.m listing (18.4), 334

D

data

databases, adding, 161-162

flattening, 271-272

integrating

iOS, 151

Mac OS, 147-150

interfaces, entering into,

327-331

moving and saving, 273-274

normalizing, 106

sorting, sort descriptors,

185-186

data elements, IBOutlets,

215-216

data encapsulation, objects, 67

data fetching, 154

fetch requests, creating,

159-161

metrics, 156-158

paradigms, 155

performance, 156-158

representing results, 158

data fields, model, adding to,

217-221

Data Model inspector, 320-321

Advanced setting, 325-327

Arranged setting, 327

Attribute setting, 325

attribute settings, 324-325

Count setting, 327

Default Value setting, 325

Delete Rule setting, 327

Destination setting,

326-327

entity settings, 321

Abstract Entity, 322

Class, 322

indexes, 323

Name, 321

Parent Entity, 323

Inverse setting, 326

Name setting, 324-326

Properties setting, 326

Property setting, 324

Regular Expression

setting, 325

How can we make this index more useful? Email us at indexes@samspublishing.com

Data Model inspector

447

relationship settings,

325-327

Validation setting, 325

data models, 101

abstractions, 101-103

adjusting code, 226-229

attributes, 216

Core Data Model editor,

117-119

styles, 125-126

Core Data stack, 153

creating, 226-227, 426-427

Data Model inspector,

320-321

attribute settings,

324-325

entity settings, 321-323

relationship settings,

325-327

data quality rules, 318-319

deleting, 313

designing, 102-103

entities, 103-104

adding attributes to,

105-107

adding to, 119-123

binary data, 106-107

Boolean data, 107

dates, 106

linking with relationships,

107-108

external, 436

mapping models, 434-437

migration, 423-424

automatic lightweight

migration, 432-434

managing, 424-426

moving, 311-314

moving data into, 327-331

naming, 101-102

relational integrity rules,

318-319

relationships

adding to, 126-127,

129-131

cardinality, 127

delete rule, 128

rules, setting up, 320-327

validation rules, 317-319

versions, 426-430

creating, 426-430

determining compatibility,

430-431

forcing incompatibility, 432

data quality, 319

data quality rules, data model,

318-319

setting up, 320-327

data retrieval, predicates, 176

data stacks, 90-96

building, 91-96

CHANGE TO Core Data

stack, 153

data model, 153

initialization, 153

persistent stores, 153

data stores, 258

data types, choosing, 88

data updates, changing,

284-286

data validation, 319

free, 393-394

summarizing on Mac OS,

401-402

testing, 401-402

Mac OS, 394-402

managing, 393-394

programming, 402-406

rules

data model, 317-327

database management systems

(DBMSs), 171

database manager, sorting

data, 186

databases

adding data, 161-162

Core Data faulting, 155

data retrieval, 154

fetch requests, 159-161

metrics, 156-158

paradigms, 155

performance, 156-158

representing results, 158

load-a-chunk design

pattern, 155

load-then-process design pat-

tern, 155

locating, 109-111

relational, 87

rules

cardinality, 127

delete, 128

schemas, 424

sorting data, 185-186

tables, 87

dates

converting to strings, 216

entities, 106

448

Data Model inspector

DBMSs (database management

systems), 171

debug navigator, 23-24

Debug pane, displaying, 270-272

debugger, 267-268

breakpoints, 268-270

Debug pane, 270-272

debugging connections, 213-215

declarations, 82

declarative programming

paradigms, 9-10

declared properties, 64, 441

attributes, 72

Objective-C, 68-73

Default Value setting (Data Model

inspector), 325

Defining the Protocol listing

(3.6), 77

delegates, 293

apps, 295-299

Objective-C, 75-76, 81

delete rule, relationships, 128

Delete Rule setting (Data Model

inspector), 327

deleting

data models, 313

document types, 307

deny delete rule, 128

design patterns

Core Data faulting, 155

load-a-chunk, 155

load-then-process, 155

MVC (model/view/controller),

143-144

controlling data, 144

controlling views, 144-147

designing data models, 102-103

Destination setting (Data Model

inspector), 326

detail disclosure accessories,

rows, adding, 414-415

Detail views, swapping, 244-245

DetailViewController, 231,

266, 268

detailItem instance

variable, 272

outlets, 225-226

DetailViewController.m, 330

devices, iOS, swapping views,

241-243

Devices tab (Organizer

window), 45

dictionaries, key-value pairs,

172-173

dictionary controllers, 149

didSelectRowAtIndexPath listing

(14.3), 251

dismissing modal windows and

sheets, 421

Disney, Walt, 246

display order, table rows, han-

dling, 378-380

displayOrder attribute, 379-380,

387-390

document structure area,

199-201

objects, 204-205

placeholders, 201-204

document outline area

(Xcode), 199

document types, 306

deleting, 307

document-based apps, 154

Mac OS, creating, 305-311

document-based Mac OS apps,

creating, 292-299

Document.h, glue code, building

in, 396

documentation, Apple, 73

Documentation tab (Organizer

window), 46

documents, 110, 289-291

app structure, 292

Core Data, 291

tracking data in, 108-111

domain property (NSError), 404

E

editing data

navigation interfaces,

257-262

users, 409

editing interfaces, 409-412

communicating with users,

413-418

editing modes (Xcode), 25-30

editing preferences, 40-43

editing window (Xcode), 31

editing-in-place, 409-411

ENDSWITH string, 174

Enterprise Objects Framework

(EOF), 85, 109, 156, 176

entires, 172

entities, 87

attributes, adding to,

123-125

data models, 103-104

How can we make this index more useful? Email us at indexes@samspublishing.com

entities

449

adding attributes to,

105-107

adding to, 119-123

binary data, 106-107

Boolean data, 107

dates, 106

linking with relationships,

107-108

names, setting, 368

NSManagedObject,

subclasses, 331-334

Place, 89

relationships

moving, 389

rules, 126

renaming, 432-433

entity settings, Data Model

inspector, 321

Abstract Entity, 322

Class, 322

indexes, 323

Name, 321

Parent Entity, 323

environments, multiuser, 312

EOF (Enterprise Objects

Framework), 85

error messages, 413

Estimator interface, 342

Executing a Fetch Request listing

(9.3), 161

Existing Private Declaration in

DetailViewController.m listing

(18.1), 330

expressions, regular, 319, 325

external data models, 436

external objects, iOS, 151

F

faulting, 155

fetch request controllers, 96

fetch requests, 96-98

creating, 159-161, 178-183

setting up, 377

fetches, 133

fetching data, 154

metrics, 156-158

paradigms, 155

performance, 156-158

representing results, 158

fields, 87

IBOutlets, adding, 230-231

removing, table view, 345-349

second interface, adding to,

281-284

file inspector, 32

file templates library, 35, 37

File’s Owner object, 201-202

outlets, 210-211

FileMaker Pro, 157

FileMaker Server, 157

files

declarations, 82

identifying, 52-53

rearranging, 120

renaming, 120

semi-hidden, 110-111

creating, 111-115

iOS, 114

Mac OS X, 110-115

tracking data in, 108-111

filter bar, workspace window, 14

First Responder, 203, 212

Fix It, 40, 43-45

flattening data, 271-272

Focus ribbon, workspace

window, 14

folders, Inside Applications, 193

footers, tables, setting,

354-355

format strings, predicates,

177, 184

formatters, 216, 329

type conflict issue, solving,

329-331

frameworks, Cocoa, 63-64

free validation, 393-394

summarizing on Mac OS,

401-402

testing, 401-402

full-screen view (Interface

Builder), 197

G

generatesDeviceOrientation

Notifications property

(UIDevice), 190

Getter for managedObjectContext

in AppDelegate.h listing

(4.5), 93

Getter for numberFormatter

listing (18.2), 330

Git repository, 55

Git source code repository, 49, 57

glue code

Document.h, building in, 396

450

entities

MyDocument.m

building in, 397-399

nib file, 399-401

Go menu, Libabry folder, adding

to, 193

Gone with the Wind, 246

groups, rearranging, 120

H

Handle the Tap in the Selected

Row listing (23.2), 415

Handling the Move listing (21.6),

389

Header for a Custom

NSManagedObject Class listing

(21.2), 384

Header for a Document-based

Mac OS App listing (17.5), 308

headers, tables, setting,

354-355

Hello, World listing, 8

hidden primary keys, 162

I

IBOutlets

data elements, 215-216

new fields, adding, 230-231

iCloud, 107

identifiers, predicates, 173

Identity inspector, 34, 205

imperative programming

paradigms, 9-10

Implementation for a Custom

NSManagedObject Class listing

(21.3), 385

Implementation for a Document-

based Mac OS App listing

(17.6), 309-311

Implementation of the Protocol

with a Navigation Bar listing

(3.11), 78

Implementation of the Protocol

with a Toolbar listing (3.10), 78

Implementing the Mac OS App

Delegate listing (17.2), 295-299

IN aggregate operator, 174

incompatibility, data models,

forcing, 432

indexes, 323

insertNewObject As It Is in the

Template listing, 216

Inside Applications folder, 193

inspectors, 31-34, 205

Attributes, 205

Bindings, 205

Connections, 205, 209-210

creating connections,

213-215

outlets, 210-213

file, 32

Identity, 34, 205

Size, 205

View Effects, 205

instances

adding, 259

Objective-C, 66

Interface Builder editor,

document structure area,

199-201

objects, 204-205

placeholders, 201-204

inter-property validation, 405-406

Interface Builder, 7

Connections inspector,

209-210

creating connections,

213-215

outlets, 210-212

referencing outlets,

212-213

storyboards, 442

Interface Builder editor, 189-190,

198-200, 344

apps, creating, 195-198

canvas, 197-205

full-screen view, 197

iOS apps, locating sandbox,

192-194

macros, 230-231

Project navigator, 198

storyboards, 192

table views, 199-200

type qualifiers, 230-231

universal apps, creating,

190-191

Interface for DetailViewController

with Table View listing

(19.1), 349

interfaces

building, control-drag,

232-236

cleaning up, 275-276

comparing, 339-344

editing interfaces, 409-412

communicating with

users, 413-418

How can we make this index more useful? Email us at indexes@samspublishing.com

interfaces

451

entering data into, 327-331

Estimator, 342

integrating views and data

iOS, 151

Mac OS, 147-150

iOS features, 165-167

iPhone, 343

Mac OS features, 163-165

navigation-based apps,

finishing, 275-276

optimizing, 162-167

removing, table view, 345-349

second, adding fields to,

281-284

text fields, adding to,

217-221

initialization, Core Data

stack, 153

Inverse setting (Data Model

inspector), 326

iOS

apps

creating, 53-56

exploring, 58-59

integrating views and

data, 151

locating sandbox,

192-194

structure, 292

development process, 258

devices, swapping views,

241-243

interfaces, 339-344

features, 165-167

library/shoebox apps,

creating, 299-305

popovers, 416-418

semi-hidden files, 114

settings, 339-344

swapping views, 413-415

table rows

allowing movement,

380-382

moving, 382-390

ordering, 375-380

table views, comparing,

337-338

UITableView, 337-345

accessory view, 345

cells, 345

implementing methods,

350-357

interface removal, 345-349

removing fields, 345-349

sections, 345

using with Core Data,

357-359

using without Core Data,

344-357

user interaction, 338-339

validation, programming,

402-406

versions, 190

iOS App Delegate

Implementation listing (17.4),

301-305

iOS Application Delegate listing

(17.3), 300

iPad, 279

split view controllers,

250, 311

storyboards, 247-248

universal apps, creating,

279-281

iPhone

interface, 343

storyboards, 246-247

iPhone apps

Master-Detail apps, creating,

263-267

navigation-based apps

adding managed objects,

272-273

finishing interfaces,

275-276

implementing saving,

267-272

issue navigator, 23

J

Jobs, Steve, 363

join tables, 127

jump bars (Xcode), 27,

294-295, 301

K

Kernighan, Brian, 8

key-value coding (KVC), 144

key-value observing (KVO), 144

key-value pairs, dictionaries,

172-173

key-value validation, 403-404

KVC (key-value coding), 144

KVO (key-value observing), 144

452

interfaces

L

labels, cells, creating, 357

launching Xcode, 12

legacy class declaration, 68

Legacy Class Declaration listing

(3.1), 68-69

Legacy Class Declaration with

Accessors listing (3.2), 69

legacy versions, Objective-C, 64

libraries, 35-38

adding code snippets, 38-40

file templates, 35-37

Media, 40

Object, 40

SQLite, 156

Library folder, Go menu, adding

to, 193

library/shoebox apps, 154, 291

iOS, creating, 299-305

Mac OS, creating, 292-299

lightweight migration, 423

automatic, data models,

432-434

LIKE string, 174

linking entities with relationships,

107-108

list elements, moving, 389

listings

Access the Persistent Store

Coordinator, 94-95

Accessing the Fetched

Results Controller,

97-98

Accessing the Managed

Object Model, 95

Add a Detail Disclosure

Accessory to Row, 414-415

Add a New Field to

insertNewObject, 218

Adopting the

UISplitViewControllerDelegate

Protocol, 79

AppDelegate.h for a Core

Data Project, 92

applicationDocumentsDirectory

(iOS), 114

applicationFilesDirectory (Mac

OS), 113

cellForRowAtIndexPath, 352

Change setValue: forKey, 229

Change the Attribute for the

Sort Descriptor, 229

Change the Entity for the

Fetched Result

Controller, 227

Change valueForKey in

configureCell, 229

Class from i.e

RootViewController.m, 80

configureView, 284

Create a Predicate with a

Format String, 184

Create a Predicate with a

Format String and Runtime

Data, 184

Creating a Fetch Request, 160

Creating a Managed Object

Context, 159

Creating a Popover View

Controller, 417

Customer.h, 333

Customer.m, 334

Defining the Protocol, 77

didSelectRowAtIndexPath, 251

Executing a Fetch

Request, 161

Existing Private Declaration in

DetailViewController.m, 330

Getter for

managedObjectContext in

AppDelegate.h, 93

Getter for numberFormatter,

330

Handle the Tap in the

Selected Row, 415

Handling the Move, 389

Header for a Custom

NSManagedObject

Class, 384

Header for a Document-based

Mac OS App, 308

Hello, World, 8

Implementation for a Custom

NSManagedObject

Class, 385

Implementation for a

Document-based Mac OS

App, 309-311

Implementation of the

Protocol with a Navigation

Bar, 78

Implementation of the

Protocol with a Toolbar, 78

Implementing the Mac OS

App Delegate, 295-299

insertNewObject As It Is in

the Template, 216

Interface for

DetailViewController with

Table View, 349

How can we make this index more useful? Email us at indexes@samspublishing.com

listings

453

iOS App Delegate

Implementation, 301-305

iOS Application Delegate, 300

Legacy Class Declaration,

68-69

Legacy Class Declaration with

Accessors, 69

Marking Protocol Methods

Required or Optional, 77

MasterViewController.h, 211

Modern Class Declaration, 69

Moving Related Objects into a

Mutable Array, 388

Moving the Top-Level Objects

into a Mutable Array, 387

MyDocument.h, 396

MyDocument.m, 397-398

numberOfRowsInSection, 351

Opening a Persistent Store,

433-434

Place.h, 88

Place.m, 89

prepareForSegue in

MainViewController.m, 250

Protocol Adoption with a

Navigation Bar, 77

Protocol Adoption with a

Toolbar, 77

saveNameData, 285

Saving the Data, 390

Set Section Header and

Footer Titles, 354-355

Set the New View

Controller, 415

setDetailItem, 276

Setting Up the App

Delegate, 294

Setting Up the Fetch Request,

377-378

Styling Cells, 356-357

Swapping the View, 245

Synthesize Directives to

Match Listing 3.3, 70

Synthesize the Core Data

Stack Properties, 93

Transforming an Image to and

from NSData, 141

Use a Predicate Template

with Hard-coded Data, 183

Use a Predicate Template

with Runtime Data, 183

Use More than One

Section, 354

Using a Private Variable in a

Property, 71

Using a Sort Descriptor, 186

viewWillAppear, 273

viewWillDisappear, 274

literals, predicates, 173

load-a-chunk design pattern, 155

load-then-process design

pattern, 155

loading mutable arrays, 386-388

localizedModel property

(UIDevice), 190

log navigator, 25

logical operators, predicates,

171-173, 176-177

arrays, 175-176

comparison operators,

173-175

constructing, 177-183

format strings, 177, 184

identifiers, 173

literals, 173

syntax, 173-175

M

Mac OS

app structure, 292

apps

creating, 56-58

exploring, 58-59

integrating views and

data, 147-150

development process, 258

document-based applications,

creating, 305-311

free validation, summarizing,

401-402

interfaces, 339-344

features, 163-165

library/shoebox apps,

creating, 292-299

modal windows, 419-421

NSTableView

building app, 366-372

new features, 363-365

sheets, 419-421

system preferences, 339-344

table views, comparing,

337-338

user interaction, 338-339

validation, 394-402

programming, 402-406

versions, 190

Mac OS X, semi-hidden files,

110-115

454

listings

macros, Interface Builder editor,

230-231

managed objects, 91, 133

adding, 272-273

context, saving, 274

contexts, 90-91, 148,

153, 158

creating, 158-159

NSManagedObject

creating subclasses of,

331-334

overriding, 134-140

transformations, 136,

140-141

validation, 136

managedObjectContext, 400

many-to-many relationships, 127

mapping

migration, 424

models, 434-437

Marking Protocol Methods

Required or Optional listing

(3.7), 77

master views, 258

Master-Detail App, creating,

263-267

Master-Detail Application tem-

plate, 242, 343-344, 409-410

repurposing, 223-230

Master-Detail template,

166-167, 263

MasterViewController, 97

outlets, 225-226

MasterViewController.h listing

(12.1), 211

MATCHES string, 174

Media library, 40

messaging, Objective-C, 73-75

methods

NSDictionary, 172

protocols, 442

saveAction, 293

saveNameData, 285

table view, implementing,

350-357

viewWillAppear, 269, 273

viewWillDisappear, 269

windowWillReturnUndo

Manager, 293

metrics, data retrieval,

156-158

migration, 423-424

continuum, 423

data models

automatic lightweight

migration, 432-434

managing, 424-426

lightweight, 423

mapping, 424

modal windows, 419-421

model concept (MVC

(model/view/controller) design

pattern), 82

model property (UIDevice), 190

model/view/controller (MVC)

design pattern. See MVC

(model/view/controller) design

pattern

models, data fields, adding to,

217-221

Modern Class Declaration listing

(3.3), 69

movement, table rows, allowing,

380-382

moving

data, 273-274

table rows, 382-390

Moving Related Objects into

a Mutable Array listing

(21.5), 388

Moving the Top-Level Objects

into a Mutable Array lisitng

(21.4), 387

multitaskingSupported property

(UIDevice), 190

multiuser environments, 312

mutable arrays, loading, 386-388

MVC (model/view/controller)

design pattern, 81-82, 143-144

controlling data, 144

controlling views, 144-147

MyDocument.h lisitng (22.1), 396

MyDocument.m, glue code,

building in, 397-399

MyDocument.m lisitng (22.2),

397-398

N

Name attribute setting (Data

Model inspector), 324

Name entity setting (Data Model

inspector), 321

name property (UIDevice), 190

Name relationship setting (Data

Model inspector), 326

names, entities, setting, 368

How can we make this index more useful? Email us at indexes@samspublishing.com

names, entities, setting

455

naming data models, 101-102

naming conventions, Objective-C,

74-75

navigation bars, 241, 259, 271

navigation controllers, 151

navigation interfaces, 257-262

navigation-based apps

implementing saving,

267-272

interface, finishing, 275-276

managed objects, adding,

272-273

navigator pane (Xcode), 15-25

navigators

breakpoint, 24-25

debug, 23-24

issue, 23

log, 25

project, 16-20

search, 21-22

symbol, 20-21

NeXT, 85, 290

NeXTSTEP, 7

nib file, glue code, building in,

399-401

no action delete rule, 128

non-unique user identifiers, 162

NONE aggregate operator, 174

normalizing data, 106

NSApplicationDelegate protocol,

300

NSDictionary method, 172

NSError, 404-405

NSFormatter, 329

NSKeyValueCoding protocol,

403-404

NSManagedObject, 133, 382-388

creating override, 383

creating subclasses, 331-334

overriding, 134-140

subclasses, matching, 140

transformations, 136,

140-141

using directly, 134

validation, 136

NSManagedObjectContext, 91

NSPersistentDocument, 305

NSPersistentStore, 91

NSSortDescriptor class, 185

NSTableView

apps, building, 366-372

bindings, 366

new features, 363-365

NSWindowDelegate protocol, 293

nullify delete rule, 128

numberFormatter, 330

numberOfRowsInSection listing

(19.2), 351

O

object controllers, 148

Object library, 40

Object library (iOS), 151

object stores

persistent, 90

object-oriented databases, 86

object-oriented programming

Objective-C

classes, 66

instances, 66

objects, 66-68

object-oriented programming

(OOP), 10-11

Objective-C, 64-66

classes, 66

declarations, 82

declared properties, 68-73

delegates, 75-76, 81

instances, 66

legacy versions, 64

messaging, 73-75

MVC (model/view/controller)

design pattern, 81-82

naming conventions,

74-75

object-oriented programming,

66-68

objects, 66-67

purposes, 67-68

properties, synthesizing prop-

erties, 70-72

protocols, 75-80

Objective-C language, 63

object-oriented programming,

Objective-C, 66-68

objects

data encapsulation, 67

document structure area,

204-205

external, iOS, 151

File’s Owner, 201-202

iOS, 151

Mac OS, 148

managed, 91

adding, 272-273

456

naming data models

contexts, 90-91, 148,

153, 158-159

saving context, 274

managed objects,

NSManagedObject, 134-141

Objective-C, 66-68

persistent object stores, 91

placeholders, 201-204

receiving and sending mes-

sages, 67

runtime, 153

state, 67

one-to-many relationships, 127

OOP (object-oriented program-

ming), 10-11

opening persistent stores,

433-434

Opening a Persistent Store listing

(24.1), 433-434

operating systems, versions, 190

operators

aggregate, 174

array, 174

comparison, predicates,

173-175

logical, predicates, 171-183

optimizing interfaces, 162-167

ordered relationships, 442

ordering table rows, 375-380

Organizer window (Xcode), 45-46

orientation property

(UIDevice), 190

outlets, 210-212

DetailViewController,

225-226

File’s Owner, 210-211

IBOutlets, adding fields,

230-231

MasterViewControl, 225-226

referencing, 210, 212-213

overriding NSManagedObject,

134-140

P

page view controllers, 151

panes, workspace window, 14

Parent Entity entity setting (Data

Model inspector), 323

performance, data retrieval,

156-158

persistent object stores, 90-91

persistent stores, 86, 108, 133

Core Data stack, 153

opening, 433-434

types, 108-109

Place entity, 89

Place.h listing (4.1), 88

Place.m listing (4.2), 89

placeholders, 201-204

First Responder, 203

Plural/Cardinality setting (Data

Model inspector), 327

pop-up menu lists, organizing,

27-28

popovers, iOS, 416-418

predicates, 171-173, 176-177

arrays, 175-176

comparison operators,

173-175

constructing, 177-183

data retrieval, 176

format strings, 177, 184

identifiers, 173

literals, 173

syntax, 173-175

templates, 177

hard-coded data, 182-183

runtime data, 183

prepareForSegue, 250

prepareForSegue in

MainViewController.m listing

(14.2), 250

primary keys, hidden, 162

programming validation,

402-406

programming languages. See

Objective-C

Project Builder, 7, 189

project navigator, 16-20

Project navigator (Interface

Builder), 198

projects

building, 52-53

creating, 195-198

storyboards, 239-241

identifying, 52-53

iOS

creating, 53-56

exploring, 58-59

iOS library/shoebox-based

apps, creating, 299-305

Mac

creating, 56-58

exploring, 58-59

Mac OS document-based

apps, creating, 305-311

How can we make this index more useful? Email us at indexes@samspublishing.com

projects

457

Mac OS library/shoebox-

based apps, creating,

292-299

Master-Detail App, creating,

263-267

moving data models between,

312-314

renaming, 120

storyboards, setting, 251-252

Projects tab (Organizer

window), 46

properties

declared, 441

declared properties, 64

attributes, 72

Objective-C, 68-73

synthesizing, 70-72

UIDevice, 190-191

Properties setting (Data Model

inspector), 326

Property attribute setting (Data

Model inspector), 324

Protocol Adoption with a

Navigation Bar listing (3.9), 77

Protocol Adoption with a Toolbar

listing (3.8), 77

protocols

methods, 442

Objective-C, 75-80

Protocols submenu (model editor

files), 29

proximityMonitoringEnabled prop-

erty (UIDevice), 190

proximityState property

(UIDevice), 190

proxy objects, 201-204

Q

quality edits, 319, 405-406

Quick Help, 33

records (tables), 87

referencing outlets, 210-213

referential integrity,

preserving, 318

Regular Expression setting (Data

Model inspector), 325

regular expressions, 319, 325

relational databases, 87

relational integrity, 128

relational integrity rules, data

model, 318-319

setting up, 320-327

relationship entities, moving, 389

relationship settings, Data Model

inspector, 325-327

relationships

bidirectional, 127

data models

adding to, 126-131

cardinality, 127

delete rule, 128

entities

linking with, 107-108

rules, 126

many-to-many, 127

one-to-many, 127

ordered, 442

renaming attributes entities,

432-433

renaming project files, 120

Repositories tab (Organizer

window), 45

repurposing templates, 223-230

requests, fetch, 96-98

retrieving data, 154

metrics, 156-158

paradigms, 155

performance, 156-158

Ritchie, Dennis, 8

RootViewController, 79

rows

detail disclosure accessories,

adding, 414-415

tables

allowing movement,

380-382

moving, 382-390

ordering, 375-380

taps, handling, 415

rows (tables), 87

rules

data model, 318-319

setting up, 320-327

validation rules, 317-319

runtime, Core Data, examining,

90-96

runtime objects, 153

S

sample code, 50-52

sandboxes, iOS apps, locating,

192-194

saveAction method, 293

saveNameData listing (16.2), 285

saveNameData method, 285

458

projects

saving

code, 284-286

data, 273-274

managed object context, 274

navigation-based apps,

implementing, 267-272

Saving the Data listing

(21.7), 390

scenes, storyboards, 246

schemas, databases, 424

Seagull, The, 246

search navigator, 21-22

second interface

fields, adding to, 281-284

implementing, 281

sections, table views, 345

segues, storyboards, 246

SELECT statement, 171

semi-hidden files, 110-111

creating, 111-115

iOS, 114

Mac OS X, 110-115

Set Section Header and Footer

Titles listing (19.5), 354-355

Set the New View Controller

listing (23.3), 415

setDetailItem listing (15.3), 276

Setter attribute (declared

property), 72

Setting Up the App Delegate

listing (17.1), 294

Setting Up the Fetch Request

listing (21.1), 377-378

settings, iOS, 339-344

sheets, 161

creating, 419-420

dismissing, 421

Mac OS, 419-421

Siblings submenu (model editor

files), 29

simulator, iOS app sandboxes,

locating, 192-194

Size inspector, 205

SOME aggregate operator, 174

sort descriptors, 185-186

split view controller,

iPad, 250

split view controllers, 151

split view controllers

(iPad), 311

split views, 271-272

SQLite, 90, 96

document types, 306

libraries, 156

standard editing mode

(Xcode), 26

Stanislavski, Constantin, 246

state, objects, 67

statements, SELECT, 171

storyboards, 87, 146, 192,

239-241, 246-251, 442

creating, 251-253

iPad, 247-248

iPhone, 246-247

scenes, 246

setting, 251-252

view controllers, adding and

deleting, 252-253

storyboards, segues, 246

strings

BEGINSWITH, 174

CONTAINS, 174

converting to dates, 216

ENDSWITH, 174

format, predicates, 177, 184

LIKE, 174

MATCHES, 174

structures, apps, 292

styled cells, tables, creating,

355-357

Styling Cells listing (19.6),

356-357

subclasses, NSManagedObject

creating from, 331-334

matching, 140

Subclasses submenu (model

editor files), 29

summarizing free validation, Mac

OS, 401-402

Superclasses submenu (model

editor files), 29

Swapping the View listing

(14.1), 245

swapping views, 248-251

Detail views, 244-245

iOS, 413-415

devices, 241-243

symbol navigator, 20-21

syntax, predicates, 173-175

Synthesize Directives to Match

Listing 3.3 listing (3.4), 70

Synthesize the Core Data Stack

Properties listing (4.4), 93

synthesizing properties, 70-72

system preferences, Mac OS,

339-344

systemVersion property

(UIDevice), 190

How can we make this index more useful? Email us at indexes@samspublishing.com

systemVersion property (UIDevice)

459

T

tab bar controllers, 151

table view controllers (iOS), 151

table views, 345

accessory view, 345

adding, 369

cells, 345

fields, removing, 345-349

interface, removing, 345-349

methods, implementing,

350-357

sections, 345

table views (Interface Builder

editor), 199-200

tables, 87

cells

creating labels, 357

styled, 355-357

footer titles, setting, 354-355

header titles, setting,

354-355

multiple sections, 354

rows

allowing movement,

380-382

moving, 382-390

ordering, 375-380

templates, 52

Master-Detail Application,

166-167, 242, 263,

343-344, 409-410

predicates, 177

hard-coded data, 182-183

runtime data, 183

repurposing, 223-230

testing free validation, 401-402

text editor (Xcode), 40-45

code completion, 43-45

editing preferences, setting,

40-43

Fix It, 40, 43-45

text fields, interfaces, adding to,

217-221

“Three Little Pigs”, 246

trace connections, 149

transformations,

NSManagedObject, 136,

140-141

Transforming an Image to and

from NSData listing (7.1), 141

tree controllers, 149

type conflict issue, 328-329

solving, formatters, 329-331

type qualifiers, Interface Builder

editor, 230-231

U

UIApplicationDelegate

protocol, 300

UIDevice, properties, 190-191

UIResponder, 300

UISplitViewControllerDelegate, 79

UITableView

accessory view, 345

cells, 345

fields, removing, 345-349

interface, removing,

345-349

iOS, 337-345

using with Core Data,

357-359

using without Core Data,

344-357

methods, implementing,

350-357

sections, 345

UIUserInterfaceIdiom, 231

unique user-visible identifiers,

generating, 162

universal apps, creating,

190-192, 279-281

Use a Predicate Template with

Hard-coded Data listing

(10.1), 183

Use a Predicate Template with

Runtime Data listing

(10.2), 183

Use More than One Section

listing (19.4), 354

user defaults controllers, 149

user interaction, 338-339

user interface, Core Data, 195

user-visible identifiers,

generating, 162

userInfo property (NSError), 405

userInterfaceIdiom property

(UIDevice), 190

users

communicating with, 413-418

editing data, 409

Using a Private Variable in a

Property listing (3.5), 71

Using a Sort Descriptor listing

(10.5), 186

utilities

inspectors, 31-34

460

tab bar controllers

libraries, 35-38

code snippet, 38-40

file templates, 35, 37

V

validation

free, 393-394

summarizing on Mac OS,

401-402

testing, 401-402

inter-property, 405-406

key-value, 403-404

Mac OS, 394-402

managing, 393-394

NSManagedObject, 136

programming, 402-406

validation rules, data model,

317-319

setting up, 320-327

Validation setting (Data Model

inspector), 325

validity edits, 319

valueForKey, 134-136

version editing mode (Xcode), 26

versions, data models, 426-430

creating, 426-430

determining compatibility,

430-431

forcing incompatibility, 432

view concept (MVC

(model/view/controller) design

pattern), 82

view controllers

creating, 244

iOS, 151

Mac OS, 148

popover, 417

setting, 415

storyboards, adding and

deleting, 252-253

View Effects inspector, 205

View menu commands, Welcome

to Xcode, 50

views

changed, 413

controlling, 144-147

Detail, swapping, 244-245

integrating

iOS, 151

Mac OS, 147-150

swapping, 248-251

iOS, 413-415

iOS devices, 241-243

viewWillAppear, 284

viewWillAppear listing (15.1), 273

viewWillAppear method,

269, 273

viewWillDisappear method,

284-285

viewWillDisappear listing

(15.2), 274

viewWillDisappear method, 269

viewWillDisappearAndBeSaved,

284

W

WebObjects, 156

Welcome to Xcode command, 50

WHERE clauses, 171-173

windows (modal)

creating, 421

dismissing, 421

Mac OS, 419-421

windowWillReturnUndoManager

method, 293

workspace window (Xcode),

13-15

areas, 14

bars, 14

breakpoint gutters, 14

filter bar, 14

Focus ribbon, 14

navigator pane, 15-25

panes, 14

Worldwide Developers

Conference, 64

X

xcdatamodeld files, 313

Xcode, 8, 13, 49-50

automatic installation, 12

code samples, 50-52

control-drag, building inter-

faces, 232-236

Core Data model editor, 86

declarative programming para-

digms, 9-10

document structure area, 199

editing modes, 25-30

editing window, 31

fetch requests, creating,

178-183

How can we make this index more useful? Email us at indexes@samspublishing.com

Xcode

461

files, identifying, 52-53

imperative programming

paradigms, 9-10

jump bar, 294-295, 301

launching, 12

Master-Detail template, 263

navigator pane, 15-25

breakpoint navigator,

24-25

debug navigator, 23-24

issue navigator, 23

log navigator, 25

project navigator, 16-20

search navigator, 21-22

symbol navigator,

20-21

organization tools, 28-29

Organizer window, 45-46

predicates, constructing,

177-183

projects

building, 52-53

identifying, 52-53

iOS, 53-56, 58-59

Mac, 56-59

storyboards, 192

templates, 52

text editor, 40-45

code completion, 43-45

Fix It, 40, 43-45

setting editing

preferences, 40-43

workspace window, 13-15

Xcode 4, 7

462

Xcode

	Table of Contents
	Introduction
	Who Should Read This Book
	Some Points to Keep in Mind
	How This Book Is Organized
	HOUR 1: Introducing Xcode 4
	Getting to Know Xcode
	Goodbye “Hello, World”
	Hello, App Development for Mac OS X and iOS
	Getting Started with Xcode
	Using the Navigator
	Using Editors
	Working with Assistant
	Getting Help in an Editor Window
	Using Utilities—Inspectors
	Using Utilities—Libraries
	Using the Text Editor
	Using the Organizer Window
	Summary
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	S
	T
	U
	V
	W
	X

