
APPENDIX D

Advanced Topics

Testing String Mutability with Exceptions
We can test a string’s mutability as follows. Again don’t use this for production code.

BOOL isMutableString(NSString* string)
{
@try

{ [((id) string) setString:string];
return YES; }

@catch(id e) {}

return NO;
}

(Casting string to id removes a static type check warning.)

Uncaught Exceptions
Any exceptions you do not catch invoke the default exception handler. You can set your

own default exception handler with NSSetUncaughtExceptionHandler which takes as

argument a pointer to a function handler. (Recall that in C, the & operator returns the

address of its argument. Thus &myHandler is a pointer to the myHandler function). You

can obtain the system’s handler with NSGetUncaughtExceptionHandler.

For instance, add this code to main.m:

NSUncaughtExceptionHandler* globalHandler = NULL;

void myHandler(NSException *exception)
{
NSLog(@”It’s the end of the world as we know it! %@”, exception);

if (globalHandler)
globalHandler(exception);

}

int main(int argc, char *argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

548 APPENDIX D: Advanced Topics

globalHandler = NSGetUncaughtExceptionHandler();
NSSetUncaughtExceptionHandler(&myHandler);

int retVal = UIApplicationMain(argc, argv, nil, nil);
[pool release];
return retVal;

}

Then change pressVar: to the following:

- (void) pressVar:(UIButton*)sender;
{
@throw [NSException exceptionWithName:@”test”

reason:@”testing”
userInfo:nil];

};

When you press the var button, you’ll see

It’s the end of the world as we know it! testing
*** Terminating app due to uncaught exception ‘test’, reason: ‘testing’

The Implementation of Exceptions
This section is somewhat advanced. Unless you are planning to mix Objective-C and

C++, you can skip it. Exceptions are implemented with C’s setjmp library. setjmp

does not invoke any of the destructors that C++ would invoke for stack-based C++

objects when unwinding the stack. This means that all of the destructors that would

have been invoked by functions between the @catch block and the @throw statement

are ignored. The implementation of exceptions is straightforward.

NSExceptionFrames record the location of each @try block.

typedef struct NSExceptionFrame
{
jmp_buf state;
struct NSExceptionFrame *parent;
NSException *exception;

} NSExceptionFrame;

static NSExceptionFrame* _currentExceptionFrame = nil;

@throw is equivalent to the following:

void _throw(NSException* e)
{
_currentExceptionFrame->exception = e;
longjmp(_currentExceptionFrame->state, 1);

}

Ignoring the exception arguments to @catch, the following code:

@try { try_block }
@catch { catch_block }

NSZones 549

is equivalent to this code:

{
NSExceptionFrame localFrame;
_pushException(&localFrame);

// try part

if (setjmp(localFrame.state)==0)
{
try_block
_popException(&localFrame);

}

// catch part

else

{
NSException* exception = e->exception;
_popException(&localFrame);
catch_block

}
}

where

void _pushException(NSExceptionFrame* e)
{
e->exception = nil;
e->parent = _currentExceptionFrame;
_currentExceptionFrame = e;

}

void _popException(NSExceptionFrame* e)
{
e->parent->exception = e->exception;
_currentExceptionFrame = e->parent;

}

NSZones
NSZones are a solution to memory fragmentation. Memory fragmentation is the

phenomenon in which free memory becomes divided into many small pieces over

time. It happens because each request for memory requires finding enough contigu-

ous memory to satisfy the request. A little additional memory is usually left over.

Over time, you might end up with enough free memory to satisfy your application’s

needs, but because it is not contiguous, it cannot be used. Each NSZone has its own

private memory heap, free list, and pool of memory pages. For instance, if you will

be creating many objects of the same size, you can create a zone and allocate them

to that zone with allocWithZone:. Because they all have the same size, they will

not fragment their zone. Objects are usually assigned from the default zone

(returned by NSDefaultMallocZone()).

550 APPENDIX D: Advanced Topics

Although this is true in theory, in practice, allocWithZone: allocates memory in

zones on the simulator but not on the iPhone! This happens because

allocWithZone: calls class_createInstance or class_createInstanceFromZone

to set up basic information about the object (its isa pointer). The 2.0 Objective-C

runtime shipped on the iPhone only supports class_createInstance, which can

only create instances of Objective-C objects in the default zone. The simulator runs

with the 1.0 Objective-C runtime, which supports the

class_createInstanceFromZone method. It seems that Apple is moving away from

the concepts of memory zones, but you are still expected to implement

copyWithZone: and mutableCopyWithZone: rather than copy and mutableCopy.

Creating Singletons by Overriding
allocWithZone:
You can override allocWithZone: to create singletons (classes that only have one

instance). Singletons should be used with care as they bind tightly all their clients in

the same way global variables do.

Singletons should never be released:

- (id) copyWithZone:(NSZone*) zone { return self; }
- (id) retain { return self; }
- (unsigned) retainCount { return UINT_MAX; }
- (void) release {}
- (id) autorelease { return self; }

Initializing a singleton more than once will destroy the previous content of the sin-

gleton. Apple’s recommended solution is to create a factory method (a class method

that returns objects) that returns the singleton. Clients should invoke the factory

method, and allocWithZone: only returns memory on its first invocation. Later

invocations return nil so that init does not destroy the previous content of the sin-

gleton.

static MySingleton *mySharedSingleton = nil;

+ (MySingleton*) singleton
{
@synchronized(self)
{
if (mySharedSingleton == nil)
[[self alloc] init]; // assignment not done here

}

return mySharedSingleton;
}

+ (id) allocWithZone:(NSZone*) zone
{
@synchronized(self)
{

Did you
Know?

Extending Objects by Overriding allocWithZone: 551

if (mySharedSingleton == nil)
{
mySharedSingleton = [super allocWithZone:zone];
// assignment and return on first allocation
return mySharedSingleton;

}
}

return nil; // on subsequent allocation attempts return nil
}

The advantage of this solution is that init can be defined as usual and derived

classes will still work. The disadvantage of this solution is that the NIB file reader

does not know about the singleton factory method, and might attempt to create

the singleton more than once using the standard alloc and init calls, which will

return nil on later invocations.

The @synchronized keyword creates a lock on the object, to ensure two threads can-

not enter its section at the same time.

Extending Objects by Overriding
allocWithZone:
Another reason to override allocWithZone: is to reserve some space at the end of

the object, for instance to store a variable-length string:

+ allocWithZone:(NSZone*)zone
{
...;
return NSAllocateObject(self, extra_bytes, zone);

}

You can obtain the size of an Objective-C object obj using sizeof(obj). The stan-

dard typed pointer rules apply: self+1 would point past the end of the object.

Because these sizes are static, methods that may be inherited should instead use

class_getInstanceSize on the class.

allocWithZone: can return a static placeholder object and defer allocation to the

init method for variable-sized objects. For instance, allocating memory for an

NSString requires knowledge of the length of the string, but the string is given to

init, not alloc. NSString’s alloc method returns a static NSPlaceholderString

and defers memory allocation to the init method:

NSLog(@”%@”, [[NSString alloc] className]);
NSPlaceholderString

If you see undocumented classes containing the word Placeholder in the debug-
ger, it is an object of a not-yet initialized class.

Watch
Out!

552 APPENDIX D: Advanced Topics

How Applications Start
So far, we’ve glossed over how applications start. In Hour 3, “Simplifying Your

Code,” you learned that just like in C, applications start at the main function. Then

in Hour 6, “Understanding How the User Interface Is Built,” we mentioned that

UIApplicationMain is somehow responsible for creating the application object and

delegate and starting up Cocoa. Now that we know about run loops, we can be

more precise.

UIApplicationMain first initializes the Cocoa libraries. Then, if its third argument

does not specify the class of the application object, it looks in the application’s

Info.plist file for it under the NSPrincipalClass key. In either case, if a class is

specified, it checks that the object is a UIApplication or its descendent. Otherwise,

it simply builds a UIApplication. Similarly, if the Application Delegate is specified,

it is built and set up.

The second step in UIApplication’s _run method is to set up the Mach ports the

application will listen to. If it cannot connect to the Mach ports of the system event

server, it terminates. Otherwise, it sets up a run loop and registers for various events

it needs to be notified about, such as memory scarcity. It also informs the iPhone OS

of its application bundle ID. To get called from the run loop, it sets up a request for

_runWithURL: to be run after a few milliseconds delay using performSelector:

withObject:afterDelay. It sets up the autorelease pools to be used within the run

loop, and the observer to drain them. Then, it starts the run loop. The application

closes when the run loop returns: _run is exited normally, which returns to

UIApplicationMain and then to main.

_runWithURL: registers for more system events (for example, change of user

defaults, language, locale, time, the display turning on and off). It sets up the basic

display state and then loads the NIB file specified in Info.plist. The NIB file can

set the Application Delegate. It checks whether the delegate responds to

applicationDidFinishLaunching: and runs it; otherwise, it checks UIApplication

for applicationDidFinishLaunching: and runs that. Your application then takes

over. On return, it broadcasts a general

UIApplicationDidFinishLaunchingNotification.

Changing File Owner’s class in Interface Builder does not change the Application
object that is created. To change the Application object, you must change the third
argument of UIApplicationMain.

Did you
Know?

Threads 553

Threads
An alternative to inserting calls to CFRunLoopRunInMode throughout your code is

to place the rendering code in another thread. Threading is an enormous topic, so

this section focuses mainly on the Objective-C specific aspects of threading.

Threading introduces nondeterminism into your application: The state of a non-

threaded application always changes in the same way given the same inputs; the

state transitions can be written down in a line as shown in Figure D.1. The program

must be correct for just that one sequence. The state of a threaded application

changes in as many ways as there are possible interleavings of threads, as shown in

Figures D.2 and D.3. The state transitions can only be written down as a directed

acyclic connected graph, an arc representing a transition, as shown in Figure D.3.

The program must be correct for any path taken through this graph.

Graphs are commonly used in computer science. A graph consists of nodes and
arcs connecting the nodes. If every arc has a direction (a defined start node and
end node), the graph is called directed. If every pair of nodes is connected via a
path of arcs, the graph is connected. Acyclic graphs have no cycles: They have no
paths formed by following arcs in a given direction which lead back to a previously
encountered node. In this example, the nodes represent state, and the arcs state
transitions.

SabABSabASabSaS
a b A B FIGURE D.1

The programmer
and computer
agree on what’s
happening

S SA SAB

S Sa Sab

a b

A B

Thread 1

Thread 2

FIGURE D.2
What the pro-
grammer thinks
is happening

554 APPENDIX D: Advanced Topics

Well-designed threaded programs keep threads as independent as possible: This sig-

nificantly reduces the number of thread interleavings that differ, represented as the

graph’s branching. For instance, off-loading work to a worker thread that only com-

municates back to the main thread when it is done only creates a second branch.

Apple provides standard pthread-based threading, NSThreads, and

NSOperationQueue. It also provides a number of synchronization methods.

pthreads
pthreads work the same way as they do on other platforms. However, if you want to

use Cocoa classes in a pthread, you must put Cocoa into multithreaded mode:

Cocoa avoids creating locks for single-threaded applications because using mutexes

is expensive. (Mutexes provide inter-thread synchronization.) Instead, Cocoa sets all

locks to nil at initialization and registers for the

NSWillBecomeMultithreadedNotification to create the locks as soon as the appli-

cation becomes multithreaded. The nil rule means that all lock manipulations are

ignored in single-threaded applications.

S

Sa

Sab
SabA

SaA

SaAb

Sa,b,A,B

SaAB

SAab

SAa

SAaB

SAB

SABa

SA

a

A

b

A

a

B

A

b

B

b

B

a

B

B

b

B

b

b
SA

A

Application State
after transition A

Transition A

FIGURE D.3
The computer
can take any
path through
the graph

To put Cocoa in multithreaded mode, your application must create an

NSWillBecomeMultithreadedNotification. As NSThread creates this notification

when it starts its second thread, all you need to do is create an NSThread that imme-

diately exits before you use pthreads. You can check whether Cocoa is in multi-

NSThreads 555

threaded mode at any time by invoking NSThread’s isMultiThreaded. Notifications

are discussed in more detail in Hour 12, “Adding Navigation and Tab Bar

Controllers.”

NSThreads
NSThread is Cocoa’s thread API. Threads should only be used for tasks that share

very few (or no) data structures with other tasks so as to reduce the complexity of

your state-transition graph. Because creating threads is expensive, the task should

perform a large amount of work (more than 10 ms).

Threads are created using NSThread’s initWithTarget:selector:object: and

launched using start. The selector and target specify the thread’s main method,

and you can specify an argument object.

NSThread* thread = [[NSThread alloc] initWithTarget:obj
selector:@selector(mainMethod:)
object:nil];

// optionally configure the thread’s name,
// priority, stack size and thread dictionary
[thread setName:@”BlurImage”];
[thread start];

NSThread has a shorthand class method

detachNewThreadSelector:toTarget:withObject: to create and launch a thread

in a single step. Another alternative is to subclass NSThread and override its main

method.

The method specified by the selector will be run in the new thread. It must create

and maintain its own NSAutoreleasePool to prevent leaks. It must also catch any

exceptions it generates, to prevent the application from being terminated. If your

thread only needs to perform computations and not communicate with the world,

you don’t need to use a run loop.

– (void) mainMethod:(id)obj
{
NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init]

@try

{ /* do some work */ }

@catch (NSException* exception)
{ NSLog(@”Caught an exception %@ in thread %@”,

exception, [NSThread currentThread]); }

@finally

{ [pool release]; }
}

556 APPENDIX D: Advanced Topics

Leaving a thread using NSThread’s exit method does not release the autorelease

pool or any other resources you might have claimed. Prefer to exit the thread by

returning from mainMethod.

If your thread does communicate to the outside world, or you want to use the

performSelector:onThread:withObject:waitUntilDone: methods, it needs to use

a run loop. NSThread creates a run loop for each thread it starts, but you must run

it:

– (void) mainMethod:(id)obj
{
NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];

@try

{
NSRunLoop* runLoop = [NSRunLoop currentRunLoop];

[self installCustomInputSourceOrTimer];

leave = NO;
while (!leave)
{
[runLoop runUntilDate:[NSDate dateWithTimeIntervalSinceNow:0.05]];

// You can do some work here which could change the leave variable.
// Or you could decide to change leave in an action invoked by the run

loop.
}

}

@catch (NSException* exception)
{ NSLog(@”Caught an exception %@ in thread %@”,

exception, [NSThread currentThread]); }
@finally

{ [pool release]; }
}

The performSelectorOnMainThread:withObject:waitUntilDone: and

performSelector:onThread:withObject:waitUntilDone: methods inherited from

NSObject enable threads with run loops to communicate with one another as shown

in Figure D.4. The messages sent in this manner are asynchronous and require no

locks. They’re great if you don’t need speed.

New thread run loops have no input sources or pending timers. Run loops without

input sources or pending timers are exited immediately as they have nothing to wait

for. The while loop will keep the thread running, but unless you are doing work

outside the run loop, you’ll be wasting battery charge. If you’re planning to make a

thread you can send tasks to using performSelector:onThread:withObject:

waitUntilDone: and which will use Cocoa-created input sources, you can keep the

run loop alive by using a timer that never triggers:

NSThreads 557

– (void) installCustomInputSourceOrTimer
{
NSTimer* timer = [[NSTimer alloc] initWithFireDate:[NSDate distantFuture]

interval:0.0
target:self

selector:@selector(never)
userInfo:nil
repeats:NO];

[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSDefaultRunLoopMode];
}

See Apple’s “Threading Programming Guide” for details on how to make your own

run loop input source.

NSOperationQueue
NSOperationQueue lets you run a series of tasks in the background. It is appropriate

for smaller tasks as it avoids creating a new thread for each operation. Instead, it

creates a few threads, which each serially takes operations from the queue and exe-

cutes them. The number of threads created is system dependent and might differ

between the simulator and the iPhone.

Every operation you define should be a child of NSOperation. You must define its

main method, which will be invoked to perform the operation. Be aware that once

main exits, the operation is considered finished and the object is released. If your

main function uses a class that has an asynchronous API such as NSURLConnection

(described in Hour 14, “Accessing the Network”), you will need to invoke the run

loop until the appropriate delegates have been called.

A nice feature of NSOperations is that you can require them to be called after other

NSOperations have completed by adding the other operations as dependencies.

NSOperationQueue will run them in the correct order, unless you’ve created a circu-

lar dependency, in which case it might deadlock.

Notify Observers the thread will sleep

 Sleep until:
 * an event arrives on a port
 * a timer fires
 * the runloop timeout expires
 * the runloop is woken up

Notify Observers the thread awoke

performSelectorOnThread....

Process Pending Events
NSTimer: Invoke Handler
Invoke UIView actions

Exit if runloop timed out

Clear Autorelease Pool

Layout

Draw

Enter
Runloop

EXIT
Notify Observers the thread will sleep

 Sleep until:
 * an event arrives on a port
 * a timer fires
 * the runloop timeout expires
 * the runloop is woken up

Notify Observers the thread awoke

performSelectorOnThread....

Process Pending Events
NSTimer: Invoke Handler
Invoke UIView actions

Exit if runloop timed out

Clear Autorelease Pool

Layout

Draw

Enter
Runloop

EXIT

Inter-thread

Communication

Thread 1 Thread 2

FIGURE D.4
Two threads
with run loops
can communi-
cate.

558 APPENDIX D: Advanced Topics

Alternatively, you can use NSInvocationOperation to invoke a method on an

object:

– (id) init
{
...
queue = [[NSOperationQueue alloc] init];

...
}

– (void) runImageProcessing:(UIImage*)image
{
NSInvocationOperation* operation;
operation = [[NSInvocationOperation alloc] initWithTarget:self

selector:@selector(blur:)
object:image];

[queue addOperation:operation];
[operation release];

};

Recall that blur: will run in another thread, and should not change self without

appropriate locks.

NSOperationQueue also can be given concurrent operations that are supposed to

create their own thread when their start method is invoked. It is up to you to write

that start method and the associated isExecuting and isFinished methods.

http://www.dribin.org/dave/blog/archives/2009/05/05/concurrent_operations/ pro-

vides an interesting example of doing this.

Synchronization
The iPhone OS provides a number of mechanisms to guarantee safe data access.

The simplest primitive is the BSD declared OSAtomicCompareAndSwapLongBarrier

and the other OSAtomic functions declared in <libkern/OSAtomic.h>. For instance,

to increment a variable that can be shared, write the following:

int32_t inc(volatile int32_t* ptr)
{
int new = 0;
do { int old = *ptr; new = old + 1; }
while (!OSAtomicCompareAndSwapLongBarrier(old, new, ptr));
return new;

}

CPUs and compilers are free to reorder and postpone reads and writes for efficiency.

For instance, you would expect a to always be larger or equal to b in the following

code:

static volatile int a = 0; // static versus non–static because
volatile int b = 0; // we want a & b on different cache lines
while (1) { ++a; ++b; };

Did you
Know?

NSThreads 559

However, without memory barriers, a thread on a different CPU could see a being

smaller than b. The simplest form of memory barrier OSMemoryBarrier() guaran-

tees that all pending loads and stores issued before the memory barrier instruction

complete before the memory barrier instruction itself completes. Variants only force

loads or stores to complete. Memory barriers are important when dealing with

threads on CPUs that use a weakly ordered memory model such as the ARM proces-

sor in multicore systems.

A good discussion of memory barriers is available at

http://ridiculousfish.com/blog/archives/2007/02/17/barrier/.

OSAtomicCompareAndSwapLongBarrier and friends are described in a manual
page on your system that can be invoked from the Terminal application by typing

man OSAtomicCompareAndSwapLongBarrier.

Locks provide a second method of synchronization. pthread provides its standard

mutex and read-write locks. NSLock provides a Cocoa API for nonrecursive pthread

mutex locks, whereas NSRecusiveLock provides an API for recursive pthread mutex

locks. Mutex stands for Mutual Exclusion. You can give your locks a name, which

will be printed in error messages. For instance, unlocking a lock that is not locked

will print just such an error message. You must unlock NSLock objects from the same

thread as locked it.

For convenience, Objective-C provides the @synchronized directive, which prevents

any two threads from entering any @synchronized bracketed code if they share the

same @synchronized argument. Think of it as trying to breathe in and out and

swallow at the same time—it isn’t possible.

– (void) swallow:(float)food
{
@synchronized(self) // self is @synchronized’s argument
{ energy += food; } // This is @synchronized’s bracketed code

}

– (void) breatheIn:(float)air
{
@synchronized(self)
{ oxygen += air * 20.95; }

}

The argument can be any Objective-C object. Class methods can use the class object

to guarantee no two class methods change its static information simultaneously.

By the
Way

560 APPENDIX D: Advanced Topics

Similarly, you can use unique static objects to prevent multiple threads from calling

the same method simultaneously:

static id semaphore = nil;

+ (void) initialize
{
if (semaphore == nil)
semaphore = [[NSObject alloc] init];

};

– (void) criticalMethod
{
@synchronized(semaphore)
{ /* critical code */ }

}

@synchronized involves four steps:

1. It locks a global lock to access an object-mutex map. If the object is not in the

map, it creates a mutex for it and adds them to the map; otherwise, it incre-

ments the object’s reference count. Then, it unlocks the global lock.

2. It creates a @try/@catch block around the critical code so that it can catch

any exception within the code and release the object’s mutex.

3. It locks the object’s mutex, performs the critical code, and unlocks the object’s

mutex.

4. It locks the global lock and decrements the object’s reference count. If zero, it

removes the object from the object-mutex map. Then, it unlocks the global

lock.

@synchronized is slower than pthread-based mutexes or
OSAtomicCompareAndSwapLongBarrier as it does more work. However, it is more
convenient.

Deciding Whether to Use Threading or
One-Shot Invocation
There are many reasons to avoid using threads whenever possible.

As discussed earlier, threading introduces nondeterminism into your application.

Because the programmer cannot keep the entire graph in mind, there will be bugs.

Deciding Whether to Use Threading or One-Shot Invocation 561

Because there is no deterministic way of testing every thread interleaving, testing

coverage collapses. Threading bugs are very difficult to reproduce, let alone debug.

This is the key point. To quote Brian W. Kernighan, “Debugging is twice as hard as

writing the code in the first place. Therefore, if you write the code as cleverly as possible,

you are, by definition, not smart enough to debug it.”

Just to emphasize this point, Apple only fixed NSOperationQueue in Mac OS 10.5.7.

NSOperationQueue was introduced in Mac OS 10.5 to simplify writing multithread-

ed code, but it included a multithreading bug that occurs on dual-core machines

and that would crash any application that used it. Because the iPhone has only one

core, it was immune, but the simulator wasn’t.

Furthermore, Apple’s documentation on which classes are thread safe is incomplete.

It does not clearly state which Cocoa objects are safe to invoke from multiple

threads at any time (thread safe), which can only be invoked from the main thread

(main thread only), and which can be invoked from any thread but not from two

threads simultaneously (non–thread safe).

Most classes are not thread safe. For instance, updating UIViews in secondary

threads causes unpredictable effects. It can be hard to see when your code invokes

methods on the wrong thread: As your code changes over time, some methods used

by multiple threads might end up invoking methods that update UIViews. For

instance, you might add KVO methods to update the user interface (UI). However,

the setter you are monitoring might be invoked from a different thread. KVO will

invoke your new methods to update the UI from that thread. (See

http://lists.apple.com/archives/cocoa-dev/2007/May/msg00022.html for more

details.)

In general, only immutable objects are thread safe. The “Thread Safety Summary”

appendix of the “Threading Programming Guide” provides some guidance that is

“subject to change.”

Therefore, although it’s ugly, I prefer to sprinkle invocations of the runtime loop

around unrelated code, rather than adding multiple threads. Similarly, I’d much

prefer to optimize an algorithm instead of adding threading. Not only do I keep my

application deterministic, but I also improve battery performance.

Watch
Out!

562 APPENDIX D: Advanced Topics

Types of Layers
This section focuses on standard CALayers because they are the most commonly

used layers. There are three other kinds of layers which solve problems you may

encounter: CAScrollLayers for displaying content larger than the screen,

CATiledLayers for displaying zoomable content, and CAEAGLLayers for displaying

OpenGL content.

CAScrollLayer
CAScrollLayers have sublayers that are too large to fit on the screen.

CAScrollLayers clip their subviews to fit within their bounds. You can specify

whether they support no scrolling (kCAScrollNone), horizontal scrolling

(kCAScrollHorizontally), vertical scrolling (kCAScrollVertically), or bidirection-

al scrolling (kCAScrollBoth) by using the scrollMode property. You can program-

matically scroll so that a point (scrollToPoint:) or a rectangle (scrollToRect:) is

visible.

CATiledLayer
CATiledLayers provide support for multiple levels of detail for large layers. For

instance, if you have a giant photograph such as NASA/ESA’s 6000x6000 pixel stun-

ning Hubble Deep Field image, you can display it on your iPhone with a

CATiledLayer. Tiled layers use a new level of detail each time you zoom the image

two times its size. The layer’s delegate’s drawLayer:inContext: method is called to

draw new levels of detail. The drawLayer:inContext: method must extract the

graphics context’s bounds using CGContextGetClipBoundingBox to know which

part of the image should be drawn. It does not need to scale or crop the image as

the graphics context is already set up to do this.

- (void) drawLayer:(CALayer*)layer inContext:(CGContextRef)context
{
CGRect bounds = CGContextGetClipBoundingBox(context);

// The part of the image to draw is specified by bounds
// Draw it here

}

drawLayer:inContext: is invoked by Core Animation within the Core Animation
thread.

Types of Layers 563

levelsOfDetail specifies the number of levels of detail the tiled layer will cache.

levelsOfDetailBias specifies how many levels of detail are reserved for zooming

out. For instance, setting levelsOfDetail to 4 and levelsOfBias to 1 means four

layers will be cached, and they will be 2x, 1x, 0.5x, and 0.25x the size of the current

zoom factor. After setting up a CATiledLayer, you’ll only need to send it a

setNeedsDisplay once. Thereafter, changing the tile layer’s zoom factor or its posi-

tion causes any necessary redraws. Zooming is achieved by scaling the transform

on its x- and y-axes:

CATransform3DMakeScale(zoom, zoom, 1.0);

CAEAGLLayer
CAEAGLLayer provides an OpenGL ES layer to which OpenGL content can be drawn.

Older iPhones and iPod Touches support the OpenGL ES 1.1 API, while the new

iPhone 3GS supports this and the OpenGL ES 2.0 API. OpenGL ES 1.1 games will run

on the new iPhone because Apple emulates the fixed-function pipeline using

shaders in its driver.

Unfortunately, learning OpenGL requires a number of books, and is not specific to

Cocoa Touch, so this book does not attempt to introduce it. The principles you learn

for placing layers in 3D space will serve you well should you decide to learn it.

Instead, this section simply shows you how to open a GL layer and lists iPhone-spe-

cific performance recommendations.

The OpenGL template created when creating a new OpenGL project provides a good

example of how to build a GL Layer. When views are built, their layerClass class

method is invoked to determine what kind of layer they should use. By default,

layerClass returns a CALayer class object. However, you can override it to return

an EAGLLayer class object:

+ (Class)layerClass { return [CAEAGLLayer class]; }

For efficiency, the created layer must be opaque. It must be told which format to use

to represent colors (kEAGLColorFormatRGBA8 or kEAGLColorFormatRGB565) and

whether drawable surfaces should retain their contents after they have been drawn:

layer.opaque = YES;
layer.drawableProperties
= [NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithBool:NO], kEAGLDrawablePropertyRetainedBacking,
kEAGLColorFormatRGBA8, kEAGLDrawablePropertyColorFormat, nil];

564 APPENDIX D: Advanced Topics

Finally, you must create a GL context, the analog of a Core Graphics context, which

keeps track of OpenGL state. It is at this point that you specify whether you’ll be

using OpenGL ES 1.1 or 2.0:

context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1];

if (!context | | ![EAGLContext setCurrentContext:context])
{
[self release];
return nil;

}

Rather than drawing in drawLayer:inContext:, which would call

setNeedsDisplay, Apple recommends you hook into layoutSubviews to update the

frame buffer. The EAGLContext method renderbufferStorage:fromDrawable: lets

you allocate storage for a render buffer (a 2D image buffer). This method replaces

glRenderbufferStorage. presentRenderbuffer: is used to display the render

buffer.

Because you’re actually rendering to the EAGLLayer’s texture, which will be rendered

on the screen, and the PowerVR GPU does not support antialiasing when drawing to

a texture, OpenGL objects will not be antialiased.

Performance recommendations are as follows:

. Vertices should be rendered as strip-ordered indexed triangles with per-vertex

data interleaved. This guarantees the vertex data will be read as a single con-

tinuous read from memory rather than scattered reads, which have lower

DRAM signaling performance.

. Opaque layers should be rendered first (for example, all dual-textured opaque

objects first, with single-textured objects next).

. The PowerVR GPU renders pictures in tiles of 32x16 or 32x32 pixels. Sorting

vertex data by screen locality will boost performance.

. Do not sort for depth: The PowerVR performs Hidden Surface Removal faster

than other GPU architectures.

. Textures may only be power of 2 sizes up to 1024x1024.

. Using PVRTC compressed textures (rather than JPEG) boosts speed

significantly.

Types of Layers 565

. All textures and vertex data must fit within a 24Mb buffer.

. Load textures before rendering. Changing textures during rendering stalls the

hardware. Avoid rendering a texture, changing it, and using it again within a

single frame.

. Use texture atlases to reduce changing textures.

. Use GL_LINEAR_MIPMAP_NEAREST as mipmapping mode.

. CAEAGLLayers do not work well with other layers. Your OpenGL code and

Cocoa Touch’s layer code will both assume they have complete ownership of

the GPU. Both may try to use the entire 24Mb texture and vertex data buffer.

To avoid this, set your CAEAGLLayer to use the entire screen, and do not use

other types of layers simultaneously. For instance, do not place UIKit user-

interface elements on the same screen as a CAEAGLLayer. Similarly, make sure

the CAEAGLLayer has opaque set to YES and do not set the layer’s transform

properties.

Although Apple does not specify the performance of each device, game program-

mers have determined that devices run at different speeds. Here is a list of the cur-

rently known models, ranked from slowest to fastest:

. 1st Generation iPod Touch

. Original iPhone

. iPhone 3G

. 2nd Generation iPod Touch

. iPhone 3GS

As a rule of thumb, the first four can render 1 million triangles per second (100 mil-

lion pixels per second), whereas the new iPhone 3G PowerVR increases this two- to

fourfold. Games such as Tap Tap Tap Revenge stop rendering optional visual effects

when the frame rate drops too far.

566 APPENDIX D: Advanced Topics

View Controller Hierarchy Used in the Twitter
Application

FIGURE D.5
View Controller Hierarchy used in the Twitter Application

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

