

Programming Unleashed

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32971-5

ISBN-10: 0-672-32971-9

Library of Congress Cataloging-in-Publication Data

Young, Stacy Tyler.
Adobe AIR programming unleashed/Stacy Tyler Young, Michael Givens, Dimitrios

Gianninas.
p. cm.

ISBN 978-0-672-32971-5
1. Cross-platform software development. 2. Internet programming. 3. Web site

development. I. Givens, Michael. II. Gianninas, Dimitrios. III. Title.
QA76.76.D47Y675 2008
006.7'6—dc22

2008041640

Printed in the United States of America

First Printing November 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Adobe, the Adobe AIR logo, Adobe AIR, Flash, and Flex are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States and/or other coun-
tries.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Associate Publisher
Greg Wiegand

Acquisitions Editor
Laura Norman

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Karen Annett

Indexer
Lisa Stumpf

Proofreader
San Dee Phillips

Tech Editor
Michael Givens

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Senior Compositor
Jake McFarland

Introduction

Thanks for grabbing a copy of Adobe® AIR™ Programming
Unleashed!

Adobe® AIR™ technology is dramatically changing the
landscape of web development. Even prior to its 1.0 release,
the excitement around this product even in beta was
astounding. With each new build, more and more features
were being baked into the Adobe AIR platform—pushing the
reach of Web technologies further into the desktop world.

If you are a developer who has been locked inside the
browser world along with the rest of us, this technology
will breathe new life into both you and your projects.

The goals of this book are remarkably simple:

. Make broad strokes through the fundamentals of the
Adobe AIR platform to help you get up and running
as quickly as possible

. Explain concepts in plain English in an easy-to-read
format

. Offer approachable standalone code samples you can
download, compile, and execute to see features in
action

Personally, I’ve always had trouble understanding concepts
presented in software books on the first pass. Although the
authors might be the supreme authorities on a subject, it’s
conceivable that they sometimes forget what’s easy for
them is not easy for someone just getting started.

I’ve done my best to keep the writing on the straight and
narrow with regard to simplicity. I sincerely hope it serves
you well.

2 Introduction

Who Should Read This Book?
This book is for any web developers looking to leverage what they already know and apply
those skills in desktop software.

The Adobe AIR platform supports applications developed with HTML, AJAX, Adobe® Flex™,
Adobe® Flash®, PDF, or virtually any combination thereof. I should note, however, that this
title leans more toward Adobe AIR application development with Adobe Flex serving as the
primary citizen.

If you’re also new to Adobe Flex, don’t worry. The examples presented within the chapters
are approachable for newcomers.

Software Requirements
Adobe Flex Builder 3 has everything you need to build applications for the Adobe AIR
platform. It is a commercial product available in standard and professional versions.
However, if you are an educator or student, you can obtain your copy free by visiting this
Adobe website:

www.flexregistration.com

Standalone software development kits (SDK) are available for both Adobe Flex and Adobe
AIR. Both are entirely free. Combined with your favorite IDE, you can build Adobe AIR
applications at no cost beyond your own time. In addition, the Flex SDK is now open
source! Nightly builds are available to the public. For information on downloads or
submitting a patch or to simply peruse the bug database, visit

http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK

Adobe AIR

Adobe AIR is comprised of an SDK and a runtime component installed on the user’s
machine. It’s similar to Adobe Flash, but, rather than operate within the browser context,
the Adobe AIR platform offers a suite of native desktop functionality to applications.
Another significant difference is that Adobe AIR applications are installed like native appli-
cations and offer direct access from the user’s desktop.

Windows Requirements

. Intel Pentium 1GHz or faster processor

. Microsoft Windows 2000 with Service Pack 4; Windows XP with Service Pack 2; or
Windows Vista Home Premium, Business, Ultimate, or Enterprise

. 512MB of RAM

www.flexregistration.com
http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK

3Software Requirements

Mac OS X Requirements

. PowerPC G4 1GHz or faster processor or Intel Core Duo 1.83GHz or faster processor

. Mac OS X v10.4.910 or 10.5.1 (PowerPC); Mac OS X v10.4.9 or later, 10.5.1 (Intel)

. 512MB of RAM

For Adobe AIR applications leveraging the full-screen video playback features of the inte-
grated Adobe Flash player, the following configurations are recommended:

Windows

. Intel Pentium 2GHz or faster processor

. Windows 2000 with Service Pack 4; Windows XP with Service Pack 2; or Windows
Vista Home Premium, Business, Ultimate, or Enterprise

. 512MB of RAM; 32MB of VRAM

Mac OS X

. PowerPC G4 1.8GHz or faster processor or Intel Core Duo 1.33GHz or faster processor

. Mac OS X v.10.4.9 or later or 10.5.1 (Intel or PowerPC; Intel processor required for
H.264 video)

. 512MB of RAM; 32MB of VRAM

Adobe Flex

Adobe Flex Builder 3 is an Integrated Development Environment (IDE) based on Eclipse in
which you can code, build, test, and optimize Adobe Flex applications. It also comes with
built-in Adobe AIR support, including debug support that allows developers to quickly
launch and test applications without having to package and deploy. Adobe Flex Builder
offers a single environment no matter what the nature of your project.

Adobe Flex Builder 3 can be downloaded via the Adobe website:

www.adobe.com/products/flex/features/flex_builder/

For information on upgrades and an Adobe Flex feature comparison chart, visit

www.adobe.com/products/flex/upgrade/

Development of Adobe Flex Builder 3 for Linux is underway at the time of this writing.
For more information, visit

http://labs.adobe.com/technologies/flex/flexbuilder_linux/

Adobe Flex Builder 3 for Windows (Standard and Professional) Requirements

. Intel Pentium 4 processor

. Microsoft Windows XP with Service Pack 2 or Windows Vista Home Premium

www.adobe.com/products/flex/features/flex_builder/
www.adobe.com/products/flex/upgrade/
http://labs.adobe.com/technologies/flex/flexbuilder_linux/

4 Introduction

. 1GB of RAM (2GB recommended)

. 500MB of available hard-disk space (additional 500MB required for plug-in configu-
ration)

. Java Virtual Machine: Sun JRE 1.4.2, Sun JRE 1.5 (included), IBM JRE 1.5, or
Sun JRE 1.6

. Eclipse 3.2.2–3.4 for plug-in configuration (Eclipse 3.3–3.4 recommended for Windows
Vista)

. Adobe Flash Player 10 software (see following note)

. BEA Workshop 10.1

. IBM Rational Software Architect 7.0.0.3 (Eclipse 3.3 plug-in configuration only)

Adobe Flex Builder 3 for Mac OS (Standard and Professional)

. PowerPC G4 1.25GHz or Intel processor

. Mac OS X v10.4.7–10.4.10 or 10.5

. 1GB of RAM (2GB of RAM recommended)

. 500MB of available hard-disk space

. Java Virtual Machine: JRE 1.5 or JRE 1.6 from Apple

. Eclipse 3.2.2–3.4 (for plug-in configuration)

. Adobe Flash Player 10 software

NOTE

When installing Adobe Flex Builder 3, the latest version of the Adobe Flash Player 10 is
also installed. You can verify the version of the player by visiting Adobe’s website:
http://kb.adobe.com/selfservice/viewContent.do?externalId=tn_15507.

Adobe Flex 3 SDK

Although Adobe Flex Builder 3 offers a seamless environment for Adobe Flex and Adobe
AIR development, they are not mandatory. The Adobe Flex SDK on its own contains
everything needed to build Adobe Flex applications from a command line.

http://kb.adobe.com/selfservice/viewContent.do?externalId=tn_15507

5Code Samples for This Book

In other cases, even if you’re developing applications in Adobe Flex Builder 3, you still
need to download the SDK if you’re planning on using a build process (for example,
Apache ANT). The requirements for Adobe Flex 3 SDK are as follows:

. Windows 2000, Windows XP, or Windows Server 2003, Java 1.4 (Sun, IBM, or BEA)
or 1.5 (Sun)

. Mac OS X v10.4.x, Java 1.5 (as shipped from Apple) on PowerPC or Intel processor

. Red Hat Enterprise Linux 3 or 4, SUSE 10, Java 1.4 (Sun, IBM, or BEA) or 1.5 (Sun)

. Solaris 9, 10, Java 1.4 or 1.5 (Sun) Compilers only

. 512MB of RAM (1GB recommended)

. 200MB of available hard-disk space

Code Samples for This Book
Every concept introduced in this book is backed up with a complete code sample. Each of
these is available as a standalone Adobe AIR project that can be built and run inside of
Adobe Flex Builder.

For your added convenience, all project files have been made available on Google Code.
Simply install the Subversion Eclipse plug-in directly into Adobe Flex Builder, point to the
code repository, and sync! See Appendix C, “Downloading Source Code for Adobe AIR
Programming Unleashed,” for instructions on checking out the code files.

Optionally, all code will also be available as a Zip archive at the following location:
www.informit.com/title/9780672329715.

www.informit.com/title/9780672329715

CHAPTER 5

Working with Windows

IN THIS CHAPTER

. Windows in Adobe AIR

. Creating Windows Using
NativeWindow

. Creating Windows Using
mx.core.Window

. Getting a Window Reference

. Window Operations

. Understanding Window Events

. Creating Custom Window
Chrome

Creating windows in Adobe® AIR™ applications is a signifi-
cant departure from traditional webcentric Adobe® Flex™

development. For starters, Adobe AIR applications run on the
user’s desktop. So the “windows” we’re referring to originate
from the underlying native operating system, as with any
other desktop software. Web developers no longer need to rely
on Adobe Flex TitleWindow, JavaScript pop-ups, or browser
windows propped up as a poor substitute for the real thing.

Implementing any kind of windowlike container in Adobe
Flex today serves as a reminder of the limitations imposed
on the user experience by the browser environment. At first
glance, a TitleWindow resembles the idiom of a “windowed
interface,” but users soon discover their artificial nature.
They cannot be minimized to the taskbar or dragged to a
secondary screen as with native windows.

For Adobe Flex Beginners

A TitleWindow is a layout container in the Adobe Flex
framework (mx.containers.TitleWindow). It’s most
often used as a pop-up container. Although it can be
moved independent of the underlying Adobe Flex appli-
cation, its movement is limited to the confines of the
browser window.

Another option in achieving a multiwindow interface is to
launch additional browser windows. There is no arguing the
fact that this approach does deliver native windows, but this
approach brings about a new set of challenges.

First, browser pop-up windows offer limited control over
their appearance and behavior. Second, and more important,

68 CHAPTER 5 Working with Windows

there is a high cost in complexity when loading and communicating with content hosted
in this context. In the case of Adobe Flex applications, we’re talking about a Shockwave
Flash (SWF) file compiled from MXML, hosted in a single browser window. Any additional
Flash or Hypertext Markup Language (HTML) content loaded in a browser pop-up does
not exist as part of your Adobe Flex application. Any communication between the two
needs to be brokered by other means—either by maintaining a LocalConnection or by
writing a whack of JavaScript code!

Windows in Adobe AIR
Coding my first Window examples in Adobe AIR gave me a warm and fuzzy feeling. Sure,
they look and behave like native windows, but the real benefit resides in the application
framework itself. All windows of an Adobe AIR application exist in the same context.

For example, picture a main application window designed as a drawing canvas with a second,
smaller window off to the side as a floating tool palette. For the drawing canvas to “hear”
and react to button click events in the tool palette, such as the user selecting a new drawing
tool, an event listener can be added on the tool palette directly from the main canvas.

This is made possible in Adobe AIR by having all windows tied to our application available
as an Array in an application scope.

var arrayOfOpenWindows:Array = NativeApplication.openedWindows;

In this chapter, we look at different methods of window creation and where they’re applic-
able in an Adobe AIR application. In addition, we look at moving beyond the default
system chrome and investigate what’s involved in creating custom window chrome.

Let’s start with three window classes available to us in Adobe AIR:

. flash.display.NativeWindow—The lowest common denominator in terms of
windows in Adobe AIR. Content such as SWFs, images, and HTML can be added to them,
whereas other window types wrap this base functionality and offer extended behavior.

. mx.core.WindowedApplication—An application container used to house Adobe
Flex applications and deliver desktop functionality. This type can only serve as the
root window of an application and is configured via the application.xml file.

. mx.core.Window—Also a container for housing Adobe Flex content but can be
instantiated any number of times. Adobe Flex developers will rely on this type most
of the time.

Creating Windows Using NativeWindow
NativeWindow can be used to host an array of content such as HTML, Adobe® Flash® SWF
files, or images. It is not, however, intended for use with Adobe Flex components directly.
Instead, please refer to “Creating Windows Using mx.core.Window” later in this chapter.

A special type of NativeWindow, HTMLLoader.createRootContent(), exists specifically for
hosting HTML content. It includes the necessary machinery for loading HTML as well as
support for scrolling content.

69Creating Windows Using NativeWindow

5

For now let’s start with the basics. Here’s how to go about creating and configuring a
NativeWindow:

. Create and configure NativeWindowInitOptions.

. Create an instance of NativeWindow, passing in NativeWindowInitOptions.

. Open the Window onscreen.

Listing 5.1 outlines these steps in ActionScript code. If you have downloaded the source
code for this book, then you will find the correlating project in your FlexBuilder called
''Chapter05-01''.

LISTING 5.1 Creating a NativeWindow

<?xml version=”1.0” encoding=”utf-8”?>

<mx:WindowedApplication

xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”

verticalAlign=”middle” horizontalAlign=”center”>

<mx:Script>

<![CDATA[

private function openWindow():void

{

var windowOptions:NativeWindowInitOptions = new

➥NativeWindowInitOptions();

windowOptions.systemChrome = NativeWindowSystemChrome.STANDARD;

windowOptions.type = NativeWindowType.NORMAL;

var newWindow:NativeWindow = new NativeWindow(windowOptions);

newWindow.activate();

}

]]>

</mx:Script>

<mx:Button label=”Create Window” click=”openWindow()” />

</mx:WindowedApplication>

Setting NativeWindowInitOptions

NativeWindow initialization options, NativeWindowInitOptions, describe the look and
behavior of your window. Once set, these parameters are passed into the constructor when
instantiating the NativeWindow instance. These options are not mandatory because they
all have default values. For instance, not passing in NativeWindowInitOptions gives you a

70 CHAPTER 5 Working with Windows

TABLE 5.1 Properties of NativeWindowInitOptions

Property Description

systemChrome Specifies the type of system chrome used by the window

type Specifies the type of the window to be created

maximizable Specifies whether the window can be maximized

minimizable Specifies whether the window can be minimized

resizable Specifies whether the window can be resized

transparent Specifies whether the window supports transparency and alpha blending
against the desktop

Windows XPMac OS X

FIGURE 5.1 Standard system chrome on Mac OS X and Windows XP.

standard-looking window for your operating system with standard window controls. As we
progress through this chapter, we explore how we can change this default behavior—but
keep in mind that after the window is created, these options cannot be changed! Table 5.1
outlines the configurable options.

Let’s explore what each of these NativeWindowInitOptions are and how they affect the
characteristics of a new native window. First up is the systemChrome. The chrome is what
frames the content of a native window.

NativeWindowInitOptions.systemChrome

The frame that encompasses a window is referred to as the chrome. The chrome typically
offers controls to manipulate the window, such as minimize, drag, resize, and close.

There are three options for systemChrome, as shown in the following sections.

NativeWindowSystemChrome.STANDARD This option creates a standard-looking native
window as per the operating system the Adobe AIR application is running on (see
Figure 5.1). Also, the transparent property of the window must be set to false (which is
the default value). The following snippet demonstrates how to set the systemChrome to
standard, which is also the default value if none is specified.

var windowOptions:NativeWindowInitOptions = new NativeWindowInitOptions();

windowOptions.systemChrome = NativeWindowSystemChrome.STANDARD;

71Creating Windows Using NativeWindow

5

NOTE

The standard chrome is managed by the operating system, and your application has no
direct access to the controls themselves. You can, however, react to the events that
are dispatched as a result of the user interacting with these controls. (See
“Understanding Window Events” later in this chapter.)

NativeWindowSystemChrome.NONE This option specifies that the window should not
display any system chrome whatsoever. Creating a NativeWindow with no chrome gener-
ates a rectangle onscreen with no controls. This is the starting point for implementing
custom chrome discussed later in this chapter. The following demonstrates how to specify
no system chrome:

var windowOptions:NativeWindowInitOptions = new NativeWindowInitOptions();

windowOptions.systemChrome = NativeWindowSystemChrome.NONE;

NativeWindowInitOptions.type

Each window offers unique traits suited for different roles in an application. There are
three NativeWindowTypes to choose from:

. NORMAL

. UTILITY

. LIGHTWEIGHT

NativeWindowType.NORMAL This is the default window type. If nothing is specified for
this parameter in your NativeWindowInitOptions, Figure 5.2 shows what is displayed.

NORMAL windows have typical controls such as minimize, maximize, and close. Their physi-
cal characteristics match that of any standard window on each respective operating system.

Windows XPMac OS X

FIGURE 5.2 Default window type on Mac OS X and Windows XP.

72 CHAPTER 5 Working with Windows

Windows XPMac OS X

FIGURE 5.3 UTILITY windows have a slimmer title bar, and they don’t show up in the
Windows taskbar or the Mac OS X Dock (note the lack of a Minimize icon).

Mac OSX Windows XP

FIGURE 5.4 An Adobe AIR application implemented with custom window chrome.

NativeWindowType.UTILITY In Figure 5.3, you see the same system chrome but differ-
ences in both physical and behavioral aspects of NativeWindow.

Often used as containers for supporting content or tool palettes, these windows do not
serve as the primary focus of an application. Their content may change as events happen
in the main application window, such as displaying properties of an object that has
received focus.

NOTE

There are applications that utilize this window type as its primary user interface. These
are typically smaller, more specialized applications such as instant messaging or media
players. There isn’t a need to crowd the user’s Dock or taskbar with an application run-
ning in the background most of the time.

NativeWindowType.LIGHTWEIGHT LIGHTWEIGHT NativeWindows have no chrome what-
soever. In fact, you’ll get a runtime error unless you specifically set the systemChrome prop-
erty to NONE. Creating a window in this fashion gives you a white box that can’t be moved
or even closed directly. Figure 5.4 demonstrates a native window with no chrome and uses
a bitmap image as the window’s background.

Windows XPMac OS X

73Creating Windows Using NativeWindow

5

Uses for LIGHTWEIGHT NativeWindows range from custom system chrome implementations
to toast messages (dialogs that temporarily slide up onscreen like toast out of a toaster) to
drawer dialogs common on Mac OS X.

NativeWindowInitOptions.transparent

This property refers to the transparency of the window background window. A transparent
window has no default background. Any area not occupied by a display object is invisible;
for example, whatever lies beneath your application window shows through.

You can also change the alpha property of your display objects to allow underlying desktop
content to show through.

CAUTION

Display objects with an alpha setting of less than .06 (approximately) prevent the win-
dow from capturing mouse events in that area. It will appear as though you have
clicked the object behind the window.

NOTE

You cannot create transparent windows in combination with any system chrome.

NativeWindowInitOptions.maximizable

When this property is set to false, the window cannot be maximized. For a window with
system chrome, this affects the appearance of the window Maximize button, such as
making it appear disabled.

NOTE

On Mac OS X, you’ll have to set both the maximizable and resizable options to
false to prevent the window from being zoomed or resized.

NativeWindowInitOptions.minimizable

When this property is set to false, the window cannot be minimized. As with a window
with system chrome, this affects the appearance of the window Minimize button.

NativeWindowInitOptions.resizable

When this property is set to false, the window cannot be resized.

NOTE

As with the NativeWindowInitOptions.maximizable property, on Mac OS X, you’ll
have to set both the maximizable and resizable options to false to prevent the win-
dow from being zoomed or resized.

74 CHAPTER 5 Working with Windows

Creating an Instance of the Window

Now we need to create a new NativeWindow instance. Remember that the properties
defined in NativeWindowInitOptions cannot be changed after we instantiate the window.
The default window size is determined by the operating system, but you can change it by
setting the window bounds. (We’ll look at this later in the chapter.)

var newWindow:NativeWindow = new NativeWindow(windowOptions);

The variable windowOptions refers to the NativeWindowInitOptions we constructed in the
previous section.

Putting the Window Onscreen

If we were to stop at the previous step, the user would not see anything appear onscreen.
After instantiating our NativeWindow, we need to specifically put it on the screen. There
are two ways this can be accomplished:

NativeWindow.activate()

or

NativeWindow.visible = true

Using NativeWindow.activate()

Invoking the activate() method on the NativeWindow instance does the following:

. Makes the window visible

. Brings the window to the front

. Gives the window keyboard and mouse focus

The following snippet instantiates a new NativeWindow, passing in window options,
followed by the activate() method.

var newWindow:NativeWindow = new NativeWindow(windowOptions);

newWindow.activate();

Using NativeWindow.visible

This property specifies whether the window is visible on the desktop. It affects only
visibility and does not give the window focus or bring it to the front.

For example, you might want to open a supporting UTILITY type window for an applica-
tion where focus must remain on the primary window. Rather than activating your
window, simply set its visible property to true, and it appears onscreen without the
primary window flashing in and out of focus.

By default, visible is set to false. To make the window visible, do the following:

var newWindow:NativeWindow = new NativeWindow(windowOptions);

newWindow.visible = true

75Creating Windows Using mx.core.Window

5

NOTE

An invisible window isn’t displayed on the desktop, but all the properties and methods
are still available.

On Mac OS X, turning off visibility on a minimized window does not remove it from the
Dock. The user is still able to click that Dock icon, which causes the window to be visi-
ble, restore, and have focus.

Creating Windows Using mx.core.Window
The Adobe Flex mx.core.Window class essentially wraps NativeWindow and facilitates the
addition of Adobe Flex content. As an Adobe Flex developer, you will find yourself using
this class to create windows in most cases.

The steps to creating a Window differ slightly from NativeWindow:

. Create an instance of Window.

. Set Window properties (optional—there are defaults).

. Open the Window on the Screen.

NOTE

Rather than include full class path on each mention of mx.core.Window, we use
“Window” instead—capitalizing the “W.”

If we’re just referring to the generic term “window,” it is not capitalized.

Let’s take a look at a simplistic example of instantiating a Window instance and opening it
onscreen. (See Listing 5.2)

LISTING 5.2 Simple Example of Using mx.core.Window

<?xml version=”1.0” encoding=”utf-8”?>

<mx:WindowedApplication

xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”

verticalAlign=”middle” horizontalAlign=”center”>

<mx:Script>

<![CDATA[

import mx.core.Window;

76 CHAPTER 5 Working with Windows

private function openWindow():void

{

var myWindow:Window = new Window();

myWindow.systemChrome = NativeWindowSystemChrome.STANDARD;

myWindow.type = NativeWindowType.NORMAL;

myWindow.open(true);

}

]]>

</mx:Script>

<mx:Button label=”Create Window” click=”openWindow()” />

</mx:WindowedApplication>

Creating an Instance of Window

Using the Adobe Flex Window class, we create an instance:

var myWindow:Window = new Window();

Notice there is no NativeWindowInitOptions object passed into the constructor of Window.
You can now set those same properties directly on the Window instance itself, as you will
see demonstrated in the following section.

NOTE

Although a number of window properties can now be set after the Window instance has
been created, certain properties still follow the rule of having to be applied before a
window is opened onscreen, for example, systemChrome, type, and so on. After they’re
set, they cannot be changed.

Setting Window Properties

Using mx.core.Window differs from NativeWindow in that we can set all parameters after it
has been instantiated. The one exception is the nativeWindow property of Window; this is
not accessible until we open it onscreen.

To create a window using mx.core.Window, do the following:

var myWindow:Window = new Window();

myWindow.systemChrome = NativeWindowSystemChrome.STANDARD;

myWindow.type = NativeWindowType.NORMAL;

NOTE

You can still use the same static variables from the NativeWindow classes because
they are essentially just resolving to strings.

77Creating Windows Using mx.core.Window

5

As with NativeWindow, you have the same options to choose from with regard to both
the chrome of the window instance and the window type. There are some differences in
the results of these options which we’ll take a closer look at now.

Chrome Options for mx.core.Window
Creating a Window with standard window chrome yields the same result as with
NativeWindow. After all, mx.core.Window is essentially a NativeWindow primed to host
Adobe Flex content. The only visual difference visually is the gray background, which
represents the Adobe Flex content area (see Figure 5.5).

Windows XPMac OS X

FIGURE 5.5 mx.core.Window of type NORMAL with standard system chrome.

Windows XPMac OS X

FIGURE 5.6 mx.core.Window of type UTILITY with standard system chrome.

Windows XPMac OS X

FIGURE 5.7 mx.core.Window of type NORMAL with NONE system chrome. By default Adobe Flex
displays its own chrome.

Windows XPMac OS X

FIGURE 5.8 mx.core.Window of type UTILITY with NONE system chrome.

78 CHAPTER 5 Working with Windows

Windows XPMac OS X

FIGURE 5.9 mx.core.Window of type LIGHTWEIGHT with NONE system chrome.

NOTE

Although the options for window types are the same as NativeWindow, a difference lies
in how you deal with windows with systemChrome set to NONE. When systemChrome is
set to NONE, Adobe Flex displays its own system chrome. You can disable this by setting
the showFlexChrome property to false on your Window instance.

At times, you will still need to access the underlying NativeWindow properties. For
example, moving a window from one location onscreen to another requires setting the x
and y coordinates of NativeWindow (see Listing 5.3). You won’t find those properties on
the parent mx.core.Window class.

LISTING 5.3 Referencing nativeWindow Properties When Using mx.core.Window

var myWindow:Window = new Window();

myWindow.systemChrome = NativeWindowSystemChrome.STANDARD;

myWindow.type = NativeWindowType.NORMAL;

myWindow.open(true);

myWindow.nativeWindow.x = 100;

myWindow.nativeWindow.y = 100;

Opening a Window Onscreen

Finally, to open a Window onscreen, use the open() method. Although the Window defaults
to “active,” you have the option to change this via a Boolean passed in with the method
call as follows:

newWindow.open(true);

Passing false into the open method will cause the Window to open but not make it active.
In other words, give the window focus.

Getting a Window Reference
Before you can work with a particular window, you first need to get a reference of that
Window instance. The following sections describe the various ways to obtain a Window refer-
ence.

79Window Operations

5

Window Constructor

You can use the window constructor for a new NativeWindow to get a reference, like this:

var myWindow:NativeWindow = new NativeWindow();

Current Window Stage

You can get a reference directly from the current window stage, as follows:

stage.nativeWindow

Display Object on the Stage

Any display object on the stage can also give you a reference, as follows:

aDisplayObject.stage.nativeWindow

As an example, suppose you have an mx.containers.Panel in some window. To get the
reference to the parent NativeWindow instance, you can do this:

myPanel.stage.nativeWindow

Referencing the Active Window

A desktop window that currently holds user focus is referred to as the “active” window.
You can reference this window via NativeApplication, as follows:

var myWindow:NativeWindow = NativeApplication.nativeApplication.activeWindow;

NOTE

If the active window on the desktop is not associated with your application,
activeWindow returns a null value.

Referencing All Opened Windows

All open windows can be referenced via the nativeApplication object. These can be
cycled through like any Array. Each element will be a NativeWindow instance.

var myWindows:Array = NativeApplication.nativeApplication.openedWindows;

Window Operations
In this section we look into controlling a Window’s dimensions, positioning and behaviors.

80 CHAPTER 5 Working with Windows

Resizing a Window

You can invoke a resize action on a window by calling the following method:

NativeWindow.startResize();

NOTE

The resize functionality only exists in NativeWindow. In your Window instance of type
mx.core.Window or mx.core.WindowedApplication, you need to call the
startResize() method on the nativeWindow property of your window. (Window and
WindowedApplication are essentially just an Adobe Flex wrapper on NativeWindow.)

The next code example (as shown in Listing 5.4) demonstrates an mx.core.Window being
created with a button that initiates the resize of that same window from the lower-right
corner. (Click and hold the Start Resize button and drag your mouse to resize the window.)

LISTING 5.4 Initiating Window Resize

<?xml version=”1.0” encoding=”utf-8”?>

<mx:WindowedApplication

xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”

verticalAlign=”middle”

horizontalAlign=”center”>

<mx:Script>

<![CDATA[

import mx.controls.Button;

import mx.core.Window;

private var myWindow:Window;

private function openWindow():void

{ var dragButton:Button = new Button();

dragButton.label = “Click, hold and drag mouse”;

dragButton.addEventListener(MouseEvent.MOUSE_DOWN, resizeWindow);

myWindow = new Window(); myWindow.width = 300;

myWindow.systemChrome = NativeWindowSystemChrome.STANDARD;

myWindow.type = NativeWindowType.NORMAL;

myWindow.setStyle(“horizontalAlign”, “center”);

myWindow.setStyle(“verticalAlign”, “middle”);

myWindow.addChild(dragButton);

myWindow.open(true);

}

81Window Operations

5

private function resizeWindow(event:MouseEvent):void

{

myWindow.nativeWindow.startResize(NativeWindowResize.BOTTOM_RIGHT);

}

]]>

</mx:Script>

<mx:Button label=”Create Window” click=”openWindow()” />

</mx:WindowedApplication>

Listing 5.4 is an oversimplified example for sake of clarity. A more realistic use case would
involve having graphic elements within a custom window chrome initiate this resize
behavior. (See “Creating Custom Window Chrome” later in this chapter.)

Moving a Window

To move a window, call the startMove()method on the NativeWindow instance. If you’re
using mx.core.Window, reference the underlying NativeWindow via the nativeWindow prop-
erty:

var myWindow:Window = new Window();

myWindow.open();

myWindow.nativeWindow.startMove();

Maximizing, Minimizing, and Restoring a Window

Maximizing causes a window to expand to the bounds of the current screen. To maximize
a window, use

NativeWindow.maximize();

To minimize a window, use

NativeWindow.minimize();

To restore a window, use

NativeWindow.restore();

Restoring a window simply means that the window will return to the size that it was
before it was either minimized or maximized.

Closing a Window

To close a window, use

NativeWindow.close()

Closing a window empties the contents of the window, but if any other objects have refer-
ences to that content, the content objects are not destroyed. You can check the closed

82 CHAPTER 5 Working with Windows

property of a window to test whether a window has been closed. If the window being
closed is the last one, and the NativeApplication.autoExit property is set to true (the
default setting), the application quits.

Understanding Window Events
An event-based programming model is used to interact with NativeWindows, so let’s take a
look at what happens when an event takes place before we get into any specific opera-
tions.

For some NativeWindow operations, there are two associated events. The first dispatched
event notifies you that something is about to happen, allowing you the opportunity to
interject with a callback function. The second event tells you that something has already
happened.

You’ll have to register a listener with that particular window instance to handle these
events. The listener catches any of the events and allows you to execute logic using a call-
back function. In other words, “when object xyz dispatches a certain event, execute this
particular function I’ve defined.”

Suppose a user clicks the Close button of a window. An event is dispatched to notify
listeners that a window is about to close, giving our application a chance to react. We
might want to prompt the users to save their work if they haven’t done so already. If the
users choose to save, we’d first invoke the necessary functionality to save, and after that’s
done, trigger the window to close. If our users don’t want to save their work, our callback
function logic simply does nothing, and the window closes. Now, a second event is
dispatched signaling that the window has finished closing.

Listing 5.5 shows an example in which we add event listeners for both Event.CLOSING and
Event.CLOSE on an instance of mx.core.Window.

LISTING 5.5 Exploring Window CLOSE and CLOSING Events

<?xml version=”1.0” encoding=”utf-8”?>

<mx:WindowedApplication

xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”

verticalAlign=”middle”

horizontalAlign=”center”>

<mx:Script>

<![CDATA[

import mx.core.Window;

private function openWindow():void

{

var myWindow:Window = new Window();

83Understanding Window Events

5

myWindow.systemChrome = NativeWindowSystemChrome.STANDARD;

myWindow.type = NativeWindowType.NORMAL;

myWindow.open(true);

myWindow.nativeWindow.addEventListener(Event.CLOSE, onWindowClose);

myWindow.nativeWindow.addEventListener(Event.CLOSING, onWindowClosing);

}

private function onWindowClosing(event:Event):void

{

trace(“Window is about to close”);

}

private function onWindowClose(event:Event):void

{

trace(“Window has closed”);

}

]]>

</mx:Script>

<mx:Button label=”Create Window” click=”openWindow()” />

</mx:WindowedApplication>

NOTE

Event.CLOSE will not fire from mx.core.Window. You must listen to its parent
NativeWindow to be notified of the event. This is because the Adobe Flex context is
destroyed after the CLOSING event fires and is unavailable to dispatch the final CLOSE
event.

Canceling a Window Event

Often you’ll need to intercept an event and invoke conditional logic to determine whether
you want that event to continue, such as in the example cited earlier in Listing 5.5.
In that example we’re simply tracing a message to the output console, but in the real
world, you may want to prompt users that their work isn’t currently saved and ask if they
want to do so.

Listing 5.6 outlines how to interrupt the closing sequence by catching the CLOSING event
and calling preventDefault() on the event object. This stops the event in its tracks. In
this example we’re only doing this if isWorkSaved is false, indicating the user has
attempted to close the application without saving his or her work.

Our Alert dialog makes a callback to onAlertClose, upon which time we act on the users’
decision to save their work. When that has been done, we can simply call the close()
method on our Window. We’re also calling exit() because this is our main application

84 CHAPTER 5 Working with Windows

Window we’re closing. If we didn’t call exit(), the Window would close but the application
process would still be running, so it’s important to keep that in mind!

Here’s how we could add to our example in code Listing 5.5:

LISTING 5.6 Cancelling a Window CLOSING event

<?xml version=”1.0” encoding=”utf-8”?>

<mx:WindowedApplication

xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”

verticalAlign=”middle”

horizontalAlign=”center”

initialize=”init()”>

<mx:Script>

<![CDATA[

import mx.events.CloseEvent;

import mx.controls.Alert;

private var isWorkSaved:Boolean = false;

private function init():void

{

nativeWindow.addEventListener(Event.CLOSING, onWindowClosing);

}

private function onWindowClosing(event:Event):void

{

if(!isWorkSaved)

{

event.preventDefault();

Alert.show(“Would you like to save your work?”, “Warning!”,

➥Alert.YES | Alert.NO, this, onAlertClose);

}

}

private function onAlertClose(event:CloseEvent):void

{

if(event.detail == 1)

{

// Save users work here

isWorkSaved = true;

trace(“Work has been saved”);

}

nativeWindow.close();

85Creating Custom Window Chrome

5

exit();

}

]]>

</mx:Script>

</mx:WindowedApplication>

NOTE

If you are using a custom window chrome, then it will be up to you to programmatically
dispatch the CLOSING and CLOSE events.

Creating Custom Window Chrome
Adobe AIR projects generated from the New Flex Project Wizard in Adobe Flex Builder
output a default MXML file with a root tag called WindowedApplication. As outlined
earlier in this chapter, this gives your application a standard native window as expected.

What if a project calls for a truly customized window chrome, such as a fully branded look
and feel that includes custom icons for window controls and a nonrectangular shape?

No sweat—this can be accomplished by the following steps:

1. Set the window chrome to none and the transparency to true in the application’s
descriptor file (see Listing 5.6).

2. On WindowedApplication set the showFlexChrome to false.

3. Create a Canvas with an embedded background image (optional).

In Listing 5.6 we’ve changed the chrome and transparency properties in the application
descriptor, which prevents Adobe AIR from opening a visible default Window when the
application is launched. This, in combination with setting the showFlexChrome to false in
our application code (see Listing 5.7) delivers the desired effect.

LISTING 5.7 Modifying Window Properties in the Application Descriptor File

<!— Settings for the application’s initial window. Required. —>

<initialWindow>

<!— The main SWF or HTML file of the application. Required. —>

<!— Note: In Flex Builder, the SWF reference is set automatically. —>

<content>[This value will be overwritten by Flex Builder in the output

➥app.xml]</content>

<!— The title of the main window. Optional. —>

<!— <title>Custom Chrome</title> —>

<!— The type of system chrome to use (either “standard” or “none”).

➥Optional. Default standard. —>

86 CHAPTER 5 Working with Windows

<systemChrome>none</systemChrome>

<!— Whether the window is transparent. Only applicable when systemChrome

➥is false. Optional. Default false. —>

<transparent>true</transparent>

<!— Whether the window is initially visible. Optional. Default false. —>

<visible>true</visible>

<!— Whether the user can minimize the window. Optional. Default true. —>

<!— <minimizable></minimizable> —>

<!— Whether the user can maximize the window. Optional. Default true. —>

<!— <maximizable></maximizable> —>

<!— Whether the user can resize the window. Optional. Default true. —>

<!— <resizable></resizable> —>

<!— The window’s initial width. Optional. —>

<!— <width></width> —>

<!— The window’s initial height. Optional. —>

<!— <height></height> —>

<!— The window’s initial x position. Optional. —>

<!— <x></x> —>

<!— The window’s initial y position. Optional. —>

<!— <y></y> —>

<!— The window’s minimum size, specified as a width/height pair,

➥such as “400 200”. Optional. —>

<!— <minSize></minSize> —>

<!— The window’s initial maximum size, specified as a width/height pair,

➥such as “1600 1200”. Optional. —>

<!— <maxSize></maxSize> —>

</initialWindow>

Embedding an image as your application’s background is completely optional. At this
point you literally have a blank slate to work with inside your Adobe Flex application. You
can use a circular or square background image or perhaps draw your application back-
ground yourself via the ActionScript drawing APIs, it’s up to you. See Figure 6.10.

FIGURE 5.10 Example of using a bitmap image as the custom chrome for a Window.

87Creating Custom Window Chrome

5

In Listing 5.8 we’ve opted to simply embed a bitmap image and used that as the back-
ground. In addition we’ve included a drop shadow filter on the Canvas that gives a float-
ing perspective to the application.

LISTING 5.8 Creating a Window with Custom Chrome in Adobe Flex

<?xml version=”1.0” encoding=”utf-8”?>

<mx:WindowedApplication

xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”

horizontalScrollPolicy=”off”

verticalScrollPolicy=”off”

showFlexChrome=”false”

creationComplete=”init()”>

<mx:Style source=”styles.css” />

<mx:Script>

<![CDATA[

import mx.controls.Label;

private function init():void

{

myCanvas.addEventListener(MouseEvent.MOUSE_DOWN, moveWindow);

var dropShadow:DropShadowFilter = new DropShadowFilter();

var glow:GlowFilter = new GlowFilter(0x000000,1,5,5,3);

var filters:Array = new Array(dropShadow, glow);

myCanvas.filters = filters;

}

private function moveWindow(event:MouseEvent):void

{

stage.nativeWindow.startMove();

}

private function onMinimize():void

{

stage.nativeWindow.minimize();

}

private function onClose():void

{

stage.nativeWindow.close();

}

88 CHAPTER 5 Working with Windows

]]>

</mx:Script>

<mx:Canvas

id=”myCanvas”

width=”200” height=”200”

backgroundImage=”@Embed(source=’assets/air.png’)”

horizontalScrollPolicy=”off” verticalScrollPolicy=”off”>

<mx:Image source=”@Embed(source=’assets/minimize.png’)”

➥click=”onMinimize()” x=”168” y=”6” alpha=”0.8” />

<mx:Image source=”@Embed(source=’assets/close.png’)” click=”onClose()”

➥x=”180” y=”6” alpha=”0.8” />

<mx:Label text=”Adobe AIR Programming Unleashed” styleName=”scores”

➥x=”10” y=”176” />

</mx:Canvas>

</mx:WindowedApplication>

There is a little added work going this route because you have to create your own mecha-
nisms for standard window controls such as minimize, maximize, and so on. In Listing 5.7
we’ve added listeners on our window control images and explicitly, via the event handlers,
initiatied the desired window behavior.

Summary
We’ve explored how to create windows onscreen using both the
flash.desktop.NativeWindow and mx.core.Window classes. In essence mx.core.Window is
just a wrapper for the NativeWindow class, making it ready to host elements of an Adobe
Flex application.

As for the look and feel of your application windows, the sky is the limit. If the standard
operating system chrome won’t do the trick, then you can build your own customized
chrome from scratch.

A
Action Message Format (AMF), 228, 325

ActionScript, 3

keyEquivalent properties, 174

ActionScript classes, 102

activate() method, windows, 74

active windows, referencing, 79

AC_FL_RunContent() function, 293

AC_FL_RunContent() JavaScript
function, 293

addAsync() method, parameters, 385

addCommand() method, 348

addImage() function, 242

adding

event listeners for InvokeEvent, 38

management destinations to
LCDS, 433

test cases to test suites, FlexUnit,
379-380

AddItemCmd class, 347-348

AddItemView.mxml file, 353-355

ADL (Adobe AIR Debug Launcher), 54-56,
273, 362

Adobe AIR

APIs, 12

architecture of, 12-13

compiling, 363

Index

compiler background
information, 363

writing build targets, 364

creating Hello World application, 29-36

exporting, 365-367

installing, 15-17

overview, 11

running, 365

updating, 309-314

via remote servers, 314-316

Adobe AIR Debug Launcher (ADL), 54-56

Adobe AIR Developer Tool, 367

Adobe AIR HTML Introspector, debugging,
57-60

Adobe AIR menus

currentTarget properties, 175

keyEquivalent properties, 173-175

Adobe AIR messaging applications, creat-
ing with BlazeDS, 229-238

Adobe Flash, 10, 439Ω
Adobe Flash Debugger (FDB), 56

Adobe Flex AIR components, 251

FileSystemComboBox, 251-252

FileSystemDataGrid, 257-258

FileSystemList, 253-255

FileSystemTree, 255-256

Adobe Flex applications, tips for, 279

Adobe Flex Builder, 365

Adobe Flex Builder 3

installing, 17-20

perspectives, 22

Adobe Flex Builder debugger, 52-53

Adobe Flex SDKs, installing, 26-27

Adobe Flex software development kit
(SDK), documentation, 341

Adobe LiveCycle Data Services
(LCDS), 191

ADT (Adobe AIR Developer Tool), 362, 367

parameter descriptions for
exporting, 366

self-signed certificates for testing,
creating, 367-368

Agile software development process, 373

.air, 366

AIR Debug Launcher, 273

.air distributable archive, 372

.air files, 315

AIRBadge() function, 297

AIRChat, example, 231-238

AIRIntrospector.js, 59

airversion parameter (FlashVars), 294

AMF (Action Message Format), 228, 325

Apache Ant, 359

downloading and configuring, 360

reasons for success, 359

running FlexUnit from, 386

compatibility modifications, 386-387

compiling unit tests, 387-388

running unit tests, 388-389

unified reporting with JUnit, 389-390

Apache Flex Ant tasks, downloading and
configuring, 360

APIs of Adobe AIR, 12

application descriptor files, 43-45

application frameworks, 322

application invoke events, 37-39

Application Menu, 161-163

Adobe AIR464

application sandboxes, 264-266

application settings, reading, 43-45

application shutdown process, 41-43

application startup process, 36-37

application invoke events, 37-39

launching from browsers, 40

launching from the command
line, 40

launching on login, 40

application/vnd.adobe.air-install-package
mime type, 284

applicationComplete event, 279

applications

digital signatures, 303-306

Certificate Wizard, 304-306

overview, 299-301

signature.xml file, 302-303

installation

one-off installs, 285-291

overview, 283-285

seamless install feature, 291-299

shopping cart application (Cairngorm)

AddItemCmd class, 347-348

AddItemView.mxml file, 353-355

CancelAddCmd class, 346

CartController class, 348

CartItem class, 337-338

CartModel class, 338-339

CartView.mxml file, 350-353

ecart.mxml file349-350

Java server-side component, 335

LoadProductsCmd class, 344-345

How can we make this index more useful? Email us at indexes@samspublishing.com

LoadProductsEvent class, 343-344

overview, 335

PrepAddCartCmd class, 345-346

Product class, 336-337

ProductDelegate class, 341-342

ServiceLocator class, 340-341

applicationStorageDirectory, 103

appname parameter (FlashVars), 294

appurl parameter (FlashVars), 294

architecture of Adobe AIR, 12-13

architecture frameworks, 323

Cairngorm, 325

design patterns, 323-324

interacting with services, 325

managing states, 324

managing user gestures, 324

reducing tight coupling, 325

transferring data, 325

architectures, Cairngorm, 335

Are You Sure You Want to Install
This Application to Your Computer?
Dialog, 286

asynchronous database connections,
establishing, 193

asynchronous database operations

versus synchronous database, 202,
204-206

versus synchronous database opera-
tions, 202

asynchronous file operations versus syn-
chronous file operations, 107-108

asynchronous mode, executing multiple
statements against a database, 205

asynchronous mode 465

asynchronous testing, FlexUnit, 382-385

automated builds, continuous
integration, 396

automated deployment, continuous inte-
gration, 397

B
badge.fla file, 292

badge.swf file, 292

bindable variables, creating, 339

BITMAP_FORMAT data type, 137-143

BlazeDS

Adobe AIR messaging applications,
creating, 229-238

installing, 228-229

messaging, 227-228

BlazeDS technology, 341

blogs, 454

Bonjour protocol, 422

bouncing Mac OS X Dock icon, 178

branches, version control system (continu-
ous integration), 396

browseForOpen, 105

browser windows, 68

BrowserInvokeEvent, 41

browsers, launching from, 40

BUILD_FOLDER, 362

build targets, writing, 364

build tools, 359, 452

build.xml

creating, 361-362

final project, 368-370

compiling, 370

exporting, 370

running, 370

builds, automated builds (continuous
integration), 396

business delegates, Cairngorm, 333-334

buttoncolor parameter (FlashVars), 294

ByteArray, 206

C
Cairngorm, 325-326

concepts, 327

design patterns

business delegates, 333-334

FrontController, 330-332

ModelLocator, 328-330

ServiceLocator, 332-333

value objects, 327-328

microarchitecture, 326-327

Cairngorm Contact Manager
application, 415

embedded databases, 415-417

offline scenarios, 417-419

Cairngorm microarchitecture, shopping
cart application

AddItemCmd class, 347-348

AddItemView.mxml file, 353-355

asynchronous testing466

CancelAddCmd class, 346

CartController class, 348

CartItem class, 337-338

CartModel class, 338-339

CartView.mxml file, 350-353

ecart.mxml file, 349-350

LoadProductsCmd class, 344-345

LoadProductsEvent class, 343-344

overview, 335

PrepAddCartCmd class, 345-346

Product class, 336-337

ProductDelegate class, 341-342

ServiceLocator class, 340-341

Cairngorm Microarchitecture Framework,
contact manager with integrated Yahoo!
maps application, 413

callRemoting() function, 216

CancelAddCmd class, 346

Canceling window events, 83-85

CartController class, 348

CartItem class, 337-338

CartModel class, 338-339

CartView.mxml file, 350-353

Certificate Wizard, 304-306

certificates

security, 452

self-signed certificates for testing

creating applications, 367-368

exporting, 367-368

CFC (ColdFusion Component), 430

fill method inside assembler CFC, 432

listener for event gateway, 431

How can we make this index more useful? Email us at indexes@samspublishing.com

checkout, version control system (continu-
ous integration), 395

chrome, creating custom window chrome,
85-88

classes

ActionScript classes, 102

AddItemCmd, 347-348

CancelAddCmd, 346

CartController, 348

CartItem, 337-338

CartModel, 338-339

LoadProductsCmd, 344-345

LoadProductsEvent, 343-344

NativeApplication class, toast mes-
sages, 179-184

NativeMenu, 160-161

Application Menu, 161-163

Context Menu, 166

Dock and System Tray Menu,
167-168

Flex Menu, 170-171

Pop-Up Menu, 169-170

Window Menu, 163-165

NativeWindow class

bouncing Mac OS X Dock icon, 178

statusBar notifications, 184-185

system tray icon ToolTips, 187-188

TaskBar highlighting, 185-187

PrepAddCartCmd, 345-346

Product, 336-337

ProductDelegate, 341-342

ServiceLocator, 340-341

classes 467

Timer, 316

Updater, 309-311

Clipboard, deferring renderings, 154-156

Clipboard classes, 129-130

BITMAP_FORMAT data type, 137-143

Clipboard class, 130

ClipboardTransferMode class, 130

FILE_LIST_FORMAT data type, 147-151

HTML_FORMAT data type, 142-147

TEXT_FORMAT data type, 131-137

URL_FORMAT data type, 151-154

ClipboardTransferMode class, 130

closing windows, 81

CLOSING event, 42

Coenraets, Christophe, 209

ColdFusion, 427

LCDS, 433-436

Remoting, 214-222

ServiceCapture, 57

watch folder process, 429-432

ColdFusion Component, 430

command line, launching from, 40

commits

daily commits, continuous
integration, 396

version control system, continuous
integration, 395

compiling

Adobe AIR applications, 363

compiler background
information, 363

writing build targets, 364

build.xml, final project, 370

unit tests, 387-388

Concurrent Versioning System (CVS), 395

CONFIG_FOLDER, 362

configuration file for watch folder event
gateway, 430

configuring

Apache Ant, 360

CruiseControl, 399-402

connecting data services from Adobe
Flex, 435

connections

asynchronous database connections,
establishing, 193

LocalConnection objects, 238-249

synchronous database connections,
establishing, 192

contact manager with integrated Yahoo!
maps application

overview, 412-413

synchronization, 415

embedded database, 415-417

offline scenarios, 417-419

third-party components, 413

Cairngorm Microarchitecture
framework, 413

PromptingTextInput, 414

Yahoo! maps, 414-415

contact value objects, 201

ContactModel, 329

Context Menu, 166

continuous integration, 393-394, 453

automated builds, 396

automated deployment, 397

classes468

CruiseControl, 397

daily commits, 396

unit testing, 396-397

version control system, 394-395

branches, 396

checkout, 395

commits, 395

mainline, 395

merging, 396

coupling, reducing design patterns, 325

createTempDirectory() method, 113

creationComplete event, 279

CruiseControl, 397-398

configuring, 399-402

Dashboard, 403-405

downloading, 398

rebuilding, 406-407

starting, 402-403

currentTarget properties, Adobe AIR
menus, 175

CVS (Concurrent Versioning System), 395

D
daily commits, continuous integration, 396

Dashboard, CruiseControl, 403-405

data

inserting into databases, 196-199

reading

in encrypted local store, 275

from tables, 200

How can we make this index more useful? Email us at indexes@samspublishing.com

removing from encrypted local
store, 275

storing in encrypted local store, 275

transferring with design patterns, 325

Data Management Services, 341

Data Protection API, 274

data services, connecting from Adobe
Flex, 435

data types, Clipboard classes

BITMAP_FORMAT, 137-143

FILE_LIST_FORMAT, 147-151

HTML_FORMAT, 142-147

TEXT_FORMAT, 131-137

URL_FORMAT, 151-154

database query results, 200-202

database tables, 194

creating, 191-192

example of creating an initial table
structure, 194-196

databases

asynchronous database connections,
establishing, 193

encrypted databases, 206-208

inserting data, 196-199

query results, 200-202

re-encrypting databases with new
keys, 208

reasons for using local SQL
databases, 191

retrieving primary keys of inserted
rows, 199-200

SQLite, 190

synchronous database connections,
establishing, 192

databases 469

synchronous versus asynchronous, 202

writing asynchronous database,
204-206

writing synchronous database,
202-204

Davidson, James Duncan, 359

debugging

with Adobe AIR Debug Launcher
(ADL), 54-56

with Adobe AIR HTML Introspector,
57-60

with Adobe Flash Debugger (FDB), 56

with Adobe Flex Builder debugger,
52-53

content loaded into HTML controls, 61

with third-party tools, 56-57

default_badge.html file, 293-297

deferring Clipboard renderings, 154-156

deleting directories, 114

deployment, automated deployment, 397

Descriptor, toast messages, 182

design patterns

architecture frameworks, 323-324

interacting with services, 325

managing states, 324

managing user gestures, 324

reducing tight coupling, 325

transferring data, 325

Cairngorm

business delegates, 333-334

FrontController, 330-332

ModelLocator, 328-330

ServiceLocator, 332-333

value objects, 327-328

detecting user presence, 47-48

development resources, 453

dialogs, Are You Sure You Want to Install
This Application to Your Computer?, 286

digital signatures, 34, 303-306

Certificate Wizard, 304-306

overview, 299-301

signature.xml file, 302-303

directories, 113

as static constants, 103

creating new, 113

deleting, 114

flash.filesystem.File, 113

retrieving directory listings, 114

temporary directories, creating, 113

directory paths, 102

display objects, z-axis, 445-448

distributable archives, .air, 372

distributing Adobe AIR applications

digital signatures, 303-306

Certificate Wizard, 304-306

overview, 299-301

signature.xml file, 302-303

one-off installs, 285-291

overview, 283-285

seamless install feature, 292-299

badge.fla files, 292

badge.swf files, 292

default_badge.html file, 293-297

FlashVars parameters, 293

getApplicationVersion() method, 298

getStatus() method, 297-298

databases470

installApplication() method, 298-299

launchApplication() method, 299

overview, 291

doAdd() function, 355

doCancel() function, 355

Dock and System Menu, 167-168

Dock icon (Mac OS X), bouncing, 178

doCopy() function, 137

documentation, Adobe Flex software devel-
opment kit (SDK), 341

doPaste() function, 136-137

downloading

Apache Ant, 360

Apache Flex Ant tasks, 360

CruiseControl, 398

FlexUnit, 374

FlexUnit Ant tasks, 374-375

zip files, 462

DPAPI (Data Protection API), 274

drag-and-drop, 115-116

drag-in gestures, 121-127

drag-out gestures, 116-121

drag-in gestures, 121-127

drag-out gestures, 116-121

E
ecart.mxml file, 349-350

Eclipse, perspectives, 22

event gateway, CFC listener for, 431

embedded databases, Cairngorm Contact
Manager application, 415-417

How can we make this index more useful? Email us at indexes@samspublishing.com

encrypted databases, 206-208

encrypted local store, 273-275

reading data, 275

removing data, 275

storing data, 275

error(), Adobe AIR HTML Introspector, 60

establishing, file associations, 45-46

event listeners, adding to InvokeEvent, 38

events, canceling window events, 82-83

execute() function, 345-346

executing multiple statements against a
database in asynchronous mode, 205

EXITING event, 41

exporting

Adobe AIR applications, 365-367

build.xml, final project, 370

extensions, .air, 366

F
fault() function, 345

FDB (Adobe Flash Debugger), 56

file associations, establishing, 45-46

File object, 102

File.url, 102-104

file paths, 102

File.nativePath, 104

File.desktopDirectory, 103

File.nativePath, 104

File.url, 102-104

FileMode, 109

FileMode 471

files

AddItemView.mxml, 353-355

badge.fla, 292

badge.swf, 292

CartView.mxml, 350-353

creating and writing, 109-112

default_badge.html, 293-297

ecart.mxml, 349-350

FileMode, 109

opening and reading, 105-106

reading asynchronously, 107

signature.xml, 302-303

synchronous versus asynchronous file
operations, 107-108

FileStream, security sandboxes, 265

FileStream object, 106

FileSystemComboBox, 251-252

FileSystemDataGrid, 257-258

FileSystemList, 253-255

fileSystemTree, 102, 255-256

FILE_LIST_FORMAT data type, 147-151

fill method, inside assembler CFC, 432

Flash Remoting, 214-222

flash-remoting, 57

flash.display.NativeWindow, 68

flash.filesystem.File, directories, 113

FlashVars parameters, 293

Flex

connecting to data services from, 435

creating windows with custom
chrome, 87

FLEX_HOME, 362

Flex Menu, 170-171

FlexUnit, 373, 452

asynchronous testing, 382-385

downloading, 374

running from Apache Ant, 386

compatibility modifications, 386-387

compiling unit tests, 387-388

running unit tests, 388-389

unified reporting with JUnit, 389-390

task parameters, 388

test cases

adding to test suites, 379-380

creating, 375-377

creating visual test case runners,
380-382

implementing setup() and tear-
down(), 378-379

naming conventions, 377

running, 379-380

FlexUnit Ant tasks, downloading, 374-375

frameworks, 322

application frameworks, Spring
Framework, 322

architecture frameworks, 323

Cairngorm, 325

design patterns, 323-325

libraries, 322

Front Controller pattern, 330

FrontController, Cairngorm, 330-332

full-screen mode, 99-100

files472

functions

AC_FL_RunContent(), 293

AC_FL_RunContent() JavaScript, 293

AIRBadge(), 297

doAdd(), 355

doCancel(), 355

execute(), 345-346

fault(), 345

getProducts(), 342

initApp(), 350

initializeDatabase(), 195

resetView(), 355

result(), 345

G
getApplicationVersion() method, 297-298

getClipBoard() function, 133

getFlightDetails(), 216

getProducts() function, 342

getStatus() method, 297-298

H
hasFormat() method, 125

Hello World application, creating, 29-36

hierarchical nature of Adobe AIR menus,
171-173

HTML controls, debugging loaded
content, 61

How can we make this index more useful? Email us at indexes@samspublishing.com

HTMLLoader, security sandboxes, 265

HTML_FORMAT data type, 142-147

HTTP protocol, Java Mini Web Server, 423

HTTPService, 222-225

I
ICommand interface, 331, 345

IDEs, 451

images, proxy images, 115

imageurl parameter (FlashVars), 294

IModelLocator interface, 338

info(), Adobe AIR HTML Introspector,
60, 214

initApp() function, 350

initializeDatabase(), 195

inserting data into databases, 196-199

installApplication() method, 297-299

installing

Adobe AIR, 15-17

digital signatures, 299-306

one-off installs, 285-291

overview, 283-285

seamless install feature, 291-299

Adobe Flex Builder, 317-20

Apache Ant, 360

Apache Flex Ant tasks, 360

BlazeDS, 228-229

SDKs (software development kits)

Flex, 26-27

Java, 23

Subversion, 457-462

installing 473

instances

mx.core.Window, creating, 76

NativeWindow, creating, 74

instant messaging, 276

integration, continuous integration, 453

interacting with services, design
patterns, 325

interface, IValueObject, 336

interfaces

ICommand, 331, 345

IModelLocator, 338

IResponder, 345

InvokeEvent, 38

IResponder interface, 345

IValueObject interface, 336

J
Java

adding to system paths, 24-26

installing, 23

Java Development Kit, 23

Java Mini Web Server, 423

Java Runtime Environment (JRE), 23

JUnit, unified reporting, 389-390

K
keyEquivalent properties, Adobe AIR

menus, 173-175

keys, re-encrypting databases with new
keys, 208

L
launchApplication() method, 297-299

launching

from browsers, application invoke
events, 40

from the command line, application
invoke events, 40

on login, application invoke events, 40

launching applications

application startup process, 36-37

application invoke events, 37-39

launching from browsers, 40

launching from the command
line, 40

launching on login, 40

LCDS (LiveCycle Data Services), 191, 428

ColdFusion, video distribution systems,
433-436

libraries, 322, 454

loadAllProducts() method, 342

loadFiles() function, 147

LoadProductsCmd class, 344-345

LoadProductsEvent class, 343-344

local SQL databases, reasons for
using, 191

local-trusted sandboxes, 264

local-with-filesystem sandboxes, 265

local-with-networkings sandboxes, 264

LocalConnection objects, 238-249

login credentials

persisting, 277-279

storing, 276-279

instances474

M
Mac OS X Dock icon, bouncing, 178

mailing lists, 452

mainline, version control system (continu-
ous integration), 395

management destinations, adding to
LCDS, 433

managing

states, design patterns, 324

user gestures, design patterns, 324

maximizing windows, 81

McLeod, Alistair, 326

memory profiling, 61-64

menus

Application Menu, NativeMenu class,
161-163

Context Menu, NativeMenu class, 166

Dock and System Tray Menu,
NativeMenu class, 167-168

Flex Menu, NativeMenu class, 170-171

hierarchical nature of, 171-173

Pop-Up Menu, NativeMenu class,
169-170

Window Menu, NativeMenu class,
163-165

merging version control system (continu-
ous integration), 396

messagecolor parameter (FlashVars), 294

messages, toast messages
(NativeApplication class), 179-184

messaging with BlazeDS, 227-228

Adobe AIR messaging applications,
creating, 229-238

installing, 228-229

How can we make this index more useful? Email us at indexes@samspublishing.com

methods

activate(), 74

addCommand(), 348

fill, 432

getApplicationVersion(), 297-298

getStatus(), 297-298

installApplication(), 297-299

launchApplication(), 297-299

loadAllProducts(), 342

selectDefaultRecord(), 199

startMove(), 81

microarchitecture, Cairngorm, 326-327

minimizing windows, 81

model-view-controller, 325

ModelLocator, Cairngorm, 328-330

moving windows, 81

MVC (model-view-controller), 325

mx:HTTPService/, 222-225

mx:TraceTarget/, 54, 220

mx:WebService/, 225-227

mx.core.Window, 68, 75-76

chrome option, 77

instances, creating, 76

opening Window onscreen, 78

Window properties, setting, 76-78

mx.core.WindowedApplication, 68

MXML components, 363

MXML tags, mx:TraceTarget/, 54

MXML tags 475

N
naming conventions, test cases

(FlexUnit), 377

NativeApplication class, toast messages,
179-184

nativeDragDrop handler gestures, 126

nativeDragEnter event, 125

NativeDragManager, 118, 121

NativeMenu class, 160-161

Application Menu, 161-163

Context Menu, 166

Dock and System Tray Menu, 167-168

Flex Menu, 170-171

Pop-Up Menu, 169-170

Window Menu, 163-165

nativePath, 105

NativeWindow

creating windows, 68-69

NativeWindowInitOptions, setting,
69-73

instances, creating, 74

putting windows onscreen, 74

NativeWindow.activate(), 74

NativeWindow.visible, 74-75

NativeWindow class

bouncing Mac OS X Dock icon, 178

statusBar notifications, 184-185

system tray icon ToolTips, 187-188

TaskBar highlighting, 185-187

NativeWindow.activate(), 74

NativeWindow.startResize(), 80

NativeWindow.visible, 74-75

NativeWindowInitOptions, 69-73

NativeWindowInitOptions.maximizable, 73

NativeWindowInitOptions.minimizable, 73

NativeWindowInitOptions.resizable, 73

NativeWindowInitOptions.
systemChrome, 70

NativeWindowInitOptions.transparent, 73

NativeWindowInitOptions.type, 71

NativeWindowSystemChrome.NONE, 71

NativeWindowSystemChrome.
STANDARD, 70

NativeWindowType.LIGHTWEIGHT, 72

NativeWindowType.NORMAL, 71

NativeWindowType.UTILITY, 72

O
offline scenarios, Cairngorm Contact

Manager application, 417-419

one-off application installation, 285-291

onLoad() function, 279

onLogin() function, 277

openBrowser() function, 239

opened windows, referencing, 79

opening

files, 105-106

Window onscreen, mx.core.Window, 78

naming conventions476

P-Q
parameters

FlashVars, 293

FlexUnit, 388

paste() function, 137-138

patch information, retrieving, 48-49

paths

directory paths, 102

file paths, 102

peer-to-peer networking, 421-422

photo-sharing example application, 422

Bonjour protocol, 422

Java Mini Web Server, 423

server sockets, 423-426

performAdd() method, 385

performance, 61-62, 64

persisting user login information, 277-279

perspectives

Adobe Flex Builder, 322

Eclipse, 22

photo-sharing example application (peer-
to-peer networking), 422

Bonjour protocol, 422

Java Mini Web Server, 423

server sockets, 423-426

plug-ins, installing Subversion, 457-462

Pop-Up Menu, 169-170

positioning windows

based on Screen bounds, 93-96

relative to screens, 96-99

How can we make this index more useful? Email us at indexes@samspublishing.com

PrepAddCartCmd class, 345-346

primary keys, retrieving of inserted rows,
199-200

Product class, 336-337

ProductDelegate class, 341-342

Profiler button, 62

PromptingTextInput, contact manager with
integrated Yahoo! maps application, 414

properties

currentTarget, 175

keyEquivalent, 173-175

proxy images, 115

publications, 454

R
re-encrypting databases with new

keys, 208

reading

application settings, 43-45

data in encrypted local store, 275

data from tables, 200

files, 105-106

FileMode, 109

rebuilding CruiseControl, 406-407

records, inserting into database tables,
196-199

reducing coupling with design
patterns, 325

references

Screens, obtaining references to the
main screen, 91-92

references 477

Window reference, 78

current stage window, 79

displaying objects on stage, 79

referencing active window, 79

referencing opened windows, 79

Window constructor, 79

referencing nativeWindow properties with
mx.core.Window, 78

remote servers, updating Adobe AIR appli-
cation, 314-316

RemoteObject class, 214

remoting, 213

BlazeDS

Adobe AIR messaging applications,
creating, 229-238

installing, 228-229

messaging, 227-228

with Flash Remoting and ColdFusion,
214-222

removing data in encrypted local
store, 275

resetView() function, 355

resizing windows, 80-81

resolution, Screen resolution, 92-93

resolvePath, 104

restoring windows, 81

result() function, 345

results, database query results, 200-202

retrieving

directory listings, 114

primary keys of inserted rows,
199-200

version and patch information, 48-49

rows, retrieving primary keys of inserted
rows, 199-200

running

Adobe AIR applications, 365

build.xml, final project, 370

test cases, FlexUnit, 379-380

unit tests, 388-389

update() method, 310

S
sample applications, storing login creden-

tials, 276-279

sampling, 64

sandbox bridges, 266-270

UserAPI, 270

sandboxes, 264

saveFileToDisk() method, 112

Screens

determining number of, 91

full-screen mode, 99-100

obtaining reference to the main screen,
91-92

positioning windows based on Screen
bounds, 93-96

positioning windows relative to
screens, 96-99

resolution, 92-93

virtual desktop, 89-90

references478

SDKs (software development kits), 22

installing

Adobe Flex, 26-27

Java, 23

Java, adding to system paths, 24-26

seamless application installation, 292-299

badge.fla files, 292

badge.swf files, 292

default_badge.html file, 293-297

FlashVars parameters, 293

getApplicationVersion() method, 298

getStatus() method, 297-298

installApplication() method, 298-299

launchApplication() method, 299

overview, 291

security, certificates, 452

security sandboxes, 263-265

application sandboxes, 266

bridges, 266-270

UserAPI, 270

types of, 264-265

selectDefaultRecord(), 199

self-signed certificates, creating for testing,
367-368

server sockets for photo-sharing example
application, 423-426

server-side technologies, 451

servers, remote servers, updating Adobe
AIR application, 314-316

Service to Worker pattern, 330

ServiceCapture, 57

How can we make this index more useful? Email us at indexes@samspublishing.com

ServiceLocator, Cairngorm, 332-333

ServiceLocator class, 340-341

services, interacting with design
patterns, 325

setClipBoard() function, 136

setDataHandler() method, 154

setup(), test cases (FlexUnit), 378-379

Shockwave Flash (SWF), 213

Shockwave Flash (SWF) files, 68, 363

shopping cart application (Cairngorm)

AddItemCmd class, 347-348

AddItemView.mxml file, 353-355

CancelAddCmd class, 346

CartController class, 348

CartItem class, 337-338

CartModel class, 338-339

CartView.mxml file, 350-353

ecart.mxml file, 349-350

Java server-side component, 335

LoadProductsCmd class, 344-345

LoadProductsEvent class, 343-344

overview, 335

PrepAddCartCmd class, 345-346

Product class, 336-337

ProductDelegate class, 341-342

ServiceLocator class, 340-341

shutting down, application shutdown
process, 41-43

signature.xml file, 302-303

signatures, digital, 34, 303-306

Certificate Wizard, 304-306

overview, 299-301

signature.xml file, 302-303

signatures 479

Singleton pattern, 328

socket connections for photo-sharing
example application, 423-426

software development kits, 22

Spring Framework, 322

SQLite, 190-191

SQLite tool, 209-211

SquirrelFish, 439

stack traces, 64

starting CruiseControl, 402-403

startMove() method, 81

states, managing with design
patterns, 324

statusBar notifications, NativeWindow
class, 184-185

storing

data in encrypted local store, 275

login credentials, 276-279

subtabs, Dashboard (CruiseControl), 405

subversion, installing, 457-462

Subversion (SVN), 395

SWF (Shockwave Flash), 213

SWF (Shockwave Flash) files, 363

syncAction, 416

SyncContactsCmd command, 418

syncFlag, 416

synchronization, contact manager with
integrated Yahoo! maps, 415

embedded databases, 415-417

offline scenarios, 417-419

synchronous database connections, estab-
lishing, 192

synchronous database operations

versus asynchronous database,
202-206

versus asynchronous database opera-
tions, 202

synchronous file operations versus asyn-
chronous file operations, 107-108

system paths, adding Java to, 24-26

system tray icon ToolTips, NativeWindow
class, 187-188

T
tables, database tables, 194

creating, 191-192

example of creating an initial table
structure, 194-196

tags, mx:TraceTarget/, 54

TaskBar highlighting, NativeWindow class,
185-187

tearDown(), test cases (FlexUnit), 378-379

test cases, FlexUnit

adding to test suites, 379-380

creating, 375-377

creating visual test case runners,
380-382

implementing setUp() and tearDown(),
378-379

naming conventions, 377

running, 379-380

testAddItem(), 384

Singleton pattern480

testing, 452

asynchronous testing (FlexUnit),
382-385

self-signed certificates, creating,
367-368

tests, unit tests, 373

TEXT_FORMAT data type, 131-137

third-party components, contact
manager with integrated Yahoo! maps
application, 413

Cairngorm Microarchitecture
Framework, 413

PromptingTextInput, 414

Yahoo! maps, 414-415

third-party tools, debugging, 56-57

3D rotation effects, 440-445

Timer class, 316

TitleWindow, 67, 184

toast messages, NativeApplication class,
179-184

tools, SQLite, 209-211

Transfer Object pattern, 323

transferring data, design patterns, 325

U
unified reporting, JUnit, 389-390

unit test

compiling, 387-388

running, 388-389

unit testing, continuous integration,
396-397

How can we make this index more useful? Email us at indexes@samspublishing.com

unit tests, FlexUnit, 373

update() method, running, 310

Updater class, 309-311

updating Adobe AIR application, 309-314

via remote servers, 314-316

URL_FORMAT data type, 151-154

user gestures, managing with design pat-
terns, 324

user gestures, 330

USER IDLE, toast messages, 179

user notifications, 177

bouncing the Mac OS X Dock icon, 178

statusBar notifications, 184-185

system tray icon ToolTips, 187-188

TaskBar highlighting, 185-187

toast messages, 179-184

user presence, detecting, 47-48

USER PRESENT, toast messages, 179

V
value objects, Cairngorm, 327-328

variables, creating bindable variables, 339

version control, 453

version control system, continuous integra-
tion, 394-395

branches, 396

checkout, 395

commits, 395

mainline, 395

merging, 396

version control system 481

version information, retrieving, 48-49

video distribution systems

application overview, 428

ColdFusion

LCDS, 433-436

watch folder process, 429-432

views, 324

virtual desktop, 89-90

visibility, 75

visual test case runners, FlexUnit, 380-382

W-X
warn(), Adobe AIR HTML Introspector, 60

watch folder event gateway, configuration
file for, 430

web servers, Java Mini Web Server, 423

Webkit HTML engine, 439

WebService, 225-227

websites

Bonjour protocol information, 423

Java Mini Web Server information, 423

Zeroconf protocol information, 423

Webster, Steven, 326

window classes

flash.display.NativeWindow, 68

mx.core.Window, 68

mx.core.WindowedApplication, 68

Window constructor, 79

window events, 82-83

canceling, 83-85

Window Menu, 163-165

Window properties, mx.core.Window,
76-78

Window reference, 78

current stage window, 79

displaying objects on stage, 79

referencing active window, 79

referencing opened windows, 79

Window constructor, 79

windows, 67-68

browser windows, 68

closing, 81

creating custom window chrome, 85-88

creating with mx.core.Window, 75-76

instances, 76

opening Window onscreen, 78

Window properties, setting, 76-78

creating with NativeWindow, 68-69

setting NativeWindowInitOptions,
69-73

maximizing, 81

minimizing, 81

moving, 81

NativeWindow, 74

positioning based on screen bounds,
93-96

positioning relative to screens, 96-99

resizing, 80-81

restoring, 81

TitleWindow, 67

wizards, Certificate Wizard, 304-306

version information482

writing

asynchronous database operations,
204-206

build targets, 364

files, 109-112

synchronous database operations,
202-204

Y
y-axis, 441

Yahoo! maps

contact manager with, 413

overview of, 412

contact manager with integrated Yahoo!
maps application, 414-415

Z
z-axis, 441

display objects, 445-448

Zero Configuration Networking, 422

Zeroconf protocol, 422

zip files, downloading, 462

How can we make this index more useful? Email us at indexes@samspublishing.com

zip files 483

	Introduction
	Who Should Read This Book?
	Software Requirements
	Adobe AIR
	Adobe Flex
	Adobe Flex 3 SDK

	Code Samples for This Book

	5 Working with Windows
	Windows in Adobe AIR
	Creating Windows Using NativeWindow
	Creating Windows Using mx.core.Window
	Getting a Window Reference
	Window Operations
	Understanding Window Events
	Creating Custom Window Chrome

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W-X
	Y
	Z

