
3
Using the
Command Line

If you’re a casual Mac user, or even if you’re a hard-
core Linux or Unix user, there are a few things about
Mac OS X and the particular flavor of Unix under its
candylike shell that might catch you off guard. Files
and folders behave in rather different ways when
you’re addressing them with textual commands than
when you’re shoving them around with your mouse.
Not only do they look different, they act different, too.
You might even say they “think different.”

The shell, which is what we call the command-line
environment displayed by the Terminal application, is
an austere and cryptic piece of software—about as
un-Mac-like as it can possibly get. By the end of this
book, you’ll have found all kinds of uses for it—tricks
that weren’t otherwise possible using the graphical
Aqua interface. But there’s a steep learning curve, par-
ticularly for readers who have never dabbled in Unix
before, and there are a few things you’re going to have
to know about how your files work in the shell before
you can really start ordering them around.

9549x03.qxp 10/29/07 12:29 PM Page 39

NOTE: This will be discussed in more detail in
Chapter 4, “Basic Unix Commands,” but you should
be aware that every Unix command is fully documented
within the command line using the man (“manual”)
command. Type man command to learn more about
any command you’ve heard about.

Everything Is a File
Your Mac is designed primarily to show you your
documents, folders, applications, and other items in
neatly ordered windows, with pretty icons next to
them to help you differentiate them based on their
type.You can open Finder windows that show you
each item’s Kind in a column, distinguishing your
Photoshop images from your Word documents and
your folders and applications. Mac OS X even has
“bundles,” which are special folders full of executables
and other items masquerading as single monolithic
files in the Finder, which you’ll learn more about in
Chapter 5,“Using the Finder.”At the graphical level,
your Mac is full of all kinds of items that each get their
own unique look and descriptive vocabulary.

Not much of that matters at the command-line level.
Your shell doesn’t see a folder differently from how it
sees a Word document; they’re both just “streams of
bits with names” as far as it’s concerned, and in its
1970s-era worldview that’s all that matters.The only
thing distinguishing a folder (or directory) from a file is
that the bits in it describe links to other files that the
operating system should interpret as part of that folder,
rather than the binary or textual data stream that make
up a file’s contents—but to Unix that’s trivia. If you
use the ls (“list”) command in the shell to list the files

40 CHAPTER 3 Using the Command Line

9549x03.qxp 10/29/07 12:29 PM Page 40

in a folder, you’ll just get a list of names—no icons, no
turn-down arrows, no clues to help tell you that some
of the things you’re looking at are files and some are
folders, applications, or what-have-you. (There are
some options you can give to the ls command to
make it smarter about how it lists the items, as you’ll
see later; but that’s a courtesy that Unix only grudg-
ingly grants.)

In the Unix world, everything’s a file, including such
oddities as running processes and network connections
and attached devices, and you interact with them all in
pretty much the same way, using the same commands
for everything (with a few exceptions, like the mkdir
command). I point this out to make you aware that if
you see the command-line examples in this book refer
to “files,” it means “files, folders, and any other discrete
pieces of data.” If a command makes a distinction
between regular data files and other kinds of items, I’ll
say so; but otherwise, you can generally expect that a
command will work the same on one kind of item as
on another, because it’ll see “files” with as little dis-
crimination as Unix does.

File Types and Extensions
The Unix side of Mac OS X might not care about
what makes one kind of file different from another,
but the graphical side certainly does.The “kind” of
a file, which you can view by selecting it and then
choosing File, Get Info, is what determines what
kind of icon it has in the Finder and, more impor-
tantly, what application it opens in when you double-
click it.This is pretty basic stuff, and it’s familiar to
anyone who’s used a Windows PC or Mac anytime in
the past 20 years.

41File Types and Extensions

9549x03.qxp 10/29/07 12:29 PM Page 41

What you might not be familiar with is just how Mac
OS X identifies a file’s kind. In the old, pre-OS X
days, files on the Mac had an invisible four-letter
“Type” code, along with another four-letter “Creator”
code, the combination of which told the system what
application the file belonged to and what other apps
could open it if they advertised themselves as being
able to open, for example,“JPEG” pictures or “MooV”
movie files. Because these codes were invisible, nobody
had to deal with them or even know they were there,
and—even better—nobody had to put up with those
ugly “extensions” they’d seen on files in Windows
or MS-DOS.Why should you have to name a file
“Shopping List.txt” when you could just call it
“Shopping List” and have the system know it was
a text file because of its TEXT Type code?

Mac OS X brought an end to that happy and elegant
time, to many users’ (and my) chagrin. Now, instead
of Type and Creator codes, files were identified using
extensions, just like in Windows: .txt for text files, .doc
for Microsoft Word documents, .jpg for JPEG pictures,
and so on. On the face of it, this looks like a huge step
backward for usability. But what it really was was a nod
to reality; the world in 2001 was dominated by Windows,
and that meant that every file on the Internet had
extensions, so we might as well get used to it. But Mac
users don’t have to like it.And that’s why extensions in
Mac OS X, after some early rough edges were sanded
off, are handled with arguably even more slickness and
flexibility than Type and Creator codes were.

You can hide the extension on a file, on a per-file basis
(unlike in Windows, where either all extensions are
shown or only the unknown ones are, as dictated by
a global setting). Better yet, the way you hide an

42 CHAPTER 3 Using the Command Line

9549x03.qxp 10/29/07 12:29 PM Page 42

extension is by simply renaming the file:You click the
filename, you put the cursor at the end, you backspace
out the .txt or .doc, and it’s gone, just as if the exten-
sion were any meaningless and disposable part of the
filename. But it’s not really gone: Do a Get Info on the
file, and you’ll find that the .txt or .doc is still there—
the Name & Extension field shows the complete
name, and the Hide Extension check box is checked.
The system is similarly smart enough to figure out
whether to hide or show the extension when you save
a new file in TextEdit or Preview; if you specify the
extension, it’s shown, but if you don’t, it’s hidden.

Why is this useful? Why not just use Type codes like
in the old days? Well, think about interoperability. If
the filenames didn’t have extensions, and you sent a
text file or an MP3 song to someone using Windows,
his computer wouldn’t know what to do with it.
Windows and Linux can’t read Type and Creator
codes, and those codes aren’t included with files
when transferred through popular Internet apps
anyway. But if the extensions are there, and they’re
hidden only for the benefit of Mac users, then
Windows and Linux users can still open the files
using their favorite text editors or MP3 players, and
Mac users can still look at pretty, extensionless
filenames. Everybody wins!

TIP: Rather than the “Creator” of each individual file
being stored in metadata, Mac OS X keeps a
database of “opener apps” for known file types. The
default opener for JPEG images, for example, is
Preview. You can set individual files to open in other
apps, though, and you can change the default opener
of a given file type; in the Get Info window, open up
the Open with panel to configure these behaviors.

43File Types and Extensions

9549x03.qxp 10/29/07 12:29 PM Page 43

Be aware that just because you don’t see an extension
on a filename in the Finder, that doesn’t mean the
extension isn’t there. If you look at the file in the
command-line shell, you’ll see the whole filename,
extension and all.

TIP: Unix has its own, entirely separate way of figuring
out what kind of files you’re looking at: It looks at the
file’s contents and makes an educated guess. This
functionality isn’t part of your shell or any universal
system service, though—it’s accomplished using the
file command, which you can use like so:

Silver:~/Pictures btiemann$ file pvp.psd

pvp.psd: Adobe Photoshop Image

Maximum Filename Lengths
One of the benefits that Mac OS X brought to the
Mac-using world was longer filenames. In the old Mac
OS, 31 characters were all you had to work with; you
didn’t have to worry about extensions, but 31 was
still too short, for instance, for naming an MP3 file
according to its title, artist, and album. MS-DOS, if
your memory is that long, was even worse: eight char-
acters, all in caps, and a three-letter extension. How
did we ever survive?

But now we have a full 255 characters to devote to
any filename, and that includes spaces, quotes,
apostrophes, and all kinds of other characters (with
a few exceptions, as you’ll see shortly). I don’t care
how long the title of your favorite MP3 is; you’re
not going to run out of letters to describe it in
Mac OS X.

44 CHAPTER 3 Using the Command Line

9549x03.qxp 10/29/07 12:29 PM Page 44

One thing to watch out for, though, is that when
filenames get too long to be displayed comfortably, they
start to wreak havoc on the mechanisms used to display
them, both in the graphical and command-line levels.
The Finder will shorten a displayed filename to a rea-
sonable length and stick an ellipsis (…) in the middle to
show you that there’s more to the filename than what
you see. But the Unix shell is less sophisticated and will
dutifully print out the whole massive filename, even if
it wraps four times in your 80-column-wide display
and wrecks the format of your file listing.To keep your
own sanity, to say nothing of good desktop hygiene,
you should probably keep your filenames to around
30–40 characters at most. But that’s just some motherly
advice, not a requirement of the system.

Case Sensitivity and
Case Preservation
in Filenames
Where Mac OS X differs most visibly from other
Unixes is in the way its filesystem (HFS+, for those of
you keeping score) handles capitalization in filenames.
Most Unix-style operating systems are case sensitive,
meaning that a file called File1.txt is entirely distinct
from one called file1.txt, and both can happily exist
in the same folder. Linux or FreeBSD will see not the
slightest similarity between those two files, no matter
how much our human sensibilities might tell us that
they’re the same.

Mac OS X, like the classic Mac OS before it, is not case
sensitive; it doesn’t care whether you said File1.txt or

45Case Sensitivity and Case Preservation in Filenames

9549x03.qxp 10/29/07 12:29 PM Page 45

file1.txt. Only one of them can exist in a folder at the
same time, and there’s no ambiguity for either comput-
ers or humans in telling which file you meant. Even
Unix commands like ls will work if you give them
filenames to operate on that don’t match the capitaliza-
tion of the actual files (try it: ls /library).

NOTE: Because bash and other shells packaged with
Mac OS X were developed outside Apple and without
this kind of flexible case handling in mind, Tab comple-
tion won’t work unless you use the correct capitaliza-
tion. For instance, typing /lib and pressing Tab won’t
do anything, but /Lib followed by Tab will expand to
/Library.

However, unlike some versions of Windows, Mac
OS X is also case preserving. If you create a file called
file1.txt, the system will keep it as file1.txt; it won’t
helpfully capitalize the first letter for you, it won’t
force the whole thing to uppercase or lowercase, and it
won’t lose track of the capitalization if you send the
file through one application and then another, or up to
a web server and back down again.Things stay the way
you put them, but the system can generally figure out
what you mean if you’re less precise than it is. Unix
purists who insist that the byte for “a” is as different
from “A” as it is from “9” might grouse, but Mac
OS X is just behaving the way humans do, isn’t it?

Nonetheless, there’s something weird about how Mac
OS X’s Unix shell lists files: it distinguishes between
uppercase and lowercase letters when alphabetizing,
and uppercase words come first in the ASCII code
page.Thus, a file listing at the command line will be
sorted differently from one in the Finder, with all the

46 CHAPTER 3 Using the Command Line

9549x03.qxp 10/29/07 12:29 PM Page 46

items whose names begin with capital letters listed
before the ones in lowercase.

NOTE: Mac OS X’s case-handling behavior is a feature
of the HFS+ (Mac OS Extended) filesystem, Apple’s
standard disk format. Other filesystem types, such as
UFS and ZFS, are available for experts; because they’re
pure Unix filesystems, their case handling is in the
Unix vein: case sensitive and case preserving.

Special Characters to
Avoid in Filenames
Every operating system has some restrictions it places on
what characters you can use in filenames, and Mac OS
X is no exception. In fact, it actually has more complex-
ity to worry about than most systems, if you’re going to
be working with the shell as much as with the Finder.

Like other Unixes, the command-line portion of Mac
OS X forbids you from using the forward-slash (/)
character in filenames.This is because slashes are used
to delimit directory names in paths; for example,
/Users/btiemann/Documents/File1.txt represents a file
four folders down from the system root. I can’t name a
file Taxes/2006.pdf, because the system would think
I’m talking about a subfolder called Taxes with a file
called 2006.pdf inside it.

Okay, so slashes are fairly easy to avoid. But if you’re
checking my work, you’ll have noticed that you can
create a “Taxes/2006.pdf” file without any trouble in
the Finder.What gives?

47Special Characters to Avoid in Filenames

9549x03.qxp 10/29/07 12:29 PM Page 47

The answer is that, historically, the classic (pre-OS X)
Mac OS allowed slashes—because it used the colon (:)
as its path delimiter, not the slash.When Mac OS X
came out, rather than forcing everyone to go through
an upgrade procedure to rename all their files with
slashes in the names, it simply interpreted those files on
the command line with colons instead of slashes.
Similarly, if you create a file at the command line with
a colon in it, it will show up as a slash in the Finder.
Try it: type touch blah:foo at the command line, and
watch the file “blah/foo” appear in the corresponding
Finder window.

The upshot is that you can’t use colons in the
Finder, and you can’t use slashes in the shell—but
the reverse in both cases is perfectly legal. If you
have trouble keeping this straight, don’t worry: you’re
not alone. (Or should that be “don’t worry/you’re
not alone”?)

That’s not where the inconveniences end, unfortunate-
ly.There’s also the unpleasant matter of spaces, apostro-
phes, quotes, dashes, asterisks, and other characters that
seem perfectly natural as names of documents but that
will cause you fits if you try to work with them on
the command line. Each of the character classes in
Table 3.1 has a special meaning for Unix, one that
doesn’t normally impinge on your life in the Finder,
but that can make the shell fall over and twitch if you
don’t know what you’re doing.

48 CHAPTER 3 Using the Command Line

9549x03.qxp 10/29/07 12:29 PM Page 48

Table 3.1 Avoiding Special Characters in Filenames

Character Meaning

Space Separator between command arguments
/ Path delimiter
\ Escapes the following character
- Can indicate a command option
[] Shell scripting tokens
{} Shell scripting tokens
* Wildcard (multiple characters)
? Wildcard (single character)
‘ Command argument grouping delimiter
“ Command argument grouping delimiter

To use any of the preceding characters in a filename in
the shell, you have to escape it—precede it with a back-
slash character, which tells the shell to treat the next
character in the filename literally, not as a special com-
mand character. For instance, suppose you have a file
called My “Road Trip” CDs.txt that you want to address
using a shell command (ls).You’d have to write the
command like this:

Silver:~ btiemann$ ls My\ \”Road\ Trip\”\ CDs.txt

This tells the shell that the spaces and quotes are part
of the filename, not separate arguments for the ls
command. Otherwise, ls would be trying to list three
separate files: one called My, another called Road Trip,
and a third called CDs.txt.

TIP: The command-line completion feature of the bash
shell can mitigate most of the pain associated with
special characters in filenames. For example, type ls

49Special Characters to Avoid in Filenames

9549x03.qxp 10/29/07 12:29 PM Page 49

My and then press Tab, and unless other files in the
folder have names that start with My, bash will auto-
matically fill out the rest of the file with all the special
characters escaped for you. This helps only when
you’re addressing existing files, though; you still have
to do all the escaping yourself if you’re creating a new
file or applying a new name.

To keep your command-line life simple, I’d recom-
mend that you just avoid using weird characters like
the ones described here. For files that you plan on
using only in the GUI side of Mac OS X, it’s okay to
use whatever letters the Finder will accept. But your
life on the command line will be a lot happier if you
leave out the spaces, quotes, and asterisks in the files
you create there.

Wildcards and What
They Mean
Wait.What? Wildcards? What’s that about?

Unless your computing career has encompassed
Unix/Linux or MS-DOS, wildcards will be something
new to you.They’re unique to command-line operat-
ing system environments and are also a key part of
their usability.Wildcards are what allow you to specify
groups of files all at once, based on similarities in their
filenames.

The asterisk (*) character can be used to represent any
contiguous series of characters, and the question mark
(?) can represent any single character. Using these
wildcard characters, you can perform repetitive or
tedious tasks on large groups of files all at once, instead

50 CHAPTER 3 Using the Command Line

9549x03.qxp 10/29/07 12:29 PM Page 50

of having to do it over and over, once per file. For
instance, consider the following list of files:

Picture01.jpg

Picture02.jpg

Picture03.jpg

Pics.txt

Suppose you wanted to get a list of only the JPEG files
in this directory.That could be accomplished in any of
several ways:

Silver:~ btiemann$ ls *.jpg

Silver:~ btiemann$ ls Picture0?.jpg

Silver:~ btiemann$ ls Pict*

As you can see, wildcards in Unix don’t discriminate
between the filename and the extension; the asterisk
wildcard covers the .jpg part of the affected files as
well as the unspecified portion before the period.This
differs from the MS-DOS way, in which you had to
specify *.* to refer to all the files in a directory. In
Mac OS X and other Unixes, you can use * to cover
everything.

Another kind of wildcard that gives you more precise
control is the brackets ([]), which lets you specify a set
of matching characters (instead of the “any character”
that the ? wildcard implies).Any characters specified
within the brackets are potential matches. For example:

Silver:~ btiemann$ ls Picture0[13].jpg

Picture01.jpg Picture03.jpg

NOTE: Wildcards don’t work on “hidden” files, which
you’ll learn more about in Chapter 4, “Basic Unix
Commands.” In other words, a “hidden” file (a file

51Wildcards and What They Mean

9549x03.qxp 10/29/07 12:29 PM Page 51

whose name begins with a period, such as .login) will
not appear in a listing generated by ls *, nor will it be
deleted by rm *. You have to delete hidden files manu-
ally, one by one.

You might be accustomed to selecting large groups of
files in a Finder window, visually, to move or delete
them all in one fell swoop.This might seem a more
direct solution than wildcards, and in many cases it is.
But if the files are all named similarly enough that they
can all be described using a wildcard or two, and if the
Finder can’t group them efficiently, you might find
that using the Terminal and wildcards can save you
some time over doing it the Finder’s way.

Conclusion
If this book is your first introduction to Unix, you’ll
be tackling it with less first-hand guidance than I had
when I was first shown a SunOS login shell in 1994.
It’s a rare and adventurous soul who dives straight into
the world of the Unix shell and tries to learn all about
it on his own, without a mentor or guru handy to
point out the pitfalls and offer helpful shortcuts.There
are so many of these potential traps that even a thick
book dedicated to Unix can’t cover them all; only
experience can give you the familiarity you need to be
completely fluent and efficient at the shell. Still, this
chapter attempts to provide the cornerstones to an
understanding of what kinds of expectations Unix has
of you, the user; and in the process, you will have
learned how to extrapolate from what you know to
find out how to overcome the rest of the obstacles
you’ll encounter.

52 CHAPTER 3 Using the Command Line

9549x03.qxp 10/29/07 12:29 PM Page 52

