

Sams Teach Yourself C++ in One Hour a Day
Copyright © 2009 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permis-
sion from the publisher. No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32941-8

ISBN-10: 0-672-32941-7

Library of Congress Cataloging-in-Publication Data

Liberty, Jesse.

C++ in one hour a day / Jesse Liberty, Siddhartha Rao, Bradley Jones. — 6th ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-672-32941-8 (pbk.)

1. C++ (Computer program language) I. Rao, Siddhartha. II. Jones, Bradley. III. Title.

QA76.73.C153L528 2008

005.13’3—dc22

2008024283

Printed in the United States of America

First Printing July 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an “as is” basis. The authors and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

This Book Is Safari Enabled
The Safari® Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical
books, find code samples, download chapters, and access technical information whenever and wherever
you need it.

To gain 45-day Safari Enabled access to this book:
n Go to http://www.informit.com/onlineedition
n Complete the brief registration form
n Enter the coupon code ETR3-REFQ-5UBU-SLQ5-TYNC

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email cus-
tomer-service@safaribooksonline.com.

Acquisitions Editor
Mark Taber

Development Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Project Editor
Seth Kerney

Copy Editor
Mike Henry

Indexer
WordWise Publishing
Services, LLC

Proofreader
Kathy Ruiz

Technical Editors
Jon Upchurch
Dr. Mark S. Merry

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

http://www.informit.com/onlineedition

Introduction

This book is designed to help you teach yourself how to program with C++. Just as you
can learn to walk one step at a time, you can learn to program in C++ one hour at a time.
Each lesson in this book has been designed so that you can read the entire lesson in just
an hour a day. It lays emphasis on the practical usage of the language, and helps you get
up-to-speed with concepts that are most important in writing C++ applications for real-
world usage.

By focusing for just an hour a day at a time, you’ll learn about such fundamentals as
managing input and output, loops and arrays, object-oriented programming, templates,
using the standard template library, and creating C++ applications—all in well-structured
and easy-to-follow lessons. Lessons provide sample listings—complete with sample out-
put and an analysis of the code—to illustrate the topics of the day.

To help you become more proficient, each lesson ends with a set of common questions
and answers, a quiz, and exercises. You can check your progress by examining the quiz
and exercise answers provided in Appendix D, “Answers.”

Who Should Read This Book
You don’t need any previous experience in programming to learn C++ with this book.
This book starts you from the beginning and teaches you both the language and the con-
cepts involved with programming C++. You’ll find the numerous examples of syntax and
detailed analysis of code an excellent guide as you begin your journey into this reward-
ing environment. Whether you are just beginning or already have some experience pro-
gramming, you will find that this book’s clear organization makes learning C++ fast and
easy.

Organization of This Book
This is a book that appeals as much to a beginner in the language as it does to someone
who wishes to understand C++ again, but from a more practical perspective. It is hence
divided into five parts:

n Part I, “The Basics,” introduces C++, and its syntactical details. This is very useful
for absolute beginners who would first like to understand the basics of program-
ming in C++.

n Part II, “Fundamentals of Object-Oriented Programming and C++,” introduces the
object-oriented features of C++—those that set it apart from its predecessor C.
This section lays the foundation for a more practical view of the language and one
of its most powerful utilities, the standard template library.

n Part III, “Learning the Standard Template Library (STL),” gives you a close look at
how C++ is used in real-life practical applications where quality of your applica-
tion can be vastly improved by using readily available, standard-compliant con-
structs.

n Part IV, “More STL,” introduces you to algorithms such as sort and other STL con-
structs that help streamline your application and increase its reliability.

n Part V, “Advanced C++ Concepts,” discusses details and features of the program-
ming language that not every application built using it needs to have, yet, knowing
them can help in error analysis or in writing better code.

Conventions Used in This Book
Within the lessons, you’ll find the following elements that provide additional information:

2 Sams Teach Yourself C++ in One Hour a Day

These boxes highlight information that can make your C++ pro-
gramming more efficient and effective.

TIP

These boxes provide additional information related to material you
just read.

NOTE

FAQ

What do FAQs do?

Answer: These Frequently Asked Questions provide greater insight into the use of
the language and clarify potential areas of confusion.

These focus your attention on problems or side effects that can
occur in specific situations.

CAUTION

This book uses various typefaces to help you distinguish C++ code from regular English.
Actual C++ code is typeset in a special monospace font. Placeholders—words or charac-
ters temporarily used to represent the real words or characters you would type in code—
are typeset in italic monospace. New or important terms are typeset in italic.

Sample Code for This Book
The code samples in this book are available online for download from the publisher’s
website.

Introduction 3

These boxes provide clear definitions of essential terms.

DO use the “Do/Don’t” boxes to find a
quick summary of a fundamental prin-
ciple in a lesson.

DON’T overlook the useful information
offered in these boxes.

DO DON’T

LESSON 2
The Anatomy of a C++
Program

C++ programs consist of classes, functions, variables, and other compo-
nent parts. Most of this book is devoted to explaining these parts in
depth, but to get a sense of how a program fits together, you must see a
complete working program.

In this lesson, you will learn

n The parts of a C++ program

n How the parts work together

n What a function is and what it does

A Simple Program
Even the simple program HELLO.cpp from Lesson 1, “Getting Started,” had many inter-
esting parts. This section reviews this program in more detail. Listing 2.1 reproduces the
original version of HELLO.cpp for your convenience.

LISTING 2.1 HELLO.cpp Demonstrates the Parts of a C++ Program

1: #include <iostream>

2:

3: int main()

4: {

5: std::cout << “Hello World!\n”;

6: return 0;

7: }

Output ▼

Hello World!

Analysis ▼

On the first line, the file iostream is included into the current file. Here’s how that
works: The first character is the # symbol, which is a signal to a program called the pre-
processor. Each time you start your compiler, the preprocessor is run first. The pre-
processor reads through your source code, looking for lines that begin with the pound
symbol (#) and acts on those lines before the compiler runs. The preprocessor is dis-
cussed in further detail in Lesson 15, “An Introduction to Macros and Templates,” and in
Lesson 29, “Tapping Further into the Preprocessor.”

The command #include is a preprocessor instruction that says, “What follows is a file-
name. Find that file, read it, and place it right here.” The angle brackets around the file-
name tell the preprocessor to look in all the usual places for this file. If your compiler is
set up correctly, the angle brackets cause the preprocessor to look for the file iostream
in the directory that holds all the include files for your compiler. The file iostream (input-
output-stream) is used by cout, which assists with writing to the console. The effect of
line 1 is to include the file iostream into this program as if you had typed it in yourself.

28 LESSON 2: The Anatomy of a C++ Program

The preprocessor runs before your compiler each time the com-
piler is invoked. The preprocessor translates any line that begins
with a pound symbol (#) into a special command, getting your
code file ready for the compiler.

NOTE

A Simple Program 29

2

Not all compilers are consistent in their support for #includes
that omit the file extension. If you get error messages, you might
need to change the include search path for your compiler or add
the extension to the #include.

The actual program starts with the function named main(). Every C++ program has a
main() function. A function is a block of code that performs one or more actions.
Usually, functions are invoked or called by other functions, but main() is special. When
your program starts, main() is called automatically.

main(), like all functions, must state what kind of value it returns. The return value type
for main() in HELLO.cpp is int, which means that this function returns an integer to the
operating system when it completes. In this case, it returns the integer value 0. A value
may be returned to the operating system to indicate success or failure, or using a failure
code to describe a cause of failure. This may be of importance in situations where an
application is launched by another. The application that launches can use this “exit code”
to make decisions pertaining to success or failure in the execution of the application that
was launched.

NOTE

Some compilers let you declare main() to return void. This is no
longer legal C++, and you should not get into bad habits. Have
main() return int, and simply return 0 as the last line in main().

CAUTION

Some operating systems enable you to test the value returned by
a program. The informal convention is to return 0 to indicate that
the program ended normally.

All functions begin with an opening brace ({) and end with a closing brace (}).
Everything between the opening and closing braces is considered a part of the function.

The meat and potatoes of this program is in the usage of std::cout. The object cout is
used to print a message to the screen. You’ll learn about objects in general in Lesson 10,
“Classes and Objects,” and cout and cin in detail in Lesson 27, “Working with Streams.”
These two objects, cin and cout, are used in C++ to handle input (for example, from the
keyboard) and output (for example, to the console), respectively.

NOTE

cout is an object provided by the standard library. A library is a collection of classes.
The standard library is the standard collection that comes with every ANSI-compliant
compiler.

You designate to the compiler that the cout object you want to use is part of the standard
library by using the namespace specifier std. Because you might have objects with the
same name from more than one vendor, C++ divides the world into namespaces. A
namespace is a way to say, “When I say cout, I mean the cout that is part of the stan-
dard namespace, not some other namespace.” You say that to the compiler by putting the
characters std followed by two colons before the cout.

Here’s how cout is used: Type the word cout, followed by the output redirection opera-
tor (<<). Whatever follows the output redirection operator is written to the console. If you
want a string of characters written, be certain to enclose them in double quotes (“), as
visible in Listing 2.1.

30 LESSON 2: The Anatomy of a C++ Program

You should note that the redirection operator is two greater-than
signs with no spaces between them.

A text string is a series of printable characters. The final two characters, \n, tell cout to
put a new line after the words Hello World!

The main() function ends with the closing brace (}).

A Brief Look at cout
In Lesson 27, you will see how to use cout to print data to the screen. For now, you can
use cout without fully understanding how it works. To print a value to the screen, write
the word cout, followed by the insertion operator (<<), which you create by typing the
less-than character (<) twice. Even though this is two characters, C++ treats it as one.

Follow the insertion character with your data. Listing 2.2 illustrates how this is used.
Type in the example exactly as written, except substitute your own name where you see
Jesse Liberty (unless your name is Jesse Liberty).

LISTING 2.2 Using cout

1: // Listing 2.2 using std::cout

2: #include <iostream>

3: int main()

4: {

5: std::cout << “Hello there.\n”;

NOTE

6: std::cout << “Here is 5: “ << 5 << “\n”;

7: std::cout << “The manipulator std::endl “;

8: std::cout << “writes a new line to the screen.”;

9: std::cout << std::endl;

10: std::cout << “Here is a very big number:\t” << 70000;

11: std::cout << std::endl;

12: std::cout << “Here is the sum of 8 and 5:\t”;

13: std::cout << 8+5 << std::endl;

14: std::cout << “Here’s a fraction:\t\t”;

15: std::cout << (float) 5/8 << std::endl;

16: std::cout << “And a very very big number:\t”;

17: std::cout << (double) 7000 * 7000 << std::endl;

18: std::cout << “Don’t forget to replace Jesse Liberty “;

19: std::cout << “with your name...\n”;

20: std::cout << “Jesse Liberty is a C++ programmer!\n”;

21: return 0;

22: }

Output ▼

Hello there.

Here is 5: 5

The manipulator endl writes a new line to the screen.

Here is a very big number: 70000

Here is the sum of 8 and 5: 13

Here’s a fraction: 0.625

And a very very big number: 4.9e+007

Don’t forget to replace Jesse Liberty with your name...

Jesse Liberty is a C++ programmer!

A Brief Look at cout 31

2

LISTING 2.2 Continued

Some compilers have a bug that requires that you put parenthe-
ses around the addition before passing it to cout. Thus, line 13
would change to

cout << (8+5) << std::endl;

Analysis ▼

The statement #include <iostream> causes the iostream file to be added to your
source code. This is required if you use cout and its related functions.

The program starts with the the simplest use of cout by printing a string; that is, a series
of characters. The symbol \n is a special formatting character. It tells cout to print a
newline character to the screen; it is pronounced “slash-n” or “new line.”

CAUTION

Three values are passed to cout in this line:

std::cout << “Here is 5: “ << 5 << “\n”;

In here, each value is separated by the insertion operator (<<). The first value is the
string “Here is 5: “. Note the space after the colon. The space is part of the string.
Next, the value 5 is passed to the insertion operator and then the newline character
(always in double quotes or single quotes) is passed. This causes the line

Here is 5: 5

to be printed to the console. Because no newline character is present after the first string,
the next value is printed immediately afterward. This is called concatenating the two values.

Note the usage of the manipulator std::endl. The purpose of endl is to write a new line
to the console, thus presenting an alternative to ‘\n’. Note that endl is also provided by
the standard library; thus, std:: is added in front of it just as std:: was added for cout.

32 LESSON 2: The Anatomy of a C++ Program

endl stands for end line and is end-ell rather than end-one. It is
commonly pronounced “end-ell.”

The use of endl is preferable to the use of \n because endl is
adapted to the operating system in use, whereas \n might not be
the complete newline character required on a particular operating
system or platform.

The formatting character \t inserts a tab character. Other lines in the sample demonstrate
how cout can display integers, decimal equivalents, and so on. The terms (float) and
(double) tell cout that the number is to be displayed as a floating-point value. All this
will be explained in Lesson 3, “ Using Variables, Declaring Constants,” when data types
are discussed.

You should have substituted your name for Jesse Liberty. If you do this, the output
should confirm that you are indeed a C++ programmer. It must be true, because the com-
puter said so!

Using the Standard Namespace
You’ll notice that the use of std:: in front of both cout and endl becomes rather dis-
tracting after a while. Although using the namespace designation is good form, it is
tedious to type. The ANSI standard allows two solutions to this minor problem.

NOTE

The first is to tell the compiler, at the beginning of the code listing, that you’ll be using
the standard library cout and endl, as shown on lines 5 and 6 of Listing 2.3.

LISTING 2.3 Using the using Keyword

1: // Listing 2.3 - using the using keyword

2: #include <iostream>

3: int main()

4: {

5: using std::cout; // Note this declaration

6: using std::endl;

7:

8: cout << “Hello there.\n”;

9: cout << “Here is 5: “ << 5 << “\n”;

10: cout << “The manipulator endl “;

11: cout << “writes a new line to the screen.”;

12: cout << endl;

13: cout << “Here is a very big number:\t” << 70000;

14: cout << endl;

15: cout << “Here is the sum of 8 and 5:\t”;

16: cout << 8+5 << endl;

17: cout << “Here’s a fraction:\t\t”;

18: cout << (float) 5/8 << endl;

19: cout << “And a very very big number:\t”;

20: cout << (double) 7000 * 7000 << endl;

21: cout << “Don’t forget to replace Jesse Liberty “;

22: cout << “with your name...\n”;

23: cout << “Jesse Liberty is a C++ programmer!\n”;

24: return 0;

25: }

Output ▼

Hello there.

Here is 5: 5

The manipulator endl writes a new line to the screen.

Here is a very big number: 70000

Here is the sum of 8 and 5: 13

Here’s a fraction: 0.625

And a very very big number: 4.9e+007

Don’t forget to replace Jesse Liberty with your name...

Jesse Liberty is a C++ programmer!

Analysis ▼

You will note that the output is identical to the previous listing. The only difference
between Listing 2.3 and Listing 2.2 is that on lines 5 and 6, additional statements inform

Using the Standard Namespace 33

2

the compiler that two objects from the standard library will be used. This is done with
the keyword using. After this has been done, you no longer need to qualify the cout and
endl objects.

The second way to avoid the inconvenience of writing std:: in front of cout and endl is
to simply tell the compiler that your listing will be using the entire standard namespace;
that is, any object not otherwise designated can be assumed to be from the standard
namespace. In this case, rather than writing using std::cout;, you would simply write
using namespace std;, as shown in Listing 2.4.

LISTING 2.4 Using the namespace Keyword

1: // Listing 2.4 - using namespace std

2: #include <iostream>

3: int main()

4: {

5: using namespace std; // Note this declaration

6:

7: cout << “Hello there.\n”;

8: cout << “Here is 5: “ << 5 << “\n”;

9: cout << “The manipulator endl “;

10: cout << “writes a new line to the screen.”;

11: cout << endl;

12: cout << “Here is a very big number:\t” << 70000;

13: cout << endl;

14: cout << “Here is the sum of 8 and 5:\t”;

15: cout << 8+5 << endl;

16: cout << “Here’s a fraction:\t\t”;

17: cout << (float) 5/8 << endl;

18: cout << “And a very very big number:\t”;

19: cout << (double) 7000 * 7000 << endl;

20: cout << “Don’t forget to replace Jesse Liberty “;

21: cout << “with your name...\n”;

22: cout << “Jesse Liberty is a C++ programmer!\n”;

23: return 0;

24: }

Analysis ▼

Again, the output is identical to the earlier versions of this program. The advantage to
writing using namespace std; is that you do not have to specifically designate the
objects you’re actually using (for example, cout and endl;). The disadvantage is that
you run the risk of inadvertently using objects from the wrong library.

34 LESSON 2: The Anatomy of a C++ Program

Purists prefer to write std:: in front of each instance of cout or endl. The lazy prefer to
write using namespace std; and be done with it. In this book, most often the individual
items being used are declared, but from time to time each of the other styles are pre-
sented just for fun.

Commenting Your Programs
When you are writing a program, your intent is always clear and self-evident to you.
Funny thing, though—a month later, when you return to the program, it can be quite con-
fusing and unclear. No one is ever certain how the confusion creeps into a program, but it
nearly always does.

To fight the onset of bafflement, and to help others understand your code, you need to
use comments. Comments are text that is ignored by the compiler, but that can inform
the reader of what you are doing at any particular point in your program.

Types of Comments
C++ comments come in two flavors: single-line comments and multiline comments.
Single-line comments are accomplished using a double slash (//) . The double slash tells
the compiler to ignore everything that follows, until the end of the line.

Multiline comments are started by using a forward slash followed by an asterisk (/*).
This “slash-star” comment mark tells the compiler to ignore everything that follows until
it finds a “star-slash” (*/) comment mark. These marks can be on the same line or they
can have one or more lines between them; however, every /* must be matched with a
closing */.

Many C++ programmers use the double-slash, single-line comments most of the time
and reserve multiline comments for blocking out large blocks of a program. You can
include single-line comments within a block commented out by the multiline comment
marks; everything, including the double-slash comments, is ignored between the multi-
line comment marks.

Commenting Your Programs 35

2

The multiline comment style has been referred to as C-style
because it was introduced and used in the C programming lan-
guage. Single-line comments were originally a part of C++ and not
a part of C; thus, they have been referred to as C++-style. The cur-
rent standards for both C and C++ now include both styles of
comments.

NOTE

Using Comments
Some people recommend writing comments at the top of each function, explaining what
the function does and what values it returns. Functions should be named so that little
ambiguity exists about what they do, and confusing and obscure bits of code should be
redesigned and rewritten so as to be self-evident. Comments should not be used as an
excuse for obscurity in your code.

This is not to suggest that comments ought never be used, only that they should not be
relied upon to clarify obscure code; instead, fix the code. In short, you should write your
code well, and use comments to supplement understanding. Listing 2.5 demonstrates the
use of comments, showing that they do not affect the processing of the program or its
output.

LISTING 2.5 Demonstrates Comments

1: #include <iostream>

2:

3: int main()

4: {

5: using std::cout;

6:

7: /* this is a comment

8: and it extends until the closing

9: star-slash comment mark */

10: cout << “Hello World!\n”;

11: // this comment ends at the end of the line

12: cout << “That comment ended!\n”;

13:

14: // double-slash comments can be alone on a line

15: /* as can slash-star comments */

16: return 0;

17: }

Output ▼

Hello World!

That comment ended!

Analysis ▼

The comment on lines 7–9 is completely ignored by the compiler, as are the comments
on lines 11, 14, and 15. The comment on line 11 ended with the end of the line. The
comments on lines 7 and 15 required a closing comment mark.

36 LESSON 2: The Anatomy of a C++ Program

Functions 37

2

A third style of comment is supported by some C++ compilers.
These comments are referred to as document comments and are
indicated using three forward slashes (///). The compilers that
support this style of comment allow you to generate documenta-
tion about the program from these comments. Because these are
not currently a part of the C++ standard, they are not covered
here.

A Final Word of Caution About Comments
Comments that state the obvious are less than useful. In fact, they can be counterproduc-
tive because the code might change and the programmer might neglect to update the
comment. What is obvious to one person might be obscure to another, however, so judg-
ment is required when adding comments. The bottom line is that comments should not
say what is happening, they should say why it is happening.

Functions
Although main() is a function, it is an unusual one. To be useful, a function must be
called, or invoked, during the course of your program. main() is invoked by the operating
system.

A program is executed line-by-line in the order it appears in your source code until a
function is reached. Then the program branches off to execute the function. When the
function finishes, it returns control to the line of code immediately following the call to
the function.

A good analogy for this is sharpening your pencil. If you are drawing a picture and your
pencil point breaks, you might stop drawing, go sharpen the pencil, and then return to
what you were doing. When a program needs a service performed, it can call a function
to perform the service and then pick up where it left off when the function is finished
running. Listing 2.6 demonstrates this idea.

NOTE

Functions are covered in more detail in Lesson 6, “Organizing
Code with Functions.” The types that can be returned from a func-
tion are covered in more detail in Lesson 3, “Using Variables,
Declaring Constants.” The information provided in the current les-
son is to present you with an overview because functions will be
used in almost all of your C++ programs.

NOTE

LISTING 2.6 Demonstrating a Call to a Function

1: #include <iostream>

2:

3: // function Demonstration Function

4: // prints out a useful message

5: void DemonstrationFunction()

6: {

7: std::cout << “In Demonstration Function\n”;

8: }

9:

10: // function main - prints out a message, then

11: // calls DemonstrationFunction, then prints out

12: // a second message.

13: int main()

14: {

15: std::cout << “In main\n” ;

16: DemonstrationFunction();

17: std::cout << “Back in main\n”;

18: return 0;

19: }

Output ▼

In main

In Demonstration Function

Back in main

Analysis ▼

The function DemonstrationFunction() is defined on lines 6–8. When it is called, it
prints a message to the console screen and then returns.

Line 13 is the beginning of the actual program. On line 15, main() prints out a message
saying it is in main(). After printing the message, line 16 calls
DemonstrationFunction(). This call causes the flow of the program to go to the
DemonstrationFunction() function on line 5. Any commands in
DemonstrationFunction() are then executed. In this case, the entire function consists of
the code on line 7, which prints another message. When DemonstrationFunction()
completes (line 8), the program flow returns to from where it was called. In this case, the
program returns to line 17, where main() prints its final line.

Using Functions
Functions either return a value or they return void, meaning they do not return anything.
A function that adds two integers might return the sum, and thus would be defined to

38 LESSON 2: The Anatomy of a C++ Program

return an integer value. A function that just prints a message has nothing to return and
would be declared to return void.

Functions consist of a header and a body. The header consists, in turn, of the return type,
the function name, and the parameters to that function. The parameters to a function
enable values to be passed into the function. Thus, if the function were to add two num-
bers, the numbers would be the parameters to the function. Here’s an example of a typi-
cal function header that declares a function named Sum that receives two integer values
(first and second) and also returns an integer value:

int Sum(int first, int second)

A parameter is a declaration of what type of value will be passed in; the actual value
passed in when the function is called is referred to as an argument. Many programmers
use the terms parameters and arguments as synonyms. Others are careful about the tech-
nical distinction. The distinction between these two terms is not critical to your program-
ming C++, so you shouldn’t worry if the words get interchanged.

The body of a function consists of an opening brace, zero or more statements, and a clos-
ing brace. The statements constitute the workings of the function.

A function might return a value using a return statement. The value returned must be of
the type declared in the function header. In addition, this statement causes the function to
exit. If you don’t put a return statement into your function, it automatically returns void
(nothing) at the end of the function. If a function is supposed to return a value but does
not contain a return statement, some compilers produce a warning or error message.

Listing 2.7 demonstrates a function that takes two integer parameters and returns an inte-
ger value. Don’t worry about the syntax or the specifics of how to work with integer val-
ues (for example, int first) for now; that is covered in detail in Lesson 3.

LISTING 2.7 FUNC.cpp Demonstrates a Simple Function

1: #include <iostream>

2: int Add (int first, int second)

3: {

4: std::cout << “Add() received “<< first << “ and “<< second <<

➥ “\n”;

5: return (first + second);

6: }

7:

8: int main()

9: {

10: using std::cout;

11: using std::cin;

12:

13:

Functions 39

2

14: cout << “I’m in main()!\n”;

15: int a, b, c;

16: cout << “Enter two numbers: “;

17: cin >> a;

18: cin >> b;

19: cout << “\nCalling Add()\n”;

20: c=Add(a,b);

21: cout << “\nBack in main().\n”;

22: cout << “c was set to “ << c;

23: cout << “\nExiting...\n\n”;

24: return 0;

25: }

Output ▼

I’m in main()!

Enter two numbers: 3 5

Calling Add()

In Add(), received 3 and 5

Back in main().

c was set to 8

Exiting...

Analysis ▼

The function Add() is defined on line 2. It takes two integer parameters and returns an
integer value. The program itself begins on line 8. The program prompts the user for two
numbers (line 16). The user types each number, separated by a space, and then presses
the Enter key. The numbers the user enters are placed in the variables a and b on lines 17
and 18. On line 20, the main() function passes the two numbers typed in by the user as
arguments to the Add() function.

Processing branches to the Add() function, which starts on line 2. The values from a and
b are received as parameters first and second, respectively. These values are printed
and then added. The result of adding the two numbers is returned on line 5, at which
point the function returns to the function that called it—main(), in this case.

On lines 17 and 18, the cin object is used to obtain a number for the variables a and b.
Throughout the rest of the program, cout is used to write to the console. Variables and
other aspects of this program are explored in depth in the next lesson.

40 LESSON 2: The Anatomy of a C++ Program

LISTING 2.7 Continued

Methods Versus Functions
A function by any other name is still just a function. It is worth noting here that different
programming languages and different programming methodologies might refer to func-
tions using a different term. One of the more common words used is method. Method is
simply another term for functions that are part of a class.

Summary
The difficulty in learning a complex subject, such as programming, is that so much of
what you learn depends on everything else there is to learn. Today’s lesson introduced
the basic parts of a simple C++ program.

Q&A
Q What does #include do?

A This is a directive to the preprocessor that runs when you call your compiler. This
specific directive causes the file in the <> named after the word #include to be
read in as if it were typed in at that location in your source code.

Q What is the difference between // comments and /* style comments?

A The double-slash comments (//) expire at the end of the line. Slash-star (/*) com-
ments are in effect until a closing comment mark (*/). The double-slash comments
are also referred to as single-line comments, and the slash-star comments are often
referred to as multiline comments. Remember, not even the end of the function ter-
minates a slash-star comment; you must put in the closing comment mark or you
will receive a compile-time error.

Q What differentiates a good comment from a bad comment?

A A good comment tells the reader why this particular code is doing whatever it is
doing or explains what a section of code is about to do. A bad comment restates
what a particular line of code is doing. Lines of code should be written so that they
speak for themselves. A well-written line of code should tell you what it is doing
without needing a comment.

Q&A 41

2

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to the
next lesson.

Quiz
1. What is the difference between the compiler and the preprocessor?

2. Why is the function main() special?

3. What are the two types of comments and how do they differ?

4. Can comments be nested?

5. Can comments be longer than one line?

Exercises
1. Write a program that writes I love C++ to the console.

2. Write the smallest program that can be compiled, linked, and run.

3. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can
you fix it?
1: #include <iostream>

2: main()

3: {

4: std::cout << Is there a bug here?”;

5: }

4. Fix the bug in Exercise 3 and recompile, link, and run it.

5. Modify Listing 2.7 to include a subtract function. Name this function Subtract()
and use it in the same way that the Add() function was called. You should also pass
the same values that were passed to the Add() function.

42 LESSON 2: The Anatomy of a C++ Program

SYMBOLS

! (logical NOT) operator, 119

!= (not equal) operator, 106

” (quotation marks), 733

(pound symbol), 28

#define preprocessor
directives, 428

#includes, 29

% (modulus) operator, 99

%d conversion specifier, 672

%f conversion specifier, 672

%l conversion specifier, 672

%ld conversion specifier, 672

%s conversion specifier, 672

& (address of) operator,
204-206, 233-234

& (AND) operator, 232,
255-256, 744

&& (logical AND) operator,
118

() (parentheses)

macro syntax, 430-431

nesting, 104

* (indirection) operator,
208-209, 255

+ (addition) operator, 397-399

++ (increment) operator, 101,
387-390

postfix, 102

prefix, 101-103

+= (self-assigned addition
operator), 100

- (decrement) operator,
101-103, 387-390

- (subtraction) operator, 98-99,
397-399

. (dot) operator, 277

/* comment notation, 35

// comment notation, 35

0 (null character), 651

= (assignment) operator, 53,
97

= (equal sign), 77

= (less than or equals)
operator, 106

= 0 notation, 373

== (equals) operator, 106

?[:] (conditional operator),
121-123

A

abstract classes, 381

abstract data types (ADTs),
368-373

declaring, 373

deriving from other ADTs,
378-381

pure virtual functions, 372

abstraction

hierarchies of, 377-380

in programming, 159

Index

access control keywords, 277

access labels, 754-755

accessing

arrays, 79

class members, 271

data members, 273-274

private, 272, 275

public, 273-274

derived objects, 307-308

elements, 72-74, 480-482

memory addresses, 212-213

methods from base classes,
328

STL string classes, 461-463

accessor methods, 275-276

adaptive containers, 601. See
also containers

queues, 602-603

instantiating, 607

member functions,
607-610

priority queues, 610-614

stacks, 602

instantiating, 603-604

member functions,
604-606

adaptive function objects, 554

Add() function, 40

adding

constructors and destructors,
281

inheritance to two lists, 350

addition (+) operator, 100,
397-399

address of (&) operator,
204-206, 233-234

addresses

memory addresses, 204,
209-210

determining, 204-206

examining, 212-213

retrieving, 208-209

storing in pointers,
206-207

target addresses

references, 233

returning, 233-236

ADTs (abstract data types),
368-373

declaring, 373

deriving from other ADTs,
378-381

pure virtual functions, 372

\a escape code, 62

aggregation, 337-338

algorithms

containers, 573

STL, 569

classification of, 570-573

copy and remove
operations, 585-588

counting and finding
elements, 573-576

initializing elements,
578-581

inserting elements,
595-597

overview of, 570

partitioning ranges,
593-595

processing elements,
581-583

replacing elements,
589-590

searching ranges,
576-578

sorting collections,
591-593

transforming ranges,
583-585

aliases, creating with typedef,
55-56

aligning braces ({ }), 750

allocating

memory, 218-219

pointers, 220

ambiguity resolution (multiple
inheritance), 358-359

American National Standards
Institute (ANSI), 14-15

ampersands (&), 744

address of operator, 204-206,
233-234

logical AND (&&) operator,
118

reference operator, 232,
255-256

AND bitwise operator, 744

AND operators, logical (&&),
118

ANSI (American National
Standards Institute), 14-15

appending files, 678-679

applications. See programs

applying

const cast, 422-423

conventional pointers, 630

dynamic cast, 419-421

function objects, 554

binary functions, 561-563

binary predicates,
563-565

unary functions, 554-559

unary predicates, 559-561

private inheritance, 335-337

reinterpret cast, 421-422

static cast, 418

STL string classes, 459

accessing, 461-463

case conversion, 469-470

concatenation, 463-464

find member function,
464-466

instantiating, 459-461

reversing, 468-469

template-based
implementation, 471

truncating, 467-468

templates, 440-441

Area() function, 133

830 access control keywords

argc (argument count), 683

arguments, 39, 129, 141-142

command-line processing,
682-686

defaults, 145-147

passing

to base constructors,
311-315

by reference, 237-249

by value, 137-138,
238-239

argv (argument vector), 683

arithmetic operators, 97

combining with assignment
operators, 100

modulus (%), 99

subtraction (-), 98-99

arrays, 72

bugs, 74

char, 84-86

characters, 458

declaring, 72, 78-79

defined, 72

elements, 72-74, 79

fence post errors, 76-77

filling, 85-86

initializing, 77-78

integer arrays, 73

memory, 84

multidimensional, 80

declaring, 80

initializing, 81-82

names, 213-215

pointer arrays, 215

pointer to, 213-215

sizes, 78-79

STL dynamic array class

accessing elements in
vectors, 480-482

deleting elements from
vectors, 482-484

inserting elements into
vectors, 476-479

instantiating vectors,
474-475

need for, 473

size and capacity of
vectors, 484-485

vectors, 474

writing past the end of, 74-76

ASCII character sets, 47

assemblers, 722

assert() macro, 734-735, 755

debugging functions,
735-737

exceptions, 736

source code, 734-735

assigning

addresses to references,
235-236

values to variables, 53-55,
271

assignment operators (=), 53,
97, 399-401

combining with math
operators, 100

associative containers,
448-449

asterisks (*)

indirection operator, 208-209

syntax, 255

auto_ptr smart pointers,
638-640

B

backslashes (\), 62

backspaces, 62

base 10 numbers, 763-764

converting to base 2, 769-770

converting to base 6, 766

converting to base 7, 765-766

converting to binary, 766-767

base 16 numbers, 768-772

base 2 numbers, 766-768

base 7 numbers, 765

base 8 numbers, 764

base classes, 302

common, 359

functions, 316-317

methods

accessing, 328

calling, 320-321

hiding, 318-319

base constructors, 309

overloading, 311-315

passing arguments to,
311-315

base destructors, 309

base methods, calling,
320-321

bases classes, 359-363

\b escape code, 62

bidirectional iterators, 452

binary files, compared to text
files, 680-682

binary functions, 554-563

binary numbers, 766-768

binary operators

addition/subtraction, 397-399

assignment, 399-401

types, 396

binary predicates, 554,
563-565

binding, dynamic, 326

bits, 767

clearing, 745-746

fields, 746-750

flags, 617

bitset class, 618-623

vector bool, 623-625

flipping, 746

setting, 745

twiddling, 744-750

bitset class, 618-621, 623

bitwise operators, 744

AND, 744

complement, 745

exclusive OR, 745

OR, 745

How can we make this index more useful? Email us at indexes@samspublishing.com

bitwise operators 831

blocks, 94-95

catch, 693, 703-706

try, 693-696

body (function), 39

bool data type, 47, 105

braces ({ }), 29, 94

aligning, 750

nested if statements, 115-118

branching

programs, 162

relational operators, 108-109

break statements, 173-175

breaking while loops, 173

breakpoints, 721

buffers, 645-646

copying strings to, 87-88

implementing, 647

uninitialized, 85

bugs, 18, 690. See also
debugging; troubleshooting

arrays, 74

debugging, 721

assemblers, 722

breakpoints, 721

examining memory, 722

watch points, 721

fence post errors, 76-77

stray pointers, 226

built-in functions, 128-131

built-in text editors, 24

bulletproof programs, 690

bytes, 767

C

c filename extension, 16-17

C language, 14, 35

C# language, 50

calling

constructors, 355-358

functions, 37-38, 153-162

methods, 320-321

cannot find file error
messages, 20

capabilities classes
(inheritance), 368

capacity of vectors, 484-485

capitalization style guidelines,
753

caret (^), 745

carriage return escape
characters (\r), 62

case conversion, STL string
classes, 469-470

case values (switch
statements), 192

case-sensitivity, variable
names, 49

casting down, inheritance,
347, 350

casting operators, 417

const cast, 422-423

defined, 416

dynamic cast, 419-421

need for, 416

reinterpret cast, 421-422

static cast, 418

troubleshooting, 423-424

unpopular styles, 417

Cat class

accessor functions, 286

Cat object, initializing, 283,
285

data members, accessing,
273-274

declaring, 269, 289

implementing, 290

initializing, 283-285

methods

accessor methods, 276

GetAge(), 280

GetWeight(), 289

implementing, 278, 280

Meow(), 276, 281

SetAge(), 280-281

CAT.cpp (code listing), 290

Cat.h (code listing), 289

catch blocks, 693

multiple specifications,
703-706

placing, 702

catching

exceptions, 702-703

multiple exceptions, 703-706

Celsius, converting to
Fahrenheit, 135

cerr object, 648

char arrays, 84-86

char data type, 47

char variables, 45, 59-60

character encoding, 60-61

escape characters, 61-62

sizes, 59

characters, 59-60

arrays, declaring, 458

ASCII character sets, 47

encoding, 60-61

escape characters, 61-62

fill characters, setting,
667-668

null, 84, 651

reference parameters (get()
method), 656-657

sizes, 59

STL string classes, accessing,
461-463

cin object, 648-650

input

multiple input, 651-654

strings, 651

member functions, 654-657

methods

get(), 655-659

getline(), 659-660

ignore(), 660-662

peek(), 662-663

putback(), 662-663

return values, 654

class keyword, 269

832 blocks

class statement, 277-278

classes, 268, 277

abstract, 381

base, 316-317. See also base
classes

bitset, 618-623

Cat

declaring, 269, 289

implementing, 290

comparing

to objects, 270-271

to structures, 295

container, 513

advantages of set and
multiset, 529

deleting elements,
519-528

inserting elements,
515-517

instantiating set objects,
514-515

map and multimap, 533

searching elements,
517-518

data members, 268

accessing, 271-274

other classes as, 291-295

private, 272-273, 306-307

protected, 306-307

public, 272-274

declaring, 269, 288

defined, 268

defining, 755

derived, 302-306, 368-372

Dog, 304-306

exceptions, creating, 698-702

fstream, 647

inheritance

casting down, 347-350

limitations, 344-346

percolating shared
functions, 346-347

relationships among, 303

invariants, 737-742

ios, 647

iostream, 647

istream, 647

member functions, 269

methods

constants, 286-287

defining, 272

implementing, 278-281

inline, 288-290

public accessor methods,
275-276

mixins, 368

naming conventions, 269-270

objects

defining, 270, 277

values, 271

ofstream, 675

point, declaring, 291-292

polymorphism, 13

Rectangle, declaring,
292-294

security, 277

Shape, 369-371

shared bases classes, 359-363

STLs

accessing, 461-463,
480-482

applying, 459

case conversion, 469-470

concatenation, 463-464

deleting elements from
vectors, 482-484

deque, 486-488

find member function,
464-466

inserting elements into
vectors, 476-479

instantiating, 459-461,
474-475

need for, 458-459, 473

reversing, 468-469

size and capacity of
vectors, 484-485

strings, 457

template-based
implementation, 471

truncating, 467-468

vectors, 474

String, 89-90

subclasses, 291-295

templates, 436-439

writing to files, 680-682

classification of STL
algorithms, 570

mutating, 571-573

nonmutating, 570-571

clearing bits, 745-746

clog object, 648

code listings

abstract data types

deriving from other
ADTs, 378-380

example, 373

accessing STL strings,
461-463

address of (&) operator, 205

arrays

characters

filling with, 86

consts and enums, 78

filling, 85-86

integer array, 73

pointer relationships, 214

writing past the end of,
75

bit fields, 747-748

bitset class

instantiating, 618-619

member methods,
620-623

operators, 619-620

Calendar class, 388-389

Cat.cpp, 290

Cat.h, 289

cin object

example, 649-650

multiple input, 651-653

How can we make this index more useful? Email us at indexes@samspublishing.com

code listings 833

classes

accessor methods, 276

declaring, 291-292

public data members, 274

command-line arguments,
683-685

comments example, 36

compiler errors, 23

compiling with symbols, 721

const pointers, passing,
249-251

constant integers, 66

cout object, 30-32

adjusting width of output,
666-667

data slicing when passing by
value, 328-330

dynamic casting, 419-421

else keyword, 111

enumerated constants, 65

exceptions

class hierarchies, 706-709

multiple, 703-705

sample program, 691

templates, 717-719

throwing, 697-701

expressions, evaluating, 96

files

appending, 678-679

opening for input/output,
676-677

writing a class to,
681-682

fill() method, 668

for loop, 182

free store, creating/deleting
objects, 223

FUNC.cpp, 39-40

functions

binary, 561-563

binary predicates,
563-565

calling, 38

declaring, 132-133

default parameters, 146

inline, 152-153

objects holding state,
557-558

polymorphism, 148-150

unary, 555-556

unary predicates, 559-560

get() methods

character arrays, 658

character reference
parameters, 656-657

with no parameters,
655-656

getline() method, 659

getting data out of an
exception object, 709

HELLO.cpp, 20, 28

if statements

braces ({}), 115-117

else keyword, 111-112

nesting, 113-114

ignore() method, 661

inheritance

calling multiple
constructors, 355-357

casting down, 348-349

common base classes,
359-362

constructors and
destructors called,
309-311

derived objects, 307-308

If Horses Could Fly
example (limitations of
inheritance), 345-346

overloaded constructors,
311-314

simple inheritance,
304-305

virtual, 364-366

inline functions, 433

Invariants() method, 737-742

linked lists

deleting elements,
497-500

inserting elements,
493-497

instantiating, 492-493

reversing elements,
500-501

sorting elements, 502-511

loops

break and continue
statements, 173-174

do...while, 178-179

Fibonacci series
application, 190-191

forever loop, 196-198

null statements in for
loops, 184-186

simple while loop, 170

while loops reexamined,
180-181

macros

assert(), 734-735

parentheses, 430-431

map and multimap

customizing sort
predicates, 543-547

deleting elements,
540-543

inserting elements,
535-538

instantiating, 535

searching elements,
538-540

memory leaks, 258

methods

calling base method from
overridden methods,
320-321

calling multiple virtual
functions, 324-325

constructors and
destructors, 283-285

hiding, 318-319

implementing, 279-280

834 code listings

overriding, 316-317

virtual, 323

virtual copy constructors,
331-333

multiple return statements,
143-144

namespace keyword, 34

operator() function, 411-412

operators

assignment, 400-405

binary, 397-399

branching based on
relational operators,
108-109

conditional, 122

conversion, 394

overloading, 406-408

prefix and postfix, 102

subscript, 409-410

subtraction and integer
overflow, 98

passing

objects by reference,
247-248

by reference in
exceptions, 713-716

by reference using
pointers, 239-240

by value, 138, 238

peek() and putback()
methods, 662-663

pointers

allocating and deleting,
220

applying, 220

data manipulation,
210-211

examining memory
addresses, 212-213

stray, creating, 224

postfix increment operators,
390

printf() method, 672-673

printing

characters based on
numbers, 60-61

values in DEBUG mode,
742-743

private inheritance, 335-337

pure virtual functions,
374-377

put() method, 664

queues

instantiating, 607

member functions,
607-610

priority, 610-614

Rect.cpp, 292-293

recursion, 155-156

references

addresses, 234

assigning to, 235-236

creating, 232-233

to nonexistent objects,
257

passing to objects,
252-253

returning values with,
245

relational operators, 108

returning values with
pointers, 243

set and multiset

deleting elements,
519-528

inserting elements,
515-517

instantiating, 514-515

searching elements,
517-518

setf() method, 669-670

Shape classes, 369-371

signed integers, wrapping
around, 58-59

simple smart Pointer class,
392

smart pointers

auto_ptr, 638-640

Copy on Write, 635

deep copy, 633-635

destructive copy, 636-637

implementing, 631-632

reference counting,
635-636

reference-linked, 636

types of, 632-633

solving the nth Fibonacci
number, 191

stacks

instantiating, 603-604

member functions,
604-606

std[::]auto_ptr, 391

STL algorithms

copy and remove
operations, 585-588

counting and finding
elements, 573-576

initializing elements,
578-581

inserting elements,
595-597

partitioning ranges,
593-595

processing elements,
581-583

replacing elements,
589-590

searching ranges,
576-578

sorting collections,
591-593

transforming ranges,
583-585

STL deque class, 486-488

STL string classes

case conversion, 469-470

concatenation, 463-464

find member function,
464-466

reversing, 468-469

How can we make this index more useful? Email us at indexes@samspublishing.com

code listings 835

template-based
implementation, 471

truncating, 467-468

STL string instantiation,
460-461

strcpy() method, 87

String class, 89

strncpy() method, 88

swap() rewritten with
references, 241-242

switch statement, 193

templates

classes, 439

connecting, 453-454

typedef keyword, 55-56

unsigned integers, wrapping
around, 57

using keyword, 33

variables, 54

global and local, 139-140

local, 134-135

scope, 136-137

sizes, 52

vectors

accessing elements in,
480-482

bool, 623-625

deleting elements from,
482-484

inserting elements into,
476-479

instantiating, 474-475

size and capacity of,
484-485

virtual functions in
exceptions, 713-716

write() method, 665

code rot, 720

code space, 159

collections

elements, inserting, 595-597

ranges, searching, 576-578

sorting, 591-593

combining

math operators with
assignment operators, 100

references and pointers, 255

command-line processing,
682-686

commands

DOS, redirect output ([<]),
648

preprocessor

#define, 428

#ifndef, 730

comments, 35

/* (C-style), 35

// (C++-style), 35

applying, 36-37

readability, 754

troubleshooting, 37

common base classes, 359

comparing private inheritance
to aggregation, 337-338

comparison operators,
overloading, 401-405

compile time, 25

errors, 287

compilers, 22, 428, 728

compiling with symbols, 721

errors, 23-24

intermediate files, saving,
728

macros, assert(), 734-735

overview, 9

troubleshooting, 23

compiling

errors, 23-24

Hello World program, 20-22

source code, 17-18

with symbols, 721

complement operator, 745

composition, 337-338

compound statements, 94-95

concatenation, 733

STL string classes, 463-464

strings, 733

values, 32

condition states, 675

conditional operator (?[:]),
121-123

connecting STL classes,
453-454

const cast, applying, 422-423

const methods, 286

advantages, 287

declaring, 286

implementing, 286

const pointers, 227

declaring, 227

passing, 249-252

const statement, 63-64, 286,
755

constants, 62. See also
variables

changing, 64

defining

const statement, 63-64

#define statement, 63

enumerated, 64-65

example, 65-66

syntax, 64

values, 64-65

literals, 62

substitutions, 729

symbolic, 62-63

constructors, 281

base, passing arguments to,
311-315

copy constructors, virtual,
331-334

defaults, 282-285

inheritance, 309-311

multiple, calling, 355-358

overloading derived classes,
311, 315

consts in arrays, 78-79

836 code listings

container classes, 513

advantages of set and
multiset, 529

elements

deleting, 519-528

inserting, 515-517

searching, 517-518

map and multimap, 533

customizing sort
predicates, 543-547

deleting elements,
540-543

inserting elements,
535-538

instantiating, 535

searching elements,
538-540

set, instantiating, 514-515

containers

adaptive, 601

instantiating queues, 607

instantiating stacks,
603-604

priority queues, 610-614

queue member functions,
607-610

queues, 602-603

stack member functions,
604-606

stacks, 602

algorithms, 573

classes. See container classes

elements, initializing,
578-581

STL, 448

associative, 448-449

selecting, 449-451

sequential, 448

continue statements, 173-175

conventional pointers,
applying, 630

conventions, naming, 49-50

Convert() function, 135

converting

base 10 to base 6, 766

base 10 to base 7, 765-766

base 10 to binary, 766-767

decimals to binary, 769-770

Fahrenheit/Celsius, 135

operators, programming,
394-395

specifiers, 671-672

copy constructors, virtual,
331-334

copy function, 585-588

Copy on Write (COW) smart
pointers, 635

copying

algorithms, 572

STL string classes, 459-461

strings, 87-88

counting

algorithms, 570

elements, 573-576

numbers, 176-177

references, 635-636

variables, 188

cout object, 30-32, 648, 663

example, 30-31

fill characters, 667-668

flags, 668-671

methods

fill(), 667-668

flush(), 663

put(), 664-665

setf(), 668-671

width(), 666-667

write(), 665-666

output width, 666-667

passing values to, 32

COW (Copy on Write) smart
pointers, 635

cp filename extension, 16

cpp filename extension, 16-17,
287

CPUs, registers, 159

customizing

sorting, 543-547

unary operators, 394-395

cycles, development, 18

D

dangling pointers, 224-226

data members

accessing, 271-274

classes, 291-295

private, 272-273, 306-307

protected, 306-307

public, 272-274

security, 277

data slicing, 328-330

data types, 47

abstract, 368-372

declaring, 373

deriving from other
ADTs, 378-381

example, 372-373

pure virtual functions,
372

bool, 105

creating, 267

deallocating memory, 219-221

DEBUG mode, 431, 742-749

debugging, 18, 721. See also
troubleshooting

assemblers, 722

assert() macro, 735-737

breakpoints, 721

examining memory, 722

inclusion guards, 731-732

printing interim values, 431,
742-749

watch points, 721

dec flag, 669

decimal format, 763

How can we make this index more useful? Email us at indexes@samspublishing.com

decimal format 837

decimal numbers, 763-764

converting to base 6, 766

converting to base 7, 765-766

converting to binary, 766-770

declaring

abstract data types, 373

arrays, 72, 78-79

multidimensional, 80

two-dimensional, 83

character arrays, 458

classes, 269, 288

Cat, 269, 289

derived classes, 304-306

Point, 291-292

Rectangle, 292

constant pointers, 227

functions, 130

inline, 151-153, 432-433

methods

const, 286

file locations, 287-288

multiple inheritance, 354

pointers, 206, 216

references, 232-233

structures, 295-296

templates, 436

with default parameters,
438

with multiple parameters,
437-438

virtual inheritance, 367

decrement (—) operator,
101-103, 387-390

deep copy smart pointers,
633-635

default constructors, 282-285

default destructors, 282-285

default parameters

functions, 145-147

templates, declaring, 438

default statement, 194

deference operators, 391

#define statements

constant substitutions, 729

tests, 729-730

define statement, 63

defining

classes, 755

constant substitutions, 729

constants

const statement, 63-64

#define statement, 63

functions, 131-133, 272, 288

macros, 429-430

methods, 272, 287-288

objects, 270, 277

string substitutions, 428, 728

templates, 434-435

variables, 45-50

case-sensitivity, 49

local, 134

multiple variables, 53

reserved words, 50

delete statement, 219-221

deleting

duplicates, 591-593

elements

from vectors, 482-484

linked lists, 497-500

map and multimap,
540-543

set or multiset, 519-528

objects from free stores,
222-224

pointers, 220

DemonstrationFunction()
function, 38

deques, STL deque class,
486-488

dereference operator (*),
208-209

dereferencing pointers, 216

derivation

ADTs from other ADTs,
378-381

inheritance, 302-303

syntax, 304-306

derived classes, 302, 368-372

constructors, overloading,
311-315

data members, accessing,
307-308

declaring, 304-306

derived types, 13

designating standard
namespaces, std[::] notation,
32

designing programs, 15-16

destructive copy smart
pointers, 636-637

destructors, 282

defaults, 282-285

inheritance, 309-311

virtual, 330-331

determining memory
addresses, 204-206

development

cycles, 18

environments, 16

displaying trailing zeros, 668

division integers, 99

do...while loops, 177-178

example, 178-179

syntax, 179-180

documents, inserting
comments, 37

Dog class

constructors, 309-311

declaring, 304-306

destructors, 309-311

DOS commands, redirect
output ([<]), 648

dot operator (.), 277

DoTaskOne() function, 198

double data type, 47

838 decimal numbers

double quote (“) escape
characters, 62

Double() function, 153

Doubler() function, 144

duplicates, deleting, 591-593

dynamic binding, 326

dynamic cast, applying,
419-421

E

editors, text, 16, 24

elements

of arrays, 72-74, 79

characters, accessing,
461-463

collections, searching,
576-578

counting, 573-576

finding, 573-576

initializing, 578-581

inserting, 595-597

linked lists

deleting, 497-500

inserting, 493-497

reversing, 500-501

sorting, 502-511

processing, 581-583

replacing, 589-590

set or multiset

deleting, 519-528

inserting, 515-517

searching, 517-518

else (#else) precompiler
command, 730-731

else keyword, 111

empty for loops, 185-187

emptying buffers, 646

encapsulation, 12-13, 644

endl object, 32

endless loops

exiting, 196

switch statement, 195-198

while (true), 176-177

enum keyword, 64

enumerated constants, 64-65

example, 65-66

syntax, 64

values, 64-65

enumerations in arrays, 78-79

environments, 16

equal signs (=), 77

assignment operator, 53, 97

equality operators, 402

equals (==) operator, 106

erase() function, 497-500,
519-528, 540-543

errors. See also
troubleshooting

compile errors, 23-24

compile-time, 287

error messages, cannot find
file, 20

fence post errors, 76-77

messages, cannot find file, 20

referencing

nonexistent objects, 257

stray pointers, 226

warning messages, 25

escape characters, 61-62

eternal loops

exiting, 196

switch statement, 195-198

while (true), 176-177

evaluating

expressions, 96

logical operators, 119

examining memory, 212-213,
722

exceptions, 691-694

assert() macro, 736

catching, 702-706

classes

creating, 698-702

hierarchies, 706-709

compiler support, 694

data

passing by reference,
713-716

reading, 709

multiple, 703-706

naming, 709-716

programming tips, 719

sample program, 691-692

templates, 716-719

throwing, 696-702

try...catch blocks, 693-696

virtual functions, 713-716

exclamation points (!), logical
NOT operators, 119

exclusive OR bitwise operator,
745

executable files, creating, 18

executing functions, 133

exiting loops

break statement, 173

endless loops, 196

expressions, 95. See also
operators

branching switch statements,
194

evaluating, 96

nesting parentheses, 104

truth, 105-107

extensions, 14

extraction operator ([<<]), 649

F

Factor() function

pointers, 242-244

references, 244-246

Fahrenheit, converting to
Celsius, 135

false/true operations, 120-121

How can we make this index more useful? Email us at indexes@samspublishing.com

false/true operations 839

fence post errors, 76-77

\f escape code, 62

fib() function, 191

Fibonacci series

recursion, 154-158

solving with iteration,
190-192

fields, bit fields, 746-750

filename extensions

.c, 16-17

.cp, 16

.cpp, 16-17, 287

.h, 288

.hp, 288

.hpp, 288

.obj, 18

files. See also specific file
names

appending, 678-679

binary, compared to text files,
680-682

executable files, creating, 18

iostream, 28

object files, 17

opening for input/output,
675-677

source files, 16

text, compared to binary
files, 680-682

writing classes to, 681-682

fill characters, setting,
667-668

fill() method, 667-668

filling

arrays, 85-86

buffers, 646

find function, 517-518,
538-540

find member function, STL
string classes, 464-466

finding. See searching

fixed flag, 669

flags

bit, 617

bitset class, 618-623

vector bool, 623-625

setting, 669-671

state, 666

flipping bits, 746

float data type, 47

floating-point variables, 47

flush() method, 663

flushing

buffers, 646

output, 663

Fly() method, 344

for loops, 181-183

empty loops, 185-187

example, 182

initialization, 181

multiple initialization,
183-184

nesting, 187-188

null statements, 184-187

scope, 189

syntax, 182

for statements, 180-181

forever loops

exiting, 196

switch statement, 195-198

while (true), 176-177

form feeds, escape characters,
62

formatting

output

flags, 668-671

width, 666-667

special printing characters,
61-62

variable sizes, 45-46

forward iterators, 452

for_each algorithm, 581-583

free store

advantages, 218

memory, 217

allocating, 218-219

restoring, 219-221

objects

creating, 222

deleting, 222-224

fstream classes, 647

FUNC.cpp file, 39-40

FunctionOne() function, 248

functions, 39, 128

accessor functions, 275-276

Add(), 40

Area(), 133

arguments, 39, 129, 141-142

defaults, 145-147

passing by reference,
237-249

passing by value,
137-138, 238-239

binary, 554

body, 39

built-in, 128

cin object, 654-657

compared to macros, 432

const member functions

advantages, 287

declaring, 286

implementing, 286

const methods, 286

Convert(), 135

copy, 585-588

declaring, 130

file locations, 287-288

defining, 11, 131-133, 272,
288

DemonstrationFunction(), 38

DoTaskOne(), 198

Doubler(), 144

erase, 497-500

840 fence post errors

erase(), 519-523, 525-528,
540, 543

executing, 133

Factor()

pointers, 242-244

references, 244-246

fib(), 191

find, 517-518, 538-540

FUNC.cpp example, 39-40

FunctionOne(), 248

FunctionTwo(), 249

GetAge(), 280

GetArea(), 294

GetInt(), 257

GetUpperLeft(), 294

GetWeight(), 289

headers, 39

inheritance

casting down, 347, 350

percolating shared
functions, 346-347

inline, 151, 153, 288-290,
432-433

disadvantages, 151

example, 153

invoking, 37-38, 158, 162

main(), 29, 128

menu(), 198

Meow(), 276, 280

myFunc(), 137

objects, 553-554

applying, 554-565

overview of, 554

operator(), 411-412

operators, 386. See also
operators

overloading, 147-150, 318

overriding, 316-318

parameters, 39, 129, 141-142

polymorphism, 13, 147-150

pop_back, 483

printf(), 671-673

prototypes, 130-131

defined, 129

return types, 131

queues, 607-610

priority, 611-614

recursion, 153-154, 158

Fibonacci series example,
156-158

recursive, stop conditions,
154-155

remove, 585-588

return values, 38-39, 129,
142, 144

multiple, 142-144

returning multiple values

pointers, 242-244

references, 244-246

reverse(), 500-501

SetAge(), 280-281

sizes, 141

sort(), 502-511

stacks, 604-606

statements, 141

strcpy(), 88

strncpy(), 88

swap(), 138

pointers, 239-240

references, 240-242

syntax, 29

unary, 554-559

vector bool, 624-625

virtual, pure, 372-377

FunctionTwo() function, 249

G

get() method, 86, 655

characters

arrays, 658-659

reference parameters,
656-657

with no parameters, 655-656

overloading, 660

GetAge() function, 280

GetArea() function, 294

GetInt() function, 257

getline() method, 659-660

GetUpperLeft() function, 294

GetWeight() function, 289

global variables, 139

example, 140

limitations, 140

goto statement, 168

loops

disadvantages, 169

example, 168-169

syntax, 169

GUI (graphical user interface),
644

H

h filename extension, 288

handling exceptions. See
exceptions

hardware, CPU registers, 159

headers (function), 39

heaps, 217. See also smart
pointers

Hello World program, 19

compiling, 20-22

creating, 22-23

source code, 20, 28

testing, 22-23

Hello.cpp file, 20, 28

hex flag, 669

hexadecimal numbers, 62,
768-772

hiding

compared to overriding, 320

methods, 318-319

hierarchies

exceptions, 706-709

of abstraction, 377-380

history of C++, 8, 14

How can we make this index more useful? Email us at indexes@samspublishing.com

history of C++ 841

hp filename extension, 288

hpp filename extension, 288

Hungarian notation, 50

I

I/O objects, 647-648

cerr, 648

cin, 648-650

get() method, 655-659

getline() method,
659-660

ignore() method, 660-662

multiple input, 651-654

peek() method, 662-663

putback() method,
662-663

strings, 651

clog, 648

cout, 648, 663

fill characters, 667-668

fill() method, 667-668

flags, 668-671

flush() method, 663

output width, 666-667

put() method, 664-665

setf() method, 668-671

width() method, 666-667

write() method, 665-666

streams. See streams

IDE (Integrated Development
Environment), 728

identifiers, naming, 752-753

If Horses Could Fly (code
listing), 345-346

if statements, 107, 109

branching, 108-109

else keyword, 111

indentation styles, 110-111

nesting, 113

braces ({ }), 115-118

example, 114-117

semicolon notation, 109-110

syntax, 112-113

ifndef (#ifndef) command, 730

ignore() method, 660-662

implementing

buffers, 647

classes, Cat, 290

methods, 278-281

const methods, 286

inline, 288-290

pure virtual functions,
374-377

smart pointers, 631-632

streams, 647

swap() function

pointers, 239-240

references, 240-242

include files, 755

include statement, 28

inclusion guards, 731-732

increment (++) operators, 101,
387-390

postfix, 102

prefix, 101-103

indenting

code, 750-752

if statements, 110-111

indirect recursion, 153

indirection (*) operator,
207-209, 255

inequality operators, 402

inheritance, 13, 302

adding to two lists, 350

casting down, 347, 350

classes, relationships among,
303

constructors, 309-311

arguments, 311-315

overloading, 311-315

derivation, 302-306

destructors, 309, 311

functions, 346-347

limitations, 344, 346

mixins, 368

multiple, 351, 353

ambiguity resolution,
358-359

constructors, 355-358

declaring, 354

limitations, 367

objects, 354-355

shared base classes,
359-363

virtual methods, 354

private, 335

applying, 335-337

comparing to
aggregation, 337-338

virtual, 363-366

declaring, 367

example, 365-366

virtual methods, 322-328

copy constructors,
331-334

destructors, 330-331

invoking multiple,
324-326

memory costs, 334

slicing, 328-330

v-pointers, 326-327

v-tables, 326-327

initializing

algorithms, 571

arrays, 77-82

elements, 578-581

for loops, 181-184

objects

Cat, 283-285

constructor methods,
281-282

pointers, 206, 216

references, 233

statements, 182

variables, 53

842 hp filename extension

inline functions, 151-153,
432-433

disadvantages, 151

example, 153

inline implementation
(methods), 288-290

inline statement, 151,
288-289

input

handling

cin object, 649

extractions, 649-650, 654

multiple input, 651-654

peek() method, 662-663

putback() method,
662-663

single character input,
655

strings, 651, 657-660

ignoring, 660-662

iterators, 452

streams, 644. See also
streams

inserting

elements, 595-597

linked lists, 493-497

map and multimap,
535-538

set or multiset, 515-517

quotation marks (“), 733

into vectors, 476-479

insertion operator (), 30

instantiating

bitset classes, 618-619

linked lists, 492-493

map objects, 535

queues, 607, 610

set objects, 514-515

stacks, 603-604

STL string classes, 459-461

templates, 437

vector bool, 623-624

vectors, 474-475

int data type, 47

integers

arrays, 73

division operations, 99

integer overflow, 98

long, 46, 56-57

short, 46, 56-57

signed/unsigned, 46, 57-59

sizes, 45-46

Integrated Development
Environment (IDE), 728

interfaces, GUIs, 644

interim values, printing, 431,
742-749

intermediate files (compiler),
728

internal flag, 669

International Standards
Organization (ISO), 14

interpreters, 9

invariants, 737-742

Invariants() method, 737-742

invoking

functions, 37-38, 158-162

methods, 320-321

ios class, 647, 677

iostream class, 647

iostream file, 28

iostream library, 644

ISO (International Standards
Organization), 14

istream class, 647

iteration, loops, 168

do...while, 178-180

for, 181-187

goto keyword, 168-169

nesting, 187-188

scope, 189

while, 169-181

iterators, STL, 451-452

J

jumps, 168

K

KB (kilobytes), 768

keywords, 50-51, 296,
773-774

class, 269, 277-278

const, 286

delete, 219-221

else, 111

enum, 64

goto, 168

disadvantages, 169

example, 168-169

syntax, 169

inline, 151, 288-289

namespace, 34-35

new, 218-219

protected, 306

public, 280

return, 142, 144

struct, 295-296

typedef, 55-56

using, 33-34

kilobytes (KB), 768

kludges, 178

L

l-values, 97

labels, defined, 168

leaks

creating

delete statement, 219

pointer reassignments,
221

memory, 219, 258-259

left flags, 669

How can we make this index more useful? Email us at indexes@samspublishing.com

left flags 843

libraries

defined, 18

iostream, 644

smart pointers, 640

standard, 21

streams, 644

linked lists, STL, 491

characteristics of, 492

deleting elements, 497-500

inserting elements, 493-497

instantiating, 492-493

reversing elements, 500-501

sorting elements, 502-511

linkers, 9

linking references, 636

lists, 491. See also code
listings; linked lists

literals, 62

local variables, 134-135

defining, 134

example, 134-135

persistence, 217

scope, 134-137

logic errors, 76-77

logical operators, 118

AND (&&), 118

NOT (!), 119

OR (||), 119

order of evaluation, 119

precedence, 120

long data type, 56-57

long int data type, 47

long integers, 46

loops, 168

do...while

example, 178-179

syntax, 179-180

endless

exiting, 196

switch statement,
195-198

while(true), 176-177

exiting, 173-175

Fibonacci series application,
190-192

for, 181-183

empty loops, 185-187

example, 182

initialization, 181

multiple initialization,
183-184

nesting, 187-188

null statements, 184-187

scope, 189

syntax, 182

goto keyword, 168

disadvantages, 169

example, 168-169

syntax, 169

overview of, 190-192

returning to top of, 173-175

while, 169

break statement, 173, 175

complex loops, 171-172

continue statement,
173-175

exiting, 173-175

returning to top of,
173-175

simple example, 169-170

skipping body of,
177-178

starting conditions,
180-181

syntax, 171

while (true), 176-177

M

macros, 429-430

assert(), 734-735, 755

debugging functions,
735-736

exceptions, 736

limitations, 736-737

source code, 734-735

comparing

to functions, 432

to templates, 432

defining, 430

disadvantages, 432

parentheses (), 430-431

predefined, 733

syntax, 429-430

when to use, 442

main() function, 29, 128

Managed Extensions to C++,
14

managing memory, 629. See
also smart pointers

map, 533

elements

deleting, 540, 543

inserting, 535-538

searching, 538-540

instantiating, 535

sorting, 543, 546-547

mathematical operators, 97

combining with assignment
operator, 100

modulus (%), 99

subtraction (-), 98-99

member functions

cin, 654-657

queues, 607-614

stacks, 604-606

member methods, 620-623

member variables, 268

memory, 159

addresses, 204, 209-210

determining, 204-206

examining, 212-213

retrieving, 208-209

storing in pointers,
206-207

arrays, 84

code space, 159

844 libraries

examining, 722

free store, 217

advantages, 218

memory allocation,
218-219

objects, 222-224

restoring, 219-221

leaks, 258-259

delete statement, 219

pointer reassignments,
221

pointers, 204-206

advantages, 216

allocating, 220

const, 227

data manipulation,
210-211

declaring, 206, 216

deleting, 220

dereferencing, 208-209,
216

indirection, 207

initializing, 206, 216

memory leaks, 221

naming, 206

null, 206

reassigning, 221

RTTI, 347

stray/dangling, 224-227

stomping on, 226

this, 224

wild, 206

RAM, 44, 159-161

registers, 159

smart pointers. See smart
pointers

stack, 160-161, 217

clearing, 217

pulling data from,
161-162

pushing data onto,
160-162

storing data in, 44

variables, sizing, 51-53

virtual methods, 334

menu() function, 198

Meow() function, 276, 280

methods, 268

base classes, accessing, 328

base methods, calling,
320-321

bitset class, 620-623

constructors, 281

calling multiple, 355-358

defaults, 282-285

defining, 272

destructors, 282-285

file locations, declaring,
287-288

fill(), 667-668

flush(), 663

Fly(), 344

get(), 86, 655

character arrays, 658-659

character reference
parameters, 656-657

with no parameters,
655-656

overloading, 660

GetAge(), 280

GetArea(), 294

getline(), 659-660

GetUpperLeft(), 294

hiding, 318-319

ignore(), 660-662

implementing, 278-281

inline, 288-290

Invariants(), 737-742

overloading, 318

overriding, 316-318

peek(), 662-663

printf(), 671-673

public accessor methods,
275-276

push back, 476

put(), 664-665

putback(), 662-663

SetAge(), 280-281

setf(), 668-669, 671

strcpy(), 87-88

strncpy(), 87-88

virtual, 322-328

calling multiple, 324-326

copy constructors,
331-334

destructors, 330-331

memory costs, 334

slicing, 328-330

v-pointers, 326-327

v-tables, 326-327

width(), 666-667

write(), 665-666

minus signs (-), 101-103

mixins (capabilities classes),
368

modifying algorithms, 572

modulus (%) operator, 99

multidimensional arrays, 80

declaring, 80

initializing, 81-82

multiline comment styles, 35

multimap, 533

elements

deleting, 540, 543

inserting, 535-538

searching, 538-540

instantiating, 535

sorting, 543, 546-547

multiple base classes

ambiguity resolution,
358-359

constructors, 355-358

objects, 354-355

multiple exceptions, 703-706

multiple inheritance, 351-353

ambiguity resolution,
358-359

constructors, 355-358

declaring, 354

How can we make this index more useful? Email us at indexes@samspublishing.com

multiple inheritance 845

limitations, 367

objects, 354-355

shared base classes, 359-363

virtual inheritance, 363-367

virtual methods, 354

multiple initialization for loops,
183-184

multiple input (cin object),
651-654

multiple parameters, 437-438

multiple values

functions, 242-244

returning

pointers, 242-244

references, 244-246

multiple variables, 53

multiset, 513

advantages of, 529

elements

deleting, 519-528

inserting, 515-517

searching, 517-518

objects, instantiating,
514-515

mutating algorithms, 571-573

myFunc() function, 137

N

namespaces

designating

namespace keyword,
34-35

std[::] notation, 32

using keyword, 33-34

keywords, 34-35

naming

arrays, 213-215

classes, 269-270

conventions

capitalization, 753

identifiers, 752-753

spelling, 753

counting variables, 188

exceptions, 709-716

filename extensions

.c, 16-17

.cpp, 16-17, 287

.h, 288

.hp, 288

.hpp, 288

.obj, 18

pointers, 206

references, 232

variables, 48-50

case-sensitivity, 49

reserved words, 50-51,
773-774

NCITS (National Committee for
Information Technology
Standards) Standard, 15

need for casting, 416

\n escape code, 62

nesting

if statements, 113

braces ({ }), 115-118

example, 114-117

loops, 187-188

parentheses, 104

Net (.Net) platform, 756, 758

new operator, 254

new statement, 218-219

newline code (\n), 30-31

newline delimiter, 86

newline escape characters
(\n), 62

newsgroups, 756

nonexistent objects,
referencing, 256-257

nonmutating algorithms,
570-571

not equal operator (!=), 106

NOT operators, logical (!), 119

notation, Hungarian, 50

null character, 84, 651

null pointers, 206, 237

compared to stray pointers,
227

null references, 237

null statements for loops,
184-187

numbers

base 10, 763-764

converting to base 6, 766

converting to base 7,
765-766

base 7, 765

base 8, 764

binary, 767-768

advantages, 767

converting to, 766

counting while (true) loops,
176-177

Fibonacci series, 190-192

recursion, 154-158

hexadecimal, 768-772

nybbles, 767-768

O

object-oriented programming
(OOP), 12, 266-267

data hiding, 12

encapsulation, 12-13

inheritance, 13

polymorphism, 13

functions, 147-150

objects, 17-18, 709. See also
exceptions

Cat, initializing, 283-285

cin

ember functions, 654-657

return values, 654

compared to classes, 270-271

cout, 30-32

example, 30-31

passing values to, 32

defining, 270, 277

derived, accessing, 307-308

846 multiple inheritance

endl, 32

exceptions, naming, 709-716

free store objects

creating, 222

deleting, 222-224

functions, 553-554

applying, 554-565

overview of, 554

inheritance

casting down, 347-350

multiple, 354-355

initializing constructor
methods, 281-282

passing

data slicing, 328-330

references to, 252-253

referencing

nonexistent objects, 257

objects on heap, 258-259

SimpleCat, 249

standard I/O objects,
647-648

cerr, 648

cin, 648-663

clog, 648

cout, 648, 663-671

states, 668

values, assigning, 271

oct flag, 669

octal notation, escape
characters, 62

ofstream objects, 675

arguments, 677-678

condition states, 675

default behavior, 677-680

opening files, 675-677

obj filename extension, 18

OOP (object-oriented
programming), 12, 266-267

data hiding, 12

encapsulation, 12-13

inheritance, 13

polymorphism, 13

opening files for input/output,
675-677

operator() function, 411-412

operators, 97

address of (&), 204-206,
233-234

assignment (=), 53, 97

binary

addition/subtraction,
397-399

assignment, 399-401

types, 396

bitset classes, 619-620

bitwise, 744

AND, 744

complement, 745

exclusive OR, 745

OR, 745

casting, 417

const cast, 422-423

defined, 416

dynamic cast, 419-421

need for, 416

reinterpret cast, 421-422

static cast, 418

troubleshooting, 423-424

unpopular styles, 417

comparison, overloading,
401-405

concatenation, 733

conditional (?[:]), 121-123

conversion, programming,
394-395

decrement (—), 101

postfix, 102

prefix, 101-103

dot (.), 277

equality, 402

extraction ([<<]), 649

increment (++), 101

postfix, 102

prefix, 101-103

indirection (*), 208-209

syntax, 255

inequality, 402

logical, 118

AND (&&), 118

NOT (!), 119

OR (||), 119

order of evaluation, 119

mathematical, 97

modulus (%), 99

self-assigned, 100

subtraction (-), 98-99

new, 254

overloading, 405-408

postfix increment, 390

precedence, 103, 120,
775-776

redirection, 648

redirection (), 30

reference (&), 232, 255-256

relational, 105-109

sizeof, 53

subscript, 409-411

symbols, 386

true/false operations,
120-121

types, 386

unary, 387

customizing, 394-395

programming deference,
391-393

programming
increment/decrement,
387-390

types, 387

vector bool, 624-625

optimization

performance, 152

pointers, 630-631

OR operators

bitwise, 745

logical (||), 119

ostream class, 647

How can we make this index more useful? Email us at indexes@samspublishing.com

ostream class 847

out-of-scope references,
returning, 256-257

output, 663

flushing, 663

formatting, 673-674

fill characters, 667-668

flags, 668-671

width, 666-667

iterators, 452

output devices, writing to,
664-665

redirection (/r) operator, 30

streams, 644. See also
streams

overloading

binary operators, 396

compared to overriding, 318

comparison operators,
401-405

constructors

derived classes, 311-315

functions, 147-150

operators, 405-408

that cannot be redefined,
412-413

unary, 387

overriding operators, 316-320

P

parameters

command-line processing,
682-686

defaults, 145-147

get() method, 656

macros, 429

passing by value, 137-138

templates, declaring, 437-438

parameters (functions), 39,
129, 141-142

parentheses ()

macro syntax, 430-431

nesting, 104

partitioning

algorithms, 573

RAM, 159-161

ranges, 593-595

passing

arguments

by reference, 237-249

by value, 238-239

to base constructors,
311-315

const pointers, 249-252

exceptions, 713-714, 716

objects, data slicing, 328-330

parameters by value, 137-138

references to objects,
252-253

values to cout, 32

peek() method, 662-663

percolating shared functions,
346-347

performance optimization, 152

periods (.), dot operator, 277

persistence, local variables,
217

pipe character (|), 119

piping, 648

plus signs (+), 101-103

Point class, declaring, 291-292

pointers, 204-210

advantages, 216

allocating, 220

combining with references,
255

compared to references, 254

const, 227

declaring, 227

passing, 249-252

current values, printing, 431,
742-749

data manipulation, 210-211

declaring, 206, 216

deleting, 220

dereferencing, 208-209, 216

indirection, 207

initializing, 206, 216

memory addresses

assigning, 206-207

examining, 212-213

retrieving, 208-209

memory leaks, 221

naming, 206

null, 206, 227, 237

passing by reference,
239-240

pointer arrays, 215

reassigning, 221

returning multiple values,
242-244

RTTI, 347

smart, 629

applying conventional,
630

auto_ptr, 638-640

Copy on Write, 635

deep copy, 633-635

destructive copy, 636-637

implementing, 631-632

libraries, 640

optimizing, 630-631

overview of, 630

reference counting,
635-636

reference-linked, 636

types, 632-633

stomping on, 226

stray/dangling, 224-226

cautions, 226

compared to null
pointers, 227

creating, 225

this, 224

to arrays, 213-215

v-pointers, 326-327

wild, 206

polymorphism, 13, 322, 343

functions, 147-150

848 out-of-scope references

pop_back function, 483

postfix increment operators,
390

postfix operators, 102

pound symbol (#), 28

precedence of operators, 103,
120, 775-776

predefined macros, 733

predicates, 554-559

binary, 554, 563-565

unary, 559-561

prefix operators, 101-103

preprocessors, 428

class invariants, 737-742

commands

#define, 428, 728-730

#else, 730-731

#ifndef, 730

inclusion guards, 731-732

inline functions, 432-433

interim values, printing, 431,
742-749

macros, 429-430

assert(), 734-737

compared to functions,
432

compared to templates,
432

defining, 429-430

parameters, 429

parentheses (), 430-431

predefined, 733

syntax, 429-430

string manipulation, 733

substitutions

constants, 729

strings, 428, 728

tests, 729-730

printf() function, 671-673

printing

characters, 60-61

interim values, 431, 742-749

printf() function, 671-673

to screens, 30-32

priority queues, 610-614

private classes, 272-274

private data members, 275,
306-307

accessing, 272

security, 277

private inheritance, 335

aggregation, 337-338

applying, 335-337

procedures, 11, 266

processing elements, 581-583

programming

comments, 35

/* (C-style), 35

// (C++-style), 35

applying, 36-37

troubleshooting, 37

conversion operators,
394-395

development

cycles, 18

environments, 16

executable files, creating, 18

levels of abstraction, 159

loops, 168. See also loops

object files, 17-18

object-oriented, 11-12

data hiding, 12

encapsulation, 12-13

inheritance, 13

polymorphism, 13

OPP. See OPP

programs

branching, 162

design, 15-16

structure, 28-30

resources, 756

structured, 11-12

style guidelines

access labels, 754-755

assert() macro, 755

capitalization, 753

class definitions, 755

comments, 754

const statement, 755

identifier names, 752-753

include files, 755

readability of code, 752

spelling, 753

templates, 440-441

connecting, 453-454

STL containers, 448-451

STL iterators, 451-452

troubleshooting, 10

unary operators, 387-393

programs

branching, 162

comments, 35

/* (C-style), 35

// (C++-style), 35

applying, 36-37

troubleshooting, 37

compilers, 22

overview, 9

troubleshooting, 23

compiling errors, 23-24

debugging

assert() macro, 735-736

printing interim values,
431, 742-749

defined, 10

designing, 15-16

Hello World, 19

compiling, 20-22

creating, 22-23

source code, 20, 28

testing, 22-23

interpreters, 9

linkers, 9

How can we make this index more useful? Email us at indexes@samspublishing.com

programs 849

listings. See code listings

preprocessors, 28

structure of, 28, 30

include statements, 28

main() function, 29

pound (#) symbol, 28

properties, STL container
classes, 449

protected data members,
306-307

protected keyword, 306

prototypes

defined, 129

functions, 130-131

return types, 131

public accessor methods,
275-276

public classes, 272-274

public keyword, 280

pulling data from stack, 162

pure virtual functions,
372-377

push back method, 476

pushing data onto stack, 162

put() method, 664-665

putback() method, 662-663

Q

question mark (?), 62

queues, 602-607

quotation marks (“), 733

R

r-values, 97

RAM (random access
memory), 44, 159-161. See
also memory

random access iterators, 452

ranges

elements, processing,
581-583

partitioning, 593-595

searching, 576-578

transforming, 583-585

values, replacing, 589-590

readability of code, 752

reading data in exceptions,
709

reassigning

pointers, 221

references, 235

Rect.cpp (code listing),
292-293

Rectangle class, declaring,
292-294

recursion

Fibonacci series example,
156-158

functions, 153-154, 158

stop conditions, 154-155

redirect output command ([<],
648

redirection, 20, 30, 648-649

reference operator (&), 232,
255-256

references, 232-233

combining with pointers, 255

compared to pointers, 254

const pointers, 249-252

counting, 635-636

creating, 232-233

errors

nonexistent objects,
256-257

referencing objects on
heap, 258-259

initializing, 233

linking, 636

naming, 232

null, 237

objects

nonexistent objects, 257

objects on heap, 258-259

passing

by reference, 237-240,
246-249

to objects, 252-253

reassigning, 235

returning multiple values,
244-246

swap() function, 240-242

target addresses

assigning, 235-236

returning, 233-235

refilling buffers, 646

reinterpret cast, applying,
421-422

relational operators, 105-106

branching, 108-109

precedence, 120

relationships among classes,
303

removal algorithms, 572

remove function, 585-588

replacement algorithms, 572

replacing elements, 589-590

requirements, updating, 10

\r escape code, 62

reserved words, 50-51,
773-774

resources, 756

restoring memory to free
space, 219-221

retrieving data in exceptions,
709

return statements, 39,
142-144

return types (functions), 131

return values

cin, 654

functions, 38-39, 129,
142-144

multiple, 142-144

850 programs

returning

multiple values

pointers, 242-244

references, 244-246

out-of-scope references,
256-257

reusing source code,
inheritance, 13

reversing

elements, linked lists,
500-501

STL string classes, 468-469

right flag, 669

rot, code, 720

rSomeRef statement, 232

RTTI (Run Time Type
Identification), 347

run-time binding, 326

runtime type identification,
419-421

S

safety, template and type, 437

schematic representations,
204

scientific flag, 669

scope

for loops, 189

variables, 134-137

screens, printing to, 30-32

searching

algorithms, 570

elements, 573-576

map and multimap,
538-540

set or multiset, 517-518

ranges, 576-578

security classes, 277

selecting containers, 449, 451

self-assigned addition (+=)
operator, 100

self-assigned operators, 100

semicolons (;), 94

in if statements, 109-110

sequential containers, 448

set, 513

advantages of, 529

elements

deleting, 519-528

inserting, 515-517

searching, 517-518

objects, instantiating,
514-515

SetAge() function, 280-281

setf() method, 668-671

setw manipulator, 669

Shape classes, 369-371

shared base classes,
inheritance, 359-363

short data type, 56-57

short int data type, 47

short integers, 46

showbase flag, 669

showpoint flag, 669

signed integers, 46, 58-59

Simonyi, Charles, 50

SimpleCat object, 249

single character input, 655

single inheritance,
troubleshooting, 344-346

single quote (‘), 62

sizeof operator, 53

sizes

of functions, 141

of variables, 45-48

sizing

arrays, 78-79

variables, 51-53

vectors, 484-485

slashes (/), 35

slicing virtual methods,
328-330

smart pointers, 629

auto_ptr, 638-640

conventional, applying, 630

Copy on Write, 635

deep copy, 633-635

destructive copy, 636-637

implementing, 631-632

libraries, 640

optimizing, 630-631

overview of, 630

reference counting, 635-636

reference-linked, 636

types of, 632-633

solving the nth Fibonacci
number (listing), 191

sorting

algorithms, 572

collections, 591-593

elements, 502-511

map and multimap templates,
543-547

source code, 8. See also code
listings

compiling, 17-18

reusing, 13

source files, 16

special printing characters,
formatting, 61-62

specialization, templates, 437

stacks, 217, 602

clearing, 217

data

adding, 160-161

retrieving, 161

instantiating, 603-604

member functions, 604-606

memory, 160-161

pulling data from, 162

pushing data onto, 162

standard I/O objects, 647-648

cerr, 648

cin, 648-650

get() method, 655-659

getline() method,
659-660

ignore() method, 660-662

How can we make this index more useful? Email us at indexes@samspublishing.com

standard I/O objects 851

multiple input, 651-654

peek() method, 662-663

putback() method,
662-663

strings, 651

clog, 648

cout, 648, 663-671

fill characters, 667-668

flags, 668-671

flush() method, 663

output width, 666-667

put() method, 664-665

write() method, 665-666

standard libraries, 21

standard namespaces

namespace keyword, 34-35

std[:] notation, 32

using keyword, 33-34

Standard Template Library
(STL), 440-441

adaptive containers, 601

instantiating queues, 607

instantiating stacks,
603-604

priority queues, 610-614

queue member functions,
607-610

queues, 602-603

stack member functions,
604-606

stacks, 602

algorithms, 569

classification of, 570-573

copy and remove
operations, 585-588

counting and finding
elements, 573-576

initializing elements,
578-581

inserting elements,
595-597

overview of, 570

partitioning ranges,
593-595

processing elements,
581-583

replacing elements,
589-590

searching ranges,
576-578

sorting collections,
591-593

transforming ranges,
583-585

bit flags, 617

bitset class, 618-623

vector bool, 623-625

connecting, 453-454

container classes, 513

advantages of set and
multiset, 529

deleting elements,
519-528

inserting elements,
515-517

instantiating set objects,
514-515

searching elements,
517-518

containers, 448

associative, 448-449

selecting, 449-451

sequential, 448

iterators, 451-452

linked lists, 491

characteristics of, 492

deleting elements,
497-500

inserting elements,
493-497

instantiating, 492-493

reversing elements,
500-501

sorting elements, 502-511

map and multimap, 533

customizing sort
predicates, 543-547

deleting elements,
540-543

inserting elements,
535-538

instantiating, 535

searching elements,
538-540

state flags, 666-668

statements, 94

blocks, 94-95

catch, 693

try, 693-696

break, 173-175

catch, 693-696, 703-706

class, 269, 277-278

compound, 94-95

const, 63-64, 286, 755

continue, 173-175

default, 194

#define

constant substitutions,
729

string substitutions, 428,
728

tests, 729-730

define, 63

delete, 219-221

do...while, 179-180

#else, 730-731

expressions, 95

evaluating, 96

nesting parentheses, 104

for loops, 180-181

in functions, 141

goto, 168

disadvantages, 169

example, 168-169

syntax, 169

if, 107, 109

branching, 108-109

else keyword, 111

indentation styles,
110-111

nesting, 113-118

852 standard I/O objects

semicolon notation,
109-110

syntax, 112-113

include, 28

initialization, 182

inline, 151, 288-289

new, 218-219

null for loops, 184-187

protected, 306

return, 39, 142-144

struct, 295-296

switch, 192-193

case values, 192

example, 193-194

forever loops, 195-198

guidelines, 198

syntax, 192-194

syntax, 94

try, 693-696

watch, 442

while, 169

complex loops, 171-172

simple example, 169-170

syntax, 171

whitespace, 94

states (objects), 668

static cast, applying, 418

STL (Standard Template
Library), 440-441

adaptive containers, 601

instantiating queues, 607

instantiating stacks,
603-604

priority queues, 610-614

queue member functions,
607-610

queues, 602-603

stack member functions,
604-606

stacks, 602

algorithms, 569

classification of, 570-573

copy and remove
operations, 585-588

counting and finding
elements, 573-576

initializing elements,
578-581

inserting elements,
595-597

overview of, 570

partitioning ranges,
593-595

processing elements,
581-583

replacing elements,
589-590

searching ranges,
576-578

sorting collections,
591-593

transforming ranges,
583-585

bit flags, 617

bitset class, 618-623

vector bool, 623-625

connecting, 453-454

container classes, 513

advantages of set and
multiset, 529

deleting elements,
519-528

inserting elements,
515-517

instantiating set objects,
514-515

searching elements,
517-518

containers, 448

associative, 448-449

selecting, 449-451

sequential, 448

iterators, 451-452

linked lists, 491

characteristics of, 492

deleting elements,
497-500

inserting elements,
493-497

instantiating, 492-493

reversing elements,
500-501

sorting elements, 502-511

map and multimap, 533

customizing sort
predicates, 543-547

deleting elements,
540-543

inserting elements,
535-538

instantiating, 535

searching elements,
538-540

STL deque class, 486-488

STL dynamic array class

need for, 473

vectors, 474

accessing elements,
480-482

deleting elements,
482-484

inserting elements,
476-479

instantiating, 474-475

size and capacity,
484-485

STL string class, 457

accessing, 461-463

applying, 459

case conversion, 469-470

concatenation, 463-464

find member function,
464-466

instantiating, 459-461

need for, 458-459

reversing, 468-469

How can we make this index more useful? Email us at indexes@samspublishing.com

STL string class 853

template-based
implementation, 471

truncating, 467-468

stomping on pointers, 226

stop conditions, 154-155

storing

data in memory, 44

memory addresses in
pointers, 206-207

stray pointers, 224-226

cautions, 226

compared to null pointers,
227

creating, 225

strcpy() function, 88

strcpy() method, 87-88

streambuf class, 647

streams, 643

buffers, 645-647

compared to printf()
function, 671-673

encapsulation, 644

ofstream class, 675

condition states, 675

default behavior, 677-680

opening files, 675-677

overview, 644

redirection, 648-649

standard I/O objects, 647-648

cerr, 648

cin, 648-663

clog, 648

cout, 648, 663-671

String classes, 89-90

strings

char arrays, 84-86

concatenating, 733

copying

strcpy(), 87-88

strncpy(), 88

current values, 431, 742-749

defined, 30

null character, 651

placing in quotes, 733

STL string class, 457

accessing, 461-463

applying, 459

case conversion, 469-470

concatenation, 463-464

find member function,
464-466

instantiating, 459-461

need for, 458-459

reversing, 468-469

template-based
implementation, 471

truncating, 467-468

stringizing, 733

substitutions, 428, 728

testing #define statements,
729-730

troubleshooting, 651-654

strncpy() function, 88

strncpy() method, 87-88

Stroustrup, Bjarne, 14

structs

keywords, 295-296

types, creating, 268

structured programming

disadvantages, 11-12

overview, 11

structures, 266

compared to classes, 295

declaring, 295-296

style guidelines, 750

access labels, 754-755

assert() macro, 755

braces, 750

capitalization, 753

class definitions, 755

comments, 754

const statement, 755

identifier names, 752-753

include files, 755

indents, 750-752

long lines, 751

readability of code, 752

spelling, 753

styles, unpopular casting, 417

subclasses, 291-295

subscript operators, 409-411

subtraction (-) operator, 98-99,
397-399

supersets, 302

swap() function, 138

pointers, 239-240

references, 240-242

switch statements, 192-193

case values, 192

example, 193-194

forever loops, 195-198

guidelines, 198

indenting, 751-752

syntax, 192-194

symbolic constants, 62-64

symbols, operators, 386

T

\t (tab code), 32

tables

v-tables

(virtual function tables),
326-327

tabs

escape characters (\t), 62

escape code (\t), 32

target addresses

assigning, 235-236

references, 233

returning, 233-235

temperatures,
Fahrenheit/Celsius
conversions, 135

templates

adaptive container, 601

instantiating queues, 607

instantiating stacks,
603-604

854 STL string class

priority queues, 610-614

queue member functions,
607-610

queues, 602-603

stack member functions,
604-606

stacks, 602

algorithms, 569

classification of, 570-573

copy and remove
operations, 585-588

counting and finding
elements, 573-576

initializing elements,
578-581

inserting elements,
595-597

overview of, 570

partitioning ranges,
593-595

processing elements,
581-583

replacing elements,
589-590

searching ranges,
576-578

sorting collections,
591-593

transforming ranges,
583-585

applying, 440-441

bit flags, 617

bitset class, 618-623

vector bool, 623-625

classes, 436-439

compared to macros, 432

container classes, 513

advantages of set and
multiset, 529

deleting elements,
519-528

inserting elements,
515-517

instantiating set, 514-515

map and multimap, 533

searching elements,
517-518

default parameters, declaring
with, 438

defining, 434-435

exceptions, 716-719

instantiating, 437

linked lists, 491

characteristics of, 492

deleting elements,
497-500

inserting elements,
493-497

instantiating, 492-493

reversing elements,
500-501

sorting elements, 502-511

multiple parameters,
declaring with, 437-438

overview of, 434

specialization, 437

STL. See STL

types

declaring, 436

safety, 437

ternary operator (?[:]),
121-123

\t escape code, 62

testing

Hello World programs, 22-23

strings, 729-730

text

built-in editors, 24

comments, 35. See also
comments

comparing

to word processors, 24

to binary files, 680-682

strings, 30

this pointer, 224

throwing exceptions, 696-702

tilde (~), 282

complement operator, 745

trailing zeros, displaying, 668

transforming, 583-585

troubleshooting, 693

bugs, 690

casting operators, 423-424

code rot, 720

compile-time errors, 287

compilers, 23

conventional pointers, 630

exceptions, 691-692

catching, 702-706

class hierarchies, 706-709

hierarchies, 707

multiple, 703-706

programming tips, 719

sample program, 691-692

templates, 716-719

throwing, 696-702

try...catch blocks,
693-696

global variables, 140

inheritance

multiple, 367

single, 344-346

programming, 10

strings, 651-654

subtraction, 98-99

true/false operations, 120-121

truncating STL string classes,
467-468

truth, expressions, 105-107

try blocks, 693-696, 702

two-dimensional arrays,
declaring, 83

type definition, 55-56

typedef keyword, 55-56

types, 47

of comments, 35

creating, 267

derived, 13

How can we make this index more useful? Email us at indexes@samspublishing.com

types 855

of smart pointers, 632-633

auto_ptr, 638-640

Copy on Write, 635

deep copy, 633-635

destructive copy, 636-637

libraries, 640

reference counting,
635-636

reference-linked, 636

of STL algorithms, 570

mutating, 571-573

nonmutating, 570-571

of variables, 47-53

operators, 386

binary, 396-401

programming deference,
391-393

programming unary
increment/decrement,
387-390

subscript, 409-411

unary, 387

runtime identification,
419-421

templates

declaring, 436

safety, 437

U

unary functions, 554-559

unary operators, 387

customizing, 394-395

programming, 387-393

types, 387

unary predicates, 559-561

uninitialized buffers, 85

uninitialized character arrays,
85

unpopular casting styles, 417

unsigned int data types, 47

unsigned integers, 46, 57-58

unsigned long int data types,
47

unsigned short int data types,
47

updating requirements, 10

Uppercase flag, 669

Usenet newsgroups, 756

using keyword, 33-34

V

v-pointers, 326-327

v-tables, 326-327

values, 137-138

assigning to variables, 53-55,
271

cin object return values, 654

concatenating, 32

containers, 578-581

enumerated constants, 64

function return values, 38-39

l-values, 97

multiple

returning with pointers,
242-244

returning with references,
244-246

passing

by reference, 237-249

by value, 238-239

to cout, 32

r-values, 97

replacing, 589-590

variables

assigning, 53-55

values, 48

void, 142

variables, 64. See also
constants

char, 45, 59-60

character encoding, 60-61

escape characters, 61-62

sizes, 59

counting variables, 188

current values, 431, 742-749

data members, 268

data types, 47, 267

defining, 45-53

example, 54

floating-point, 47

global, 139-140

initializing, 53

integers

long, 56-57

short, 56-57

signed, 58-59

signed/unsigned, 46

sizes, 45-46

unsigned, 57-58

local, 134-135

example, 134-135

persistence, 217

scope, 136-137

memory, storing data in, 44

names, 48-49

case-sensitivity, 49

reserved words, 50-51,
773-774

naming, 49-50

overview, 44

pointers, 204-206

advantages, 216

allocating, 220

const, 227

data manipulation,
210-211

declaring, 206, 216

deleting, 220

dereferencing, 208-209,
216

indirection, 207

initializing, 206, 216

memory addresses,
212-213

memory leaks, 221

naming, 206

null, 206

reassigning, 221

856 types

RTTI, 347

stomping on, 226

stray/dangling, 224-227

this, 224

wild, 206

pointers and, 209-210

scope, 134

sizes, 48

type definition, 55-56

values

assigning, 53-55, 271

defined, 48

vectors

characteristics of, 474

elements

accessing, 480-482

deleting, 482-484

inserting, 476-479

instantiating, 474-475,
623-624

operators, 624-625

size and capacity of, 484-485

vertical bars (|), 119

vertical tab escape characters
(\v), 62

\v escape code, 62

viewing vectors, 474

virtual functions

exceptions, 713-714, 716

pointers, 326-327

pure, 372-377

tables, 326-327

virtual inheritance, 363, 366

declaring, 367

example, 365-366

virtual machine. See VM

virtual methods, 322-328

copy constructors, 331-334

destructors, 330-331

memory costs, 334

multiple, calling, 324-326

slicing, 328-330

v-pointers, 326-327

v-tables, 326-327

VM (virtual machine), 9

void value, 142

vptr (virtual function pointer),
326-327

W

warning messages, 25

watch points, 721

watch statements, 442

while (true) loops, 176-177

while loops, 169

break statement, 173-175

complex loops, 171-172

continue statement, 173, 175

do...while

example, 178-179

syntax, 179-180

exiting, 173-175

returning to top of, 173-175

simple example, 169-170

skipping body of, 177-178

starting conditions, 180-181

syntax, 171

while (true), 176-177

whitespace in statements, 94

width() method, 666-667

wild pointers, 206

word processors, 16

compared to text editors, 24

wrapping

signed integers, 58-59

unsigned integers, 57-58

write() method, 665-666

writing

classes to files, 680-682

to output devices, 664-665

past the end of arrays, 74-76

How can we make this index more useful? Email us at indexes@samspublishing.com

writing 857

	Introduction
	Who Should Read This Book
	Organization of This Book
	Conventions Used in This Book
	Sample Code for This Book

	LESSON 2: The Anatomy of a C++ Program
	A Simple Program
	A Brief Look at cout
	Using the Standard Namespace
	Commenting Your Programs
	Functions
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

