
About the Projects
The projects in this chapter are the most universally practical projects in a book full of practical projects!
At the core, you’ll build text captions for video content.You’ll also learn to create any kind of synchroniza-
tion. For example, you can display bits of trivia on top of the video (like the old VH1 music video show Pop
Up Video). Although you can always include such content right inside the video, keeping it separate in the
Flash movie lets you easily modify it or even temporarily turn it off. Everything here also applies to audio.
Not only are the synchronization concepts identical for video and audio, you can use what you build here
for any audio-only projects you develop.

Prerequisites
You’ll need Flash Professional 8 (not Flash Basic).There are no other prerequisites for this project. Ideally,
you will have your own video and audio content—a short piece with narration or dialogue is best for
testing. If you understand XML, that’s great, but it’s not required.

@work
CHAPTER 3: Creating a Video with
Synchronized Captions

@work resources
Download the chapter_3_downloads.zip file for this chapter from the accompanying CD-ROM.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 61

Planning the Projects
Almost all the work for these projects is done
in the preproduction stage. If you do a good
job preparing everything, the projects will go
more smoothly than a television cooking
show (where everything is measured and
chopped up in advance). The preparation
here involves gathering the transcript of the
captions that will appear and identifying the
places at which those captions should
appear.

After you have your captions prepared, you’ll
move on to creating a few text display
templates. On the surface, this is nothing
more than selecting a variety of fonts to use;
however, you’ll also add an animation effect
for when the text changes. The text display
templates you create can be used with any
future project you build where you want
captions. The rest of the chapter shows you
how to implement the support class I built
called EventChannel. It handles all the grunt
work of reading in the captions and making
them appear in synch with your audio or
video.

I should note that captions are good for
much more than simply displaying the
movie’s dialogue for hearing-impaired folks
(although captions obviously do that well,
too). I’ve used the techniques from this
chapter to display captions in multiple
languages for a museum kiosk. I’ve also used
the techniques in this chapter to display the
lyrics for music where the singer might not
annunciate the words clearly. The projects
you build in this chapter can apply to any
situation in which you want something to
appear (such as text) in synch with your
audio or video.

Cue Points and Captions
There’s one huge chore when captioning
audio or video: transcribing—someone needs
to type in all the text. Plus, that text needs to
be segmented into blocks that both fit within
a given screen space and match the tempo of
the video. Preparing a transcript for cue
points is nothing more than creating a text
file with every block of text on its own line,
as in this example:

There once was a man who loved a woman.
She was the one he ate that apple for.
and so on...

You simply want to make sure that each line
fits in the space you’re allotting for the
captions and that, when synched with the
audio, the captions appear on screen long
enough to read. For example, if you have
space for only one or two words to appear at
a time, they’d have to fly by so fast no one
could read them.

The final step of synchronizing the captions
with the media goes very quickly after you
have the transcript prepared. With the tools I
built for this chapter, you’ll see that you can
identify cue points in real time while watch-
ing the video. All the investments you make
to prepare the captions will make this other-
wise tedious process go smoothly.

Cue Point Types
There are no fewer than five types of video
cue points: Event, Navigation, ActionScript,
Caption, and Marker. Although each has its
respective benefits depending on your appli-
cation, they’re mostly equivalent. The idea of
any cue point is the same: to associate a

CHAPTER 3: Creating a Video with Synchronized Captions62

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 62

block of information you want to appear—or,
at least, get sent to your application—at a
specific time in the video. Generally, the
exact content for a cue point is whatever you
decide. However, the exact form and where
the cue point information resides are what
vary in the different cue point types.

Videos produced in Flash Professional 8 (or
the accompanying Flash Video Encoder) can
be permanently injected with Event or
Navigation cue points. The difference with
Navigation cue points is that they are seek-
able (unlike Event cue points). That is, the
Encoder places a keyframe in the video at the
exact frame you place a Navigation cue
point. This way, users can navigate directly
to such keyframes by clicking the Next or
Previous button in the FLVPlayback compo-
nent shown in Figure 3.1 (which triggers
the seekToNextNavCuePoint() and
seekToPrevNavCuePoint() methods). You can
find the FLVPlayback component by selecting
Window, Components.

F I G U R E 3 . 1 The FLVPlayback component lets the user
seek to the next or previous Navigation type cue point.

ActionScript cue points aren’t permanently
embedded into the FLV, which makes them
different from all the other types of cue
points. I’ll talk about the advantages or
disadvantages of this approach in the next
section. For now, just realize that ActionScript
cue points are set at runtime; therefore, they
require additional scripting before the video
starts. (As an added bonus, the project
“Implement Code for Audio-only Captions”
shows you how to use ActionScript cue points
with an audio source instead of a video
source.)

Each of these three Macromedia cue point
types (Event, Navigation, and ActionScript)
have properties for time and name. The time
corresponds to where the cue point appears
in the video, and the name is an arbitrary
string you specify. You can include any text
you want, such as a caption or a description
of what’s happening onscreen. Plus, each cue
point has room for additional parameters—
namely, as many name/value pairs as you
want. In this way, you can associate more
than just a single line of text with a particu-
lar cue point. For example, you could store
captions in different languages such as the
following name/value pairs:

name:value
en:”Hello Friends”
es:”Hola Amigos”
fr:”bonjour amis”

Remember that you’re packing information
into a moment in time; you can store just a
name or as many other parameters as you
want.

Finally, although the third-party product
Captionate (shown in Figure 3.2) is needed to

Planning the Projects 63

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 63

inject Caption and Marker cue points, these
cue point types are definitely worth including
in this list. Captionate Markers are simple:
They’re just text labels associated with a
moment in time. However, Captionate
Captions are similar to Macromedia cue

points because they have room for addi-
tional, optional information (in addition to
the caption itself). Captionate Captions also
let you identify a speaker (that is, the person
talking) with each caption.

CHAPTER 3: Creating a Video with Synchronized Captions64

F I G U R E 3 . 2 The
Captionate interface lets you
inject captions and markers.

In fact, Captionate’s Caption type of cue point
supports multiple tracks for multilingual
applications. You could probably squeeze this
same kind of information into the
Macromedia cue point format (Event,
Navigation, or ActionScript), but the logical
and convenient structure is already built in to
the Captionate Caption cue point. (If nothing
else, you’ll want to get Captionate because it
lets you modify any cue points—including
Macromedia ones—embedded in the .flv file;
otherwise, these are uneditable.)

You can use any or all of these cue point
types in a single video. You can also write
code that responds to each type differently,
perhaps displaying Caption cue points in a

text field and then using Event cue points to
jump to a different frame in a movie clip.
Instead of learning the different syntaxes to
handle all the cue point types, the projects in
this chapter channel all the cue points
through a single clearinghouse: the
EventChannel class. This class triggers events
in your project for every cue point type you
want to listen for.

Embedded Cue Points Versus Separate
Text Files
One of the coolest features in Flash
Professional 8 is that, during the video encod-
ing stage, you can embed cue points right

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 64

into the video. As great as this feature is,
though, it does have some disadvantages.

The biggest problem with embedding cue
points into the video is that they’re uned-
itable after the .flv file is encoded. (Well, the
excellent third-party application called
Captionate does let you edit cue points.)
Although embedded cue points might be
convenient because the data and video stay
together, the data isn’t left open for easy
access. The alternative is to keep all the
details of your cue points in an external
source, such as an XML text file.

Saving cue point information in XML (a
separate file from your video) can have its
advantages. For example, if you have the
same video encoded for different bandwidths,
you can use a single XML file for the cue
points. After all, the captions are the same
for each bandwidth, so making an edit
involves just one file instead of each .flv
file. Plus, as you’ll see in the tool I built for
adding cue points, there are more convenient
ways to specify cue points than through the
Flash video encoder’s interface. For one thing,
when specifying cue points in Flash, you
can’t hear the audio track, which makes
finding cue points very difficult indeed.

As great as storing cue point information in
separate files is, if you choose that approach,
you have to perform the additional step of
importing and parsing the data. Also,
although the FLVPlayback component has an
addASCuePoint() method (to inject
ActionScript cue points at runtime), you’re
pretty much taking a home-grown approach
that might not match other developers’ ways
of working. I should note that, even though

the only logical format for an external file
containing cue point information is XML, the
exact structure of that file (that is, its
schema) is up to you. As long as you leave
room for all the cue point types, the exact
schema is completely subjective. However, for
this project to work, you have to use a single
format. The structure I’m using is based on
the output from Captionate—which, I
suppose, makes this format “better” only
because it’s consistent with another product.

Project:
Navigation Cue Points in a
.flv File
In this project, you’ll create a .flv video file
you can use in the remaining projects in this
chapter. You’ll also use Flash to insert
Navigation cue points into the video. You’ll
use an excerpt from a public domain video
called The Children Must Learn. View the
source file the_children_must_learn.mov
(located in the source_media folder you
downloaded for this chapter) to get a sense of
where the captions might appear.

STEPS▼
1. Creating a new .fla file

2. Importing the source video

3. Choosing video options

4. Adding the first navigation cue point

5. Adding more navigation cue points

6. Skinning the video

7. Navigating the video

Project: Navigation Cue Points in a .flv File 65

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 65

STEP 1▼

Creating a New .fla File
Create a new Flash document and immedi-
ately save it as working.fla.

STEP 2▼

Importing the Source Video
Now, import a video clip into the new .fla
file. Select File, Import, Import Video to
launch the Import Video wizard, as shown in
Figure 3.3.

Click the Browse button and select the
the_children_must_learn.mov video (located
in the source_media folder). Click Next.

STEP 3▼

Choosing Video Options
In the Deployment page of the Video Import
wizard, leave the Progressive Download from
a Web Server option selected, as shown in
Figure 3.4, and click Next. The other options
on this page of the wizard include two ways
to stream a video from the Flash Media
Server (formerly called Flash Communication
Server) plus an option to embed the video
into your .swf (neither of which we want to
do here). Using the Flash Media Server (or a
service provider) is an additional expense.
Embedding the video into your .swf results
in lower quality and audio that drifts out of
synch over time.

CHAPTER 3: Creating a Video with Synchronized Captions66

F I G U R E 3 . 3 The first
screen in the Import Video
wizard asks you to browse to
your source video.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 66

In the Encoding page of the Import Video
Wizard, select the Flash 8—Medium Quality
(400kbps) encoding profile from the drop-
down menu. Click the Show Advanced
Settings button to expand the window so it
shows additional options, and then click the
Cue Points tab in the newly exposed section
of the window. Figure 3.5 shows the dialog
box you should be viewing.

STEP 4▼

Adding the First Navigation
Cue Point
At this time, because Flash unfortunately
provides no audio preview, you’d be hard
pressed to set cue points for captioning.

Instead, let’s just insert Navigation cue
points. Specifically, we’ll insert them every
time the video image displays a new page of
the “Let’s Learn About Goats” booklet.

Scrub the video to as close to 3.187 seconds
as you can (displayed as 00:00:03.187); then
click the plus button in the upper-left corner
of the Cue Points list to add a cue point at
this location in the video file. A new entry is
created for this cue point in the Cue Points
list. Set the cue point type to Navigation by
selecting this option from the Type column.
Next, type a name for the cue point in the
Name column—for this example, use the
name The Goat Family because that’s the title of
the page of the booklet displayed in the
video (see Figure 3.6).

Project: Navigation Cue Points in a .flv File 67

F I G U R E 3 . 4 Select the
Progressive Download option
in the Deployment page of
the Import Video Wizard.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 67

CHAPTER 3: Creating a Video with Synchronized Captions68

F I G U R E 3 . 5 The Encoding
dialog box, shown here with
the Cue Points portion of the
Advanced Settings.

Plus button Cue points list

Move cue point scrubber ScrubberF I G U R E 3 . 6 The advanced
settings of the Import Video
Wizard let you insert cue
points.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 68

STEP 5▼

Adding More Navigation Cue
Points
Scrub the video to 5.247 seconds (where the
booklet in the video reads TYPES OF GOATS),
and click the plus button to add another cue
point. Name this cue point Types of Goats and
remember to select Navigation from the Type
column. Add three more Navigation cue
points at the times shown in Figure 3.7.

F I G U R E 3 . 7 These are all the Navigation cue points you’ll
insert.

STEP 6▼

Skinning the Video
Click Next to arrive at the Skinning page in
the wizard, as shown in Figure 3.8.

Here you can select a general theme for the
look and feel of the video controls. There are
themes for Artic (cool blue), Clear, Mojave
(beige), and Steel (gray). Each skin has one
version where the controls appear on top of
the video (these skins have Over in their
names), and one version where the controls
appear underneath the video (these skins are
identified with External in their names).
Although we’re only working on producing
the .flv file at this point, select one of the
skins with a name that ends in All—just so
you can see the navigation feature at work.
Click Next and then, at the last step, click
Finish.

Project: Navigation Cue Points in a .flv File 69

F I G U R E 3 . 8 You can select
the look and feel for your
video controls in this
Skinning dialog box.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 69

STEP 7▼

Navigating the Video
It should take a minute or so to compress the
video file, depending on your computer.
When it’s complete, the progress bar disap-
pears and you should see that, next to your
working.fla file, a .flv file is present and
named the_children_must_learn.flv. Select
Control, Test Movie; the .swf will load the
.flv you just created at runtime. It’s sort of
magical the way the FLVPlayback component
gets configured automatically. You can pause
and click the double-arrows in the video
controller to jump to the Navigation cue
points we added.

You can add the text for captions using the
same technique we just used to add
Navigation cue points. However, we’re not
going to do that because it’s too difficult to
select the times without an audio preview,
which is simply not supported in Flash. We’ll
use another technique to create captions in
the projects that follow. Realize that the
primary goal of this project is to create
a .flv file you can use in subsequent
projects—and to see how you can use Flash
to inject cue points.

Project:
ActionScript Cue Points for
Captions in an XML File
In this project, we’ll create an XML document
containing cue point information. Namely,
we’ll specify the text captions and when—in

CHAPTER 3: Creating a Video with Synchronized Captions70

the video—they should appear. The process
involves using a separate application
I built just for this purpose called
gathering_tool.swf. The data you collect will
become ActionScript cue points that get added
at runtime simply because they won’t be
embedded in the .flv video; rather they’ll be
stored in an XML document.

STEPS▼
1. Preparing to use the offline gathering tool

2. Loading the video and transcript into the
gathering tool

3. Setting cue points while the video plays

4. Exporting the XML file

STEP 1▼

Preparing to Use the Offline
Gathering Tool
Copy the gathering_tool.swf file from the
gathering_tool folder you downloaded and
place a copy next to the .flv file produced in
the first project (automatically named
the_children_must_learn.flv). (You can
also find a finished version of
the_children_must_learn.flv in the
finished_source folder you downloaded for
this chapter.)

Copy the video_captions.txt file from the
starter_files folder and place a copy of that
file in your working directory.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 70

STEP 2▼

Loading the Video and
Transcript into the Gathering
Tool
Double-click the gathering_tool.swf file to
launch it in the Flash player. Type the
name of the caption file (in this case,
video_captions.txt) into the Transcription field
and click the Load Text button. The contents

of that text file appear in a list on the right,
and the first row of that list is selected as
shown in Figure 3.9.

Type the name of the .flv video file to which
you want to add the captions (in this case,
type the_children_must_learn.flv) into the Media
field and click the Load button.

Next, you’ll be using the gathering_tool.swf
to collect cue points. Familiarize yourself with
this tool (see Figure 3.10).

Project: ActionScript Cue Points for Captions in an XML File 71

F I G U R E 3 . 9 The
gathering_tool.swf can
load the entire transcript
from a text file.

STEP 3▼

Setting Cue Points While the
Video Plays
Now for the fun part. Click the Play button to
watch the video as many times as needed to
get an idea of when the captions are
supposed to appear. You can scrub the video
(drag the upward-pointing triangle), but
when you let go, the video will jump to the
closest keyframe. That is, when you encode a
video, it automatically embeds keyframes
where significant changes occur onscreen. The
in-between frames contain only the parts that
have changed. Therefore, you can only seek
to keyframes (not to the in-between frames).

When you’re ready, make sure the first row of
the transcription list is still selected. Rewind
the video and then click the Play button to
start the video playing. Get ready to click the
Add button! When the narrator says, “Next
year,” click the Add button to create a cue
point and automatically advance to the next
line in the transcription list (which is, “the
children will study materials”). Then, at the
right moment, click the Add button again to
insert a cue point for the second line in the
transcript. Because the captions appear
quickly, you might need a few tries to get it
right. If you accidentally add a cue point, you
can click its triangle and then click the
Remove button. Just remember that if you’re

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 71

After you insert the cue points, rewind and
then click the Play button to watch the
captions appear in the cue point area. See
whether the synchronization is close. For
your reference, my five cue points were
inserted at 3.239 seconds, 4.257 seconds,
5.825 seconds, 8.071 seconds, and 11.311
seconds. However, it’s not as though you
need to have those exact numbers because
no one will notice if the caption appears a
fraction of a second too early or late.

Don’t close gathering_tool.swf because we
still have to export the cue points! (Note that
we haven’t actually injected the caption cue

points into the .flv file the way we did with
the Navigation cue points in the project
“Navigation Cue Points in a .flv File.”) In
the next step, you will take the cue point
information and export it to a text file.

STEP 4▼

Exporting the XML File
In gathering_tool.swf, click the Export XML
button. Press Ctrl+C to copy the XML string
the tool just generated for you. Create a new
text file using Notepad or a similar program,

CHAPTER 3: Creating a Video with Synchronized Captions72

Current position

Cue point (filled when selected)

Media filename

Rewind media

Play media

Transcript filename

Currently selected row (inserted
with next cue point added)

Transcript contents

Video preview

Add cue point button

Parameters (name/value pairs)

Jump to previous cue point

Name

Time

Remove cue point button

Jump to next cue pointTimeline

Zoom timeline

F I G U R E 3 . 1 0 The
gathering_tool.swf has a
bunch of handy features.

coming back through to add more cue points,
you need to first select the row in the

transcription list for the text you want to
insert next.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 72

and paste the contents of the XML string you
just copied. Save the file as video_captions.xml
in your working directory (we’ll use it in the
upcoming projects). You might want to view

the XML file in a tool such as Internet
Explorer (shown in Figure 3.11).

Project: Basic Caption Display Template 73

F I G U R E 3 . 1 1 The XML file
is much easier to read when
viewed in Internet Explorer.

Now you have an XML file containing both
the captions’ values (the text) and the exact
moment during the video when those
captions should appear. You can use
gathering_tool.swf for any video or audio
file. Just import a different .flv video file (or
.mp3 file) and a corresponding transcript of
the captions you want to add. The advantage
of this tool is that you can identify the cue
points in a natural manner—while the video
plays.

Project:
Basic Caption Display
Template
A video can contain a lot of cue points, but
you need a vehicle to display them, such as a
text field. In this project, we’ll build a simple
text display area that serves as a template
from which you can create other styles and
layouts. In the next project, we’ll link the

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 73

CHAPTER 3: Creating a Video with Synchronized Captions74

video to this .swf template file so the cue
points from the video are sent to this text
display area.

STEPS▼
1. Creating a captionType1.fla file

2. Adding the minimum code

3. Creating the .swf file

STEP 1▼

Creating a captionType1.fla
File
Create a new Flash file and save it in your
working directory with the name
captionType1.fla. Select Modify, Document from
the menu bar and set the width to 320 and the
height to 50. These settings change the .fla
file to match the video’s width and give you
enough room for two lines of text—which
should hold the caption text nicely.

Select the Text tool and create a block of text
that fills the 320 × 50 stage. Use the handles
on the text block to resize the text field area,
as shown in Figure 3.12 (not the Properties
panel’s W and H fields because they scale the
text).

F I G U R E 3 . 1 2 Resize the text field using the handles, not
the Properties panel.

Finally, choose a font that will accommodate
two lines of text (you can just type the longest
caption in your project to see whether it fits in
the newly adjusted text field). Next, set the
text color to White.

To make the white text stand out on top of
any background video, add a filter effect.
With the block of text selected (not the char-
acters in the text) select, Window, Properties,
Filters and add the Drop Shadow filter—in
fact, add two. For both, set the Blur X and
Blur Y options to 0, the Strength to 100%, the
Quality to Low (for better performance), and
the Distance to 1. The default black color for
the shadow will work fine. However, set one of
the filter’s angles to 225 and leave the other
at the default angle of 45.

Finally, for the filter to really look great,
return to the Properties panel and, with the
text field instance selected, click the Embed
button. Click the Basic Latin row and then
click OK. This step adds to your .swf the font
outlines for the font you chose. This way, the
user won’t need to have installed the font you
selected. In addition, the filters have higher-
quality results when the font is embedded.

STEP 2▼

Adding the Minimum Code
Each .swf file you create for this project can
be used to display the text for a video. To do
that, each .swf must implement the same
minimum set of three functions: clear(),
showText(), and getSize(). (They’re formally
defined in the ICaption.as interface file.)
We’ll add those functions now. Select the first
keyframe in captionType1.fla and open the
Actions panel. Type the code shown in
Listing 3.1.

Next, use the Properties panel to set the Text
Type to Dynamic Text. Set the instance name
to _txt and set the Line Type to Multiline.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 74

Although you need all three of these func-
tions in any template, you’ll be able to
modify how they’re handled if you want to
extend this project. (For now, use the code I
provided here.) The clear() function is
called immediately, and here we’re just clear-
ing the text field of any text that might
already be there. The getSize() function
returns (to the custom CaptionHolder class I
built for this chapter) the size of this window
so it can be masked out. Notice that 320 and
50 match the width and height of your
movie. By providing the getSize() method,
the CaptionHolder class can load any sized
captionType.swf you create. (By the way,
don’t use Flash’s Stage.width and
Stage.height here because they won’t report
the correct values—the captionType1.swf file
is ultimately loaded into a larger file that
contains your video and Stage.width reflects
the width of that file.) Finally, the
showText() function is where you’ll do the
most modification in the more advanced
variations of this project. Right now, it’s very
simple: When the video reaches a cue point,
the cue point name is passed to the
showText() function. In this case, we simply

Project: Channeling Cue Points to the Caption Display 75

display it in the _txt field instance onstage.
There are additional parameters that we
won’t use until the “Advanced Captioning
Template” project, later in this chapter.

STEP 3▼

Creating the .swf File
Finally, save the captionType1.fla file and
select Control, Test Movie to generate the file
captionText1.swf, which we will associate
with the video in the next project. (The .swf
we generate here has a blank screen.)

Project:
Channeling Cue Points to
the Caption Display
Now we’ll pull things together. Namely, we’ll
play the the_children_must_learn.flv video
file we generated earlier while sending the
captions gathered using the
gathering_tool.swf to the captionText1.swf
file we just built.

LISTING 3.1 This Code
Displays Captions in the
captionType1.swf File

function clear(){
_txt.text = “”;

}
clear();

function showText(name:String, wholeObject:Object, speed:String){
_txt.text = name;

}

function getSize():Object{
return {width:320, height:50};

}

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 75

STEPS▼
1. Creating the main.fla file

2. Creating the CaptionHolder symbol

3. Assembling support class files

4. Implementing the final code

5. Alternative 1: making the video play automati-
cally

6. Alternative 2: adding a second
captionText1.swf that supports navigation
cue points

STEP 1▼

Creating the main.fla File
For this project, we need to create a simple
movie file that contains an FLVPlayback
component that points to our .flv file.

Create a new Flash file and save it as main.fla
in the same directory in which you’ve been
working—the one that contains the video file
the_children_must_learn.flv.

Select Window, Components and drag onto
the stage an FLVPlayback component (from
the FLVPlayback - Flash 8 category). Use the
Properties panel to give the component an
instance name of playback.

STEP 2▼

Creating the CaptionHolder
Symbol
Select Insert, New Symbol. Click Advanced to
expand the dialog box if isn’t already
expanded. Make sure the Type is set to Movie
Clip and name it CaptionHolder. Next, enable
the Export for ActionScript check box, which

automatically enables the Export in First
Frame check box. Then fill in both fields
(Identifier and AS 2.0 Class) with the name
CaptionHolder so your dialog box looks like the
one in Figure 3.13. Click OK.

Now this empty symbol will be associated
with the class file CaptionHolder.as.

F I G U R E 3 . 1 3 When you create the empty
CaptionHolder movie clip, you can associate it with an
ActionScript class file (CaptionHolder.as—but you don’t
type the .as).

CHAPTER 3: Creating a Video with Synchronized Captions76

After you click OK, you are taken inside this
new clip. Although you don’t have to put
anything here (the captionText1.swf file is
loaded at runtime), draw a rectangle that’s
exactly 320 × 50 pixels (the space your
captions need). Use the Info panel to ensure
the rectangle’s upper-left corner is aligned
with the center of the clip (the plus sign), as
shown in Figure 3.14.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 76

F I G U R E 3 . 1 4 The rectangle you draw inside the
CaptionHolder symbol should have its upper-left corner
aligned with the symbol’s center (where the plus sign is
shown).

. the_children_must_learn.flv

. video_captions.xml

. captionType1.swf

. CaptionHolder.as

. EventChannel.as

The FLVPlayback skin you selected, such as
MojaveOverNoVol.swf, must also be adjacent
to main.fla. (You’re welcome to move the
video, the XML, and the captionType1.swf
files into a subfolder—just remember to add
the path to that subfolder when specifying
filenames in the next step.)

The CaptionHolder.as class file is needed by
the CaptionHolder symbol you created in
step 2. It handles loading the
captionType1.swf file (or whatever template
you specify). The EventChannel.as class does
a lot of work, as detailed at the end of this
chapter. It has three primary features:

. It takes all the events broadcast by the
different cue point types in an
FLVPlayback and channels them
through a single, consistent event
broadcast. That is, the cue point types
all fire off different events (with differ-
ent parameters and such), and the
EventChannel.as class makes them all
consistent.

. It handles the task of loading an
optional XML file full of cue point
information and injecting that infor-
mation (as ActionScript cue points) at
runtime.

. It supports the Sound object. This
means that nearly everything you do
with the FLVPlayback component and

Project: Channeling Cue Points to the Caption Display 77

Select your drawn rectangle and then select
Modify, Convert to Symbol. Make sure the
Movie Clip option is selected and name it
Rectangle. After you click OK, use the Properties
panel to give the Rectangle symbol an
instance name of preview. Finally, click the first
keyframe—still inside the CaptionHolder
symbol—and type this code:

preview._visible = false;

This way, the preview instance is visible only
while authoring.

Return to the main timeline of main.fla and
drag an instance of CaptionHolder onto the
stage. Because it contains the rectangle shape,
you can position it below the playback
instance or right on top—wherever you want.
Use the Properties panel to give the
CaptionHolder symbol on stage an instance
name of captions_clip.

STEP 3▼

Assembling Support Class Files
You’ll need to add two class files for the code
to work. Copy the two homemade class files I
created, named CaptionHolder.as and
EventChannel.as, from the starter_files
folder to your working directory. The follow-
ing is a list of the minimum set of files that
need to be in the same folder as main.fla:

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 77

video you can do with an audio clip.
(And you will in the next project.)

In doing all this work, the EventChannel.as
class insulates you from the tedious code and
keeps the code you have to write for each
new project to a minimum.

STEP 4▼

Implementing the Final Code
Inside main.fla, select the first keyframe and
open the Actions panel. Type the code in
Listing 3.2.

There’s very little code here, but it’s worth
digging into. The first three lines simply set
up the FLVPlayback instance (playback), the
same as using the Parameters panel but with
script instead. Notice that you must set
autoPlay to false because you need to wait
for video_captions.xml to fully load. (I’ll

show you alternative code that makes the
video start playing automatically in the next
step.)

Line 5 creates an instance of the
EventChannel class (saved in the variable
myEventChannel). Next, we pass three param-
eters when triggering the init() method on
the captions_clip instance (the
CaptionHolder symbol you put on the
stage—and therefore an instance of the
CaptionHolder class). Those parameters are
the path to the captionType1.swf template
file we created earlier, a reference to the
myEventChannel instance, and an array
(eventList) that specifies which event types
you want sent to the captionType1.swf
template. (This array can include any of the
following caption types: “event”,
“navigation”, “actionscript”, “caption”, or
“marker”. In this example, though, because
the array contains just “actionscript”, we
want to display only the cue points from the
XML file.)

CHAPTER 3: Creating a Video with Synchronized Captions78

LISTING 3.2 This Code
Associates the
EventChannel Class with
Your captionType1.swf File

1 var playback:mx.video.FLVPlayback;
2 playback.autoPlay = false;
3 playback.contentPath = “the_children_must_learn.flv”;
4
5 var myEventChannel:EventChannel = new EventChannel();
6
7 //send init() function to the CaptionHolder instance

//on stage (captions_clip)
8 var url = “captionType1.swf”;
9 var eventList = [“actionscript”];
10 captions_clip.init(url, myEventChannel, eventList);
11
12 myEventChannel.init(playback, “video_captions.xml”);

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 78

myEventChannel.addEventListener(“ready”,
this);

If this code looks familiar, that’s because the
myEventChannel instance supports every event
supported by the FLVPlayback component
(that is, our playback instance). Here, when
the ready event fires, you tell the
playback instance to play(). The
myEventChannel class’s ready event fires only
after the XML has safely loaded and the
playback instance has fired its ready event.

Select Control, Test Movie to confirm that the
video begins playing automatically.

STEP 6▼

Alternative 2: Adding a Second
captionText1.swf That
Supports Navigation Cue
Points
Just to see how versatile this application is,
let’s view those Navigation cue points you
injected into the video back in the first
project. One way you could do this is by
simply passing [“navigation”,
“actionscript”] (instead of just
[“actionscript”]) for the third parameter
when invoking init() on the captions_clip
(lines 9–10 of Listing 3.2). But seeing both cue
point types in the sole captionsType1.swf
would get messy.

Do this instead: Create a duplicate of the
captions_clip instance on stage and give it
an instance name of captions_clip2. Move it to
another area, such as above the video. Add
the following code directly below where you
call init() on captions_clip (line 10 of
Listing 3.2):

Project: Channeling Cue Points to the Caption Display 79

STEP 5▼

Alternative 1: Making the
Video Play Automatically
There are two quick variations to this project
worth examining. First, you might not like
the fact that the video didn’t automatically
start playing. Add the following code before
the last line, which triggers init() on
myEventChannel:

function ready(){
playback.play();

}

Finally, in the last line, we initialize
myEventChannel by specifying the media
source—in this case, it’s the playback, which
is an FLVPlayback component, but it could
also be a Sound instance—and the XML file
where ActionScript cue points can be found.
The second parameter is optional, meaning
you don’t have to load cue points from the
file if you don’t want to.

Select Control Test Movie and then click the
Play button on the FLVPlayback component
to view the video. Figure 3.15 shows what
mine looks like: The captions are on top of
the video as if they were there the whole time.

F I G U R E 3 . 1 5 The finished video with overlaying captions.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 79

var url = “captionType1.swf”;
var eventList = [“navigation”];
captions_clip2.init(url,

myEventChannel,
eventList);

It’s the same as the original call, except
you’re calling init() on captions_clip2 (not
on captions_clip) and passing a different
list of event types to support. (Well, just one
type, but notice that it’s an array, so you can
specify more types. In fact, if you omit this
parameter all cue point types are sent to the
clip.)

a nearly identical process. The only differ-
ence this time is that you can’t inject the
.mp3 file with Navigation cue points. You can
only use ActionScript cue points.

STEPS▼
1. Capturing the cue points

2. Creating the main_audio.fla file

3. Assembling support files

4. Writing the code

5. Alternative: using the MediaPlayback
component

STEP 1▼

Capturing the Cue Points
Follow the steps for the second project,
“ActionScript Cue Points for Captions in
XML File,” but this time grab the file
the_children_must_learn.mp3 from the
source_media folder and the
audio_captions.txt file from the
starter_files folder. Enter those filenames
when you run the gathering_tool.swf file,
as shown in Figure 3.16.

When you’re done gathering cue points, be
sure to click the Export XML button. Then
copy and paste the XML string into a text file
you save as audio_captions.xml.

CHAPTER 3: Creating a Video with Synchronized Captions80

By the way, if you were showing only Navigation or
Event cue points, you wouldn’t need to import the XML
file because the cue point information would be in the
.flv file. In that case you’d change

myEventChannel.init(playback,
“video_captions.xml”);

to simply read

myEventChannel.init(playback);

NOTE

Now when you test the movie, you’ll see both
ActionScript cue points (the captions in the
XML file) and the names of the Navigation
cue points embedded in the video.

Project:
Code for Audio-only
Captions
To make a project like the one we just
completed, but with audio this time, you use

By the way, there’s a long pause after the narrator says,
“Some of them live a long way off.” If you want the
text to go away during the pause, simply insert an
extra cue point and enter an empty string into the
Name field.

NOTE

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 80

STEP 2▼

Creating the main_audio.fla
File
Create a new Flash file and save it in your
working directory as main_audio.fla. Either copy
an instance of the CaptionHolder symbol
created in the last project, “Cue Points in the
Caption Display,” or repeat step 1 of the
preceding project.

Place on stage an instance of CaptionHolder
and give it an instance name of captions_clip
(just like before).

STEP 3▼

Assembling Support Files
Ensure that your working directory has, at
least, the following support files in addition
to main_audio.fla (you’ll find the .as files in

the starter_files folder and the .mp3 in the
starter_media folder—you need to create the
.swf and .xml files yourself):

. the_children_must_learn.mp3

. audio_captions.xml

. captionType1.swf

. CaptionHolder.as

. EventChannel.as

STEP 4▼

Writing the Code
In the main_audio.fla file, select the first
keyframe and open the Actions panel. Type
the code shown in Listing 3.3.

Project: Code for Audio-only Captions 81

F I G U R E 3 . 1 6 You’ll use
the same
gathering_tool.swf but
this time for an audio track
only.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 81

In Listing 3.3, I was extra careful not to start
the audio until the ready event fires. If you
don’t have any captions at the start of the
sound, you can safely start playing the sound
anytime you want and forgo lines 9–12. The
only critical sequence issues are that
myEventChannel is instantiated before you
invoke init() on the captions_clip
(because you’re passing a reference to the
myEventChannel instance) and that the
mySound instance is instantiated before you
invoke init() on myEventChannel (because
you’re passing a reference to the mySound
instance).

Save and test the movie.

STEP 5▼

Alternative: Using the
MediaPlayback Component
Before I show you how to use the
MediaPlayback component for this audio-
only project, I want to tell you about the two
advantages it offers. The first benefit is that it

CHAPTER 3: Creating a Video with Synchronized Captions82

LISTING 3.3 This Code
Channels Captions for an
Audio Track to the Same
captionType1.swf Used
Earlier

1 var myEventChannel:EventChannel = new EventChannel();
2
3 var url = “captionType1.swf”;
4 var eventList = [“actionscript”];
5 captions_clip.init(url, myEventChannel, eventList);
6
7 var mySound:Sound = new Sound();
8
9 function ready(){
10 mySound.loadSound(“the_children_must_learn.mp3”, true);
11 }
12 myEventChannel.addEventListener(“ready”, this);
13
14 myEventChannel.init(mySound, “audio_captions.xml”);

works with .mp3 audio files as well as .flv
videos. Second, because the FLVPlayback
component requires Flash Player 8, you’ll
want to use the MediaPlayback component if
you’re delivering a project to Flash Player 6
or 7.

Using the MediaPlayback component instead
of the FLVPlayback component is simple.
Open the Components panel and drag a
MediaPlayback instance onstage (from the
Media - Player 6-7 category). Give it an
instance name of myMediaPlayback. Replace the
code you wrote in step 4 with the code in
Listing 3.4.

Basically, you can pass an FLVPlayback
instance, a Sound instance, or—as shown
here—a MediaPlayback component instance.
The cool part about this version shown in
Figure 3.17 is that, because you’re using the
MediaPlayback component, you automatically
get a bunch of features, such as pause, play,
and scrubbing. Remember that, although the
FLVPlayback component also supports these
features, it works only with video.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 82

Additional Support for Sound Objects

Originally, I thought adding support for the Sound
object made the EventChannel.as class particularly
useful, which it does. However, programming a scrub
bar for audio involves a fair bit of code, in addition to
requiring you to temporarily disable the
EventChannel instance from continuing to broadcast
events. I added two public methods to the
EventChannel class to do this:stopMonitoring()
and startMonitoring(). In addition, while the user
is scrubbing you can call scrubTo(milliseconds) to
fire off the closest cue point to a given time—my class
even prevents the same cue point from firing repeat-
edly. I mention all this for two reasons: First, if you
want to dig into the code, you can (for that
matter, I included a sample file called
bonus_scrub_audio.fla in the download files). The
second reason is that I wanted you to see my rationale
behind adding support for the MediaPlayback
component (which is explained in the next step). The
MediaPlayback component works when delivering
audio or video to Flash Player 6 or 7 (whereas the
FLVPlayback component requires Flash Player 8). The
MediaPlayback is definitely not my favorite compo-
nent because it’s next to impossible to skin and it’s not
consistent with other components. However, it’s still
compelling and hard to resist, especially now that you
can easily add cue points in the same manner you’ve
done for the FLVPlayback component and Sound
class.

F I G U R E 3 . 1 7 The MediaPlayback component is hard to
resist when playing audio because it includes playback
controls and is easy to use.

Project: Code for Audio-only Captions 83

LISTING 3.4 This Code
Plays a .mp3 (and Its
Captions) Through the
MediaPlayback Component

import mx.controls.MediaPlayback;
var myMediaPlayback:MediaPlayback;
myMediaPlayback.contentPath = “the_children_must_learn.mp3”;

var myEventChannel:EventChannel = new EventChannel();

var url = “captionType1.swf”;
var eventList = [“actionscript”];
captions_clip.init(url, myEventChannel, eventList);

myEventChannel.init(myMediaPlayback, “audio_captions.xml”);

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 83

Project:
Advanced Captioning
Template
The projects in this chapter have thus far
showed you various ways of collecting cue
point information and then implementing
the code to work with the accompanying
class files. The only Flash file where you got
to do any sort of layout work was the basic
template from the third project, “Basic
Caption Display Template.” Now you’ll get to
see how that template can be expanded.
That is, you can make as many template
types as you want. For example, you can
change the overall theme by modifying
colors and fonts. In addition, your template
doesn’t have to show text at all. As long as
your template includes a minimum set of
features (namely, functions for clear(),
showText(), and getSize()), you can make
it perform however you want.

The features added to the basic display
template in this project make the template
more effective at displaying captions. In the
next project, you’ll make a template for a
synchronized Flash display instead of
captioning per se. The first feature you’ll add
here is a subtle transition animation that
runs anytime the text updates. Although this
might seem gratuitous, I think it’s an effec-
tive way to cue the user that the text has
updated because her attention might have
drifted to the images in the video. The second
feature you’ll add is a hide/close feature.
Some users might not want to view the
captions, so allowing the viewer to turn off
the captioning is a nice option to include.

STEPS▼
1. Creating the captionType2.fla file

2. Nesting the text in a clip

3. Modifying the code to move the text

4. Publishing and testing

5. Adding code for the Hide/Reveal feature

6. Creating the Hide/Reveal button

STEP 1▼

Creating the captionType2.fla
File
If you have captionType1.fla handy from
the earlier project, just open that and imme-
diately select File, Save As. Then, name the
new file captionType2.fla. (Use the version of
captionType1.fla from the finished_source
folder if you don’t have your own. But
remember to save it as captionType2.fla in your
working directory.)

STEP 2▼

Nesting the Text in a Clip
To easily duplicate and move the text, select
the _txt instance on stage and then select
Modify, Convert to Symbol. Select the Movie
Clip option and name the symbol clip. Also
be sure you select the upper-left registration
option. Click OK and then use the Properties
panel to set the instance name to clip.

CHAPTER 3: Creating a Video with Synchronized Captions84

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 84

STEP 3▼

Modifying the Code to Move
the Text
Select the first keyframe and open the
Actions panel. Completely replace the

existing code with the code in Listing 3.5
(which, by the way, you can copy and paste
from captionType2.fla in the
finished_source folder):

Project: Advanced Captioning Template 85

LISTING 3.5 This Code
Displays Captions by Moving
the Old Captions Offstage

1 function clear(){
2 clip._txt.text = “”;
3 }
4 clear();
5
6 var dupe:MovieClip = clip.duplicateMovieClip(“dupe”, 0);
7 dupe._txt.text = clip._txt.text;
8
9 var initialLocation = clip._y;
10
11 function showText(name:String,

wholeObject:Object,
speed:String){

12 if(speed == “fast”){
13 var duration = 0.2;
14 }else{
15 var duration = 0.5;
16 }
17 dupe._txt.text = clip._txt.text;
18 clip._txt.text = name;
19 var endTop = initialLocation - clip._height;
20 var endBottom = initialLocation + clip._height;
21
22 clip._y = initialLocation;
23
24 new mx.transitions.Tween(dupe, “_y”,
25 mx.transitions.easing.Regular.easeOut,
26 initialLocation, endTop, duration, true);
27
28 new mx.transitions.Tween(clip, “_y”,
29 mx.transitions.easing.Regular.easeOut,
30 endBottom, initialLocation, duration, true);
31 }
32
33 function getSize():Object{
34 return { width:320, height:50 };
35 }

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 85

CHAPTER 3: Creating a Video with Synchronized Captions86

As different as this code seems from the origi-
nal captionType1.fla, it’s essentially doing
the same thing: It’s code to clear the text,
code to show new text, and code that returns
the stage size. Let’s walk through it because it
is more involved than the original. The
clear() function is nearly identical as before,
but notice that it’s clearing the text property
of the _txt instance nested inside the
instance clip. Lines 6 and 7 create a dupli-
cate of the clip so the user will see two blocks
of text animate: the old text (in the dupe
instance) going up offscreen and the new
block appearing from the bottom. The
initialLocation variable simply saves a
reference to the default location for the clip
with text.

Inside showText() is where most of the work
is done. First, notice that this time we do use
the third parameter (speed) and set a local
variable, duration, accordingly (lines 12–16).
You’ll see how the wholeObject parameter is
used in the next project, but because we
want access to the third parameter, we need
to leave wholeObject in line 11. The anima-
tion sequence goes like this: Copy the text
from clip into dupe (line 17), put the new
text (name) into clip (line 18), figure out the
destination for text moving offscreen and
ending at the top (line 19), figure the starting
location below the stage for text moving up
(line 20), make sure clip is in its initial loca-
tion (line 22), and then create a new
mx.transitions.Tween() for both dupe (lines
24–26) and clip (lines 28–30). It’s easiest if
you can visualize new text arriving onstage
(in clip) and old text moving off (in dupe),
as Figure 3.18 shows.

F I G U R E 3 . 1 8 When a new line of text arrives, the dupe
clip is placed onscreen (with clip’s old text) and clip is
moved offscreen to the bottom (b). Then they both move up
(c). When the animation is over, dupe is offscreen and the new
text appears on clip, which is in place (d).

(B)

(C)

(D)

STEP 4▼

Publishing and Testing
While in your captionText2.fla file, select
Control, Test Movie to produce
captionText2.swf. You’ll just get a blank
.swf for now, which you can close. Reopen

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 86

Project: Advanced Captioning Template 87

one of your main files (main.fla or
main_audio.fla) and change the first param-
eter in the init() method on the instance of
the CaptionHolder symbol. You want to point

to captionText2.swf and not to
captionText1.swf. You’ll see that change in
line 7 of Listing 3.6.

LISTING 3.6 This Code
Uses captionType2.swf
Instead of
captionType2.swf

1 var playback:mx.video.FLVPlayback;
2 playback.autoPlay = false;
3 playback.contentPath = “the_children_must_learn.flv”;
4
5 var myEventChannel:EventChannel = new EventChannel();
6
7 var url = “captionType2.swf”;
8 var eventList = [“actionscript”];
9 captions_clip.init(url, myEventChannel, eventList);
10
11 myEventChannel.init(playback, “video_captions.xml”);

Here’s one last touch before you test: Select
Modify, Document and set the frame rate to
31. This makes the mx.transitions.Tween()
methods appear much smoother. Finally,
make sure all the support files, such as
the actual video, class files, and
video_captions.xml data, are present. Then
select Control, Test Movie.

The captions seem to appear from below and
roll up offscreen as they depart. Plus, while
you’re scrubbing, the captions still animate
but much more quickly.

STEP 5▼

Adding Code for the
Hide/Reveal Feature
To support the hide/reveal feature, go to
captionText2.fla, select the first keyframe,
open the Actions panel, and add this code
below all the existing code:

var showing = true;
var owner = this;
hide_btn.onPress=function(){

var duration = 1;
if(showing){

//move down
dupe._txt.text = “”;
showing = false;
var destination = getSize().height;
var startPosition = 0;

}else{
//move up
showing = true;
var destination = 0;
var startPosition = getSize().height;

}
new mx.transitions.Tween(owner,

“_y”,
mx.transitions.easing.Regular.easeOut,

startPosition,
destination,

duration,
true);

}

We’ll create the hide_btn next. Anytime the
user clicks this button, the entire caption

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 87

template (owner) moves down or back up
again.

STEP 6▼

Creating the Hide/Reveal
Button
Inside captionText2.fla, draw a down arrow
that is the full height of the stage. Above it,
draw an up arrow, but make sure it’s just
above the stage (but not on stage at all) as
Figure 3.19 shows. Select both arrows and
select Modify, Group so they don’t get wiped
away.

F I G U R E 3 . 1 9 The user will see only one arrow at a time
(currently the arrow pointing down). After everything moves
down, she’ll see the up arrow.

frame. The button’s timeline should look like
the one in Figure 3.20.

F I G U R E 3 . 2 0 A Button symbol with nothing in any frame
except the Hit frame will be invisible to the user but will
remain clickable.

CHAPTER 3: Creating a Video with Synchronized Captions88

Nudge the clip instance over to the right if
you need to make room for the arrows. You
might also need to go inside the clip symbol
to change the text margins or to modify the
stage size. If you do change the stage size,
remember to update the width and height
properties in the object returned by the
getSize() function that appears in the first
frame’s ActionScript.

Finally, draw a rectangle that’s large enough
to cover the two arrows. Convert the rectangle
shape to a Button symbol by selecting it,
pressing F8, and selecting the Button behav-
ior. Name the new button symbol Invisible and
click OK. Next, double-click the Invisible
symbol and click once on the first keyframe;
then click and drag the keyframe to the Hit

Return to the main timeline of
captionText2.fla and be sure to give the
Invisible symbol an instance name of hide_btn
to match the code you added in step 5.

Select Control, Test Movie and then go back to
and test the main file. Because only the
template has changed, you could instead
simply double-click the main.swf generated
the last time you tested.

Project:
Synchronized Images
Template
This project is simply another template that
works with all the code you’ve produced so
far. Specifically, the CaptionHolder.as class
loads the .swf file you’ll create in this project
just like it does captionText1.swf and
captionText2.swf. However, the purpose of
this template isn’t solely for captions. Rather,
you’ll specify frame labels that contain
images, or any Flash graphic or animation,
that you want to appear at synchronized
times during the video. This project also incor-
porates the option of adding parameters to
cue points (discussed earlier) to stuff even
more information into each cue point.

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 88

STEPS▼
1. Encoding the video

2. Preparing to gather cue points

3. Creating an animated sequence

4. Gathering the cue points

5. Implementing the ActionScript in
imagesTemplate.fla

6. Entering the ActionScript in main_coffee.fla

7. Testing main_coffee.fla

STEP 1▼

Encoding the Video
Create a new file in Flash and save it as
main_coffee.fla. Select File, Import to Stage and
then select the coffee_house_1969.mov public
domain excerpt, located in the source_media
folder. Step through the video import process,
accepting all the defaults to produce
coffee_house_1969.flv. You won’t be inject-
ing Event or Navigation cue points during
this phase.

STEP 2▼

Preparing to Gather Cue Points
Select Control, Test Movie and then click Play
to watch the video a few times, noting when
the subject says the following phrases:

. “Circumscribed clientele”

. “cool people on campus”

. “not meaning derogatorily”

. “swinging” (and then “swinging”
again)

. “coffee house”

. “place to be and the place to be seen”

STEP 3▼

Creating an Animated
Sequence
Create a new file and save it in your working
directory as imagesTemplate.fla. Select Modify,
Document and set both the width and height
to 250. Select Insert, New Symbol. Make sure
that the Movie Clip option is selected and
name the symbol Content. Click OK and you’ll
be inside this clip. To see the edges of the
stage, draw a rectangle that’s 250 × 250
pixels. Position the rectangle inside the
Content symbol so the upper-left corner of
the rectangle aligns with the center of the
Content symbol. Select Modify, Timeline,
Layer Properties and then name the layer
Content, click the Lock option, and change the
layer type option to Guide (see Figure 3.21).
Because we want the outline to guide us over
several frames, click the cell in frame 25 and
press F5 to insert frames.

F I G U R E 3 . 2 1 The Outline layer simply helps you see the
edge of the stage from inside the Content symbol.

Project: Synchronized Images Template 89

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 89

Here’s where you can get creative. We’ll
create a graphic or an animation to corre-
spond with each of the phrases the nice
young man says. Open the file
imagesTemplate.fla in the finished_source
folder and investigate the contents of the
Content symbol to see how I created the
sequence you’re about to create.

Create a new layer for the still images; name
this new layer Stills. Insert a keyframe into
frame 2 (press F6), and then import a photo-
graph or create a graphic to support the
phrase circumscribed clientele, such as a circle
around a drawing of a student from the ‘60s.
Click frame 3 and then select Insert,
Timeline, Blank Keyframe (or press F7). Insert
a graphic to support the word cool. In frame
4, insert a blank keyframe and place the
following text: Derogatorily. To animate the
international “no” sign on top of it, select
Insert, Timeline, Layer (name the layer No
sign). In the No sign layer, click frame 5 and
insert a blank keyframe (press F7). Draw a
circle with a line through it, convert the circle
to a movie clip by selecting it and pressing
F8, and name it no. In frame 10 of the No
sign layer, insert a keyframe. Open the
Actions panel and type stop();, and in frame
11 of the No sign layer, insert a blank
keyframe (F7). Return to frame 5 and, using
the Properties panel, select Motion Tween.
Then, select the no symbol onstage in frame
5 and use the Properties panel to set a Color
style of Alpha to 1%. (The no sign will fade
on from frame 5 to frame 10.)

For the two mentions of the word swinging,
we’ll show a graphic of a swing and then
show that swing in motion. In frame 11,
draw the swing. Next, in frame 12, start an
animation of that swing that continues to

frame 20, where you’ll place a keyframe and
a stop() action.

For the last two phrases (coffee house and
place to be and the place to be seen), just place
a photo or logo from your favorite coffee
shop (in frame 21) and the text be and be seen
in frame 22.

CHAPTER 3: Creating a Video with Synchronized Captions90

You really can do anything you want, but I wanted
some of the phrases to be supported with an anima-
tion and some with a still frame. In fact, there are a
million other ways to do this, such as putting every-
thing in single frames and on some frames placing a
movie clip that contains multiple frames and a stop()
on its last frame.

NOTE

STEP 4▼

Gathering the Cue Points
Open gathering_tool.swf and enter the path
to coffee_house_1969.flv into the Media
field—don’t worry about loading captions this
time. Play the video and click the Add button
each time the man says one of the previous
phrases. You can remove cue points you
added by mistake by clicking their triangles
and then clicking the Remove button. Each
cue point’s name defaults to New Cue Point.
Go through the added cue points by clicking
each triangle or clicking the Prev or Next
button; then enter a simple name for each
one, such as Circumscribed, Cool, and so on. The
user won’t ever see this text the way we’re
building this project, but it helps to confirm
that the cue points are in the right place.

When the cue points are in place, we’ll add
parameters to each one, such as a frame

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 90

number and an option of whether the
animation should stop there or play. I came
up with the idea that each cue point will
have parameters for frame (the frame
number to jump to in the Content symbol)
and option (either play or stop meaning
that when the user jumps to the frame, it will
begin to play or simply stop there). Click the
first cue point and click the plus button to
add a parameter. Set the name to frame and
the value to 2. This means when this cue
point is reached, we’ll jump to frame 2 in the
Content symbol, where the “Circumscribed
Clientele” graphic appears. Click the plus
button again and name the second parame-
ter option; then set the value to stop (see Figure
3.22). The plan is that, when the user jumps
to that frame, it will stop there.

Go through all the cue points so each one
has parameters for name and option, as
shown in the following table:

Name Parameters

Circumscribed frame 2
option stop

Cool frame 3
option stop

Derogatorily frame 4
option play

Swinging (1) frame 11
option stop

Swinging (2) frame 12
option play

Coffeehouse frame 21
option stop

Place to be frame 22
option stop

After you have all the cue points and param-
eters set, click the Export XML button. Copy
the XML string that appears and create a
new text document with Notepad or a similar
program. Next, paste in the XML text you
copied and save the file as coffee_house.xml in
your working directory.

Project: Synchronized Images Template 91

F I G U R E 3 . 2 2 This cue
point has two parameters:
frame (2) and option
(stop).

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 91

STEP 5▼

Implementing the ActionScript
in imagesTemplate.fla
Go to the main timeline of
imagesTemplate.fla. Drag an instance of the
Content symbol onto the stage if you haven’t
done so already. (It might be a bit tricky
considering nothing is in the first frame of
the Content symbol.) Use the Properties panel
to set the instance name to content and the
upper-left corner to 0, 0.

Select the first keyframe, open the Actions
panel, and type the code in Listing 3.6.

Notice that we completely ignore the first
parameter received in showText() (that is,
name). Instead, the code digs into
wholeObject, which includes all the same
properties that would be received from a

standard cuePoint event. In this case, these
properties are type, target, and info—inside
of which are properties for name, time, and
parameters (which itself contains whatever
properties you injected into the .flv file or
specified in the XML file). Here the code just
grabs info.parameters.frame and
info.parameters.option.

STEP 6▼

Entering the ActionScript in
main_coffee.fla
Inside main_coffee.fla, be sure you have an
FLVPlayback component onstage; if not, drag
one from the Components panel. Give it an
instance name of playback.

CHAPTER 3: Creating a Video with Synchronized Captions92

LISTING 3.6 This Code
Handles New Captions by
Jumping to the Appropriate
Frame in the content
Instance

function clear(){
content.gotoAndStop(1);

}
clear();

function showText(name:String, wholeObject:Object, speed:String){
content.gotoAndStop(wholeObject.info.parameters.frame);

if(wholeObject.info.parameters.option == “play”){
content.play();

}
}

function getSize():Object{
return { width:250, height:250 };

}

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 92

Copy a CaptionHolder symbol from one of
the other main files you’ve created (main.fla
or main_audio.fla). Or simply select Insert,
New Symbol and set the Create New Symbol
dialog box as was shown previously in Figure
3.13 (step 2 of the fourth project). Place an
instance of the CaptionHolder symbol
onstage and give it an instance name of
captions_clip. Arrange the screen so
captions_clip is next to the video and not
on top of it. The 320 × 50 rectangle shape in
the CaptionHolder symbol is not an accurate
representation of where the
imagesTemplate.swf will appear because that

file is actually 250 × 250. You can double-
click the CaptionHolder and double-click
again so you’re inside the Rectangle symbol
and then resize that shape to make it 250 ×
250. Back in the main timeline, you should
select Modify, Document and increase the
main_coffee.fla file’s width to at least 600
so the FLVPlayback component (instance
name playback) and the CaptionHolder
symbol (instance name captions_clip) fit
side-by-side, as shown in Figure 3.23.

Finally, select the first keyframe, open the
Actions panel, and type in the code in
Listing 3.7.

Project: Synchronized Images Template 93

F I G U R E 3 . 2 3 The
FLVPlayback (left) and
CaptionHolder (right) are
arranged side-by-side.

LISTING 3.7 This Code
Associates an Instance of the
EventChannel Class with
the imagesTemplate.swf
File

var playback:mx.video.FLVPlayback;
playback.autoPlay = false;
playback.contentPath = “coffee_house_1969.flv”;

var myEventChannel:EventChannel = new EventChannel();

//send init() function to the CaptionHolder instance
//on stage (captions_clip)

var url = “imagesTemplate.swf”;
var eventList = [“actionscript”];
captions_clip.init(url, myEventChannel, eventList);

continues

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 93

LISTING 3.7 Continued //alternative code to effectively turn the FLVPlayback
//into autoPlay=true
function ready(){

playback.play();
}
myEventChannel.addEventListener(“ready”, this);
myEventChannel.init(playback, “coffee_house.xml”);

templates are available for download; plus, I
expect readers to share their templates.

Exploring the Support
Classes
In each chapter in this book, I include this
“Exploring the Support Classes” section as a
behind-the-scenes look at the support files.
You certainly don’t have to study how every-
thing was built, but I feel responsible to at
least provide an architectural overview of all
the code. If you’re interested in adding
features to this project or just want to learn
more about how I chose to program this
project, this section should be interesting.

I’ve produced the class diagram in Figure
3.24. Keep this figure handy as you read the
following overview.

The two pieces we’ve built for the project in
this chapter are the main.swf (far left) and
the various captionType.swf templates (far
right). We also created the external .flv and
.xml files that get loaded at runtime. Notice
that all captionType.swf templates imple-
ment the interface file named ICaption.as.
There you’ll see the three required methods
each captionType.swf must implement.
Recall, too, that inside our main.swf we

CHAPTER 3: Creating a Video with Synchronized Captions94

This code should look very familiar—the only
changes are the filenames for the .flv,
imagesTemplate.swf, and .xml files.

STEP 7▼

Testing main_coffee.fla
Make sure all the following support files are
present in the same folder where your
main_coffee.fla file is:

. coffee_house_1969.flv

. coffee_house.xml

. imagesTemplate.swf

. CaptionHolder.as

. EventChannel.as

That folder should also contain the
FLVPlayback skin you selected, such as
MojaveOverNoVol.swf.

In main_coffee.fla select Control, Test
Movie.

I hope that this template shows you another
way to use cue points for more than just
captions and also gives you the ability to
design and build additional template types.
Like many projects in this book, extra

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 94

particular captionType.swf filename specified
when the main.swf triggers the init()
method on its instance of the CaptionHolder
class (shown as captions_clip).

Exploring the Support Classes 95

created a symbol called CaptionHolder,
which was associated with the CaptionHolder
class (center). The main thing the
CaptionHolder class does is load the

main.swf

video.flv

myEventChannel:EventChannel
captions_clip:CaptionHolder

<can listen for events
from EventChannel>

<<ICaption>>

captionType.swf

clear()
showText()
getSize():object

EventChannel

init(obj, captions.xml)
stopMonitoring()
startMonitoring()
scrubTo()

<broadcasts events>

CaptionHolder

eventChannel:EventChannel
holder:MovieClip

init()
clear()
hide()
show()

<listens for events
 from EventChannel>

captions.xml

< <

F I G U R E 3 . 2 4 This
diagram shows where your
main file and captionType
templates fit and how they
relate to the EventChannel
and CaptionHolder class
files.

Before you call init() on the CaptionHolder
instance, you must first create an instance of
the EventChannel class. You’ll see that the
CaptionHolder class has an EventChannel
instance (shown as a variable named
eventChannel in the CaptionHolder class). In
addition to loading the appropriate
captionType.swf, the CaptionHolder also sets
up listeners for events broadcast from the
EventChannel. When the EventChannel
broadcasts that a new caption should appear,
CaptionHolder triggers the showText()
method in the captionType.swf template.

The EventChannel does several things. First, it
first loads an optional .xml file full of
captions (if specified in main.swf). The
EventChannel then sets up listeners for every
event that can be broadcast from the media
type you’re using; this is because it supports

the FLVPlayback or MediaPlayback compo-
nents plus plain Sound objects. If you send a
reference to an FLVPlayback component when
you first call the EventChannel’s init()
method, all the events for FLVPlayback
components are listened for. If you pass a
reference to the MediaPlayback component, a
different set of events are listened for. This
means you can use the EventChannel as a
proxy for any media type. Normally, you’d
use addEventListener() on an instance of
the FLVPlayback component, but this way
you can use addEventListener() on the
EventChannel instance. This has several
advantages: The EventChannel hijacks the
ready event and fires that event only after the
.xml is fully loaded (and therefore is really
ready). The EventChannel also merges the cue
points in the .xml into ActionScript cue

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 95

points. Finally, the EventChannel broadcasts
a cuePoint event for regular Sound
instances—something that’s not built in to
Flash’s Sound class.

So, the EventChannel class channels all the
event types that the different media types
broadcast. Therefore, you can set up listeners
if you want. In addition, the CaptionHolder
instance is listening for all the possible events
that should trigger the showText()—that is,
so the text changes in your captionType.swf
template.

The thinking behind the EventChannel class
was that I wanted a unified way to listen for
all the types of events related to captions.
FLVPlayback components have a cuePoint
event, but they’re not the same as a cuePoint
events broadcast from the MediaPlayback
component. In addition, .flv files generated
by Captionate broadcast events for
onCaption and onMarker. Using the
EventChannel means you don’t have to think
about how these syntaxes vary: You just
channel them all to the CaptionHolder and
the events you want to listen for are chan-
neled to your captionType.swf display.

Final Thoughts
Now that you understand several kinds of
cue points, you can select whichever one
works best for your project. The framework
built in this chapter lets you easily create
new templates for displaying captions or
responding to cue points by displaying
graphics or animations. All you have to do is
synchronize and design.

CHAPTER 3: Creating a Video with Synchronized Captions96

Let me give you a few more ideas of ways I’ve
added synchronization beyond simply text
captions. I built a kiosk for a history museum
that included traditional captions of the
narrator’s script but that also had graphic
highlights that appeared on a detailed map
to supplement the audio discussion. In
another project, I temporarily hid the video
clip when the actor asked the user to interact
with a survey question (built in Flash) that
would appear in place of the video. There are
so many more uses for captions and synchro-
nization. As you can do for all the projects in
this book, you can send me your ideas or any
templates you build, and I can then share
them with other readers on my website
(www.phillipkerman.com/at-work/).

06_0672328283_ch03.qxd 1/13/06 2:34 PM Page 96

