APPENDIX A

Selecting a Game
Development Tool

The programming techniques described in this book rely on the C++ pro-
gramming language in a Windows environment. This means that you
use C++ code to develop programs that run on the Windows operating
system. In order to compile C++ code into an executable Windows pro-
gram, you need a C++ compiler that targets the Windows operating sys-
tem. Fortunately, several C++ development tools are available that sup-
port Windows.

If you have limited experience in C++ or would like a quick refresher, check
out Appendix B, “A C++ Programming Primer.”

You might think that you can use any C++ compiler to build games for
Windows, but in order to support Windows, a compiler must include the
Windows API (Application Programming Interface), which is also known as
the Win32 API. From a programming perspective, the Windows API is a
set of unique functions and data structures that allow you to create pro-
grams for Windows. From the perspective of a development tool, the
Windows API is a set of header and library files that are essential in
allowing you to build Windows programs. So, you must use a compiler
capable of creating Windows programs using the Windows API.

The next few sections introduce you to a few of the popular C++ develop-
ment tools available for creating Windows games. All the code examples
throughout the book are targeted for Microsoft Visual C++, which simply
means that I've included project files to make it easier to build the pro-
grams in Visual C++. I chose Visual C++ simply because it is the most
widely used C++ development tool for Windows. However, if you choose
to use one of the other tools, you shouldn’t have any problem creating
new projects within the tool and building the examples.

CD:552

Appendix A

Project files are used to inform a compiler of the source code files that need to be
compiled, along with library files that should be linked into the executable program,
as well as other compiler and linker settings.

Regardless of what Windows development tool you choose, it is imperative that
you create a project or make file with the appropriate settings for a Windows
game. More specifically, this means that you must instruct the development tool
that you are creating a graphical Windows application using the Win32 API. I
mention this because some development tools will offer default projects for “con-
sole applications,” which are simple command-line applications with no graph-
ics. Similarly, some tools also offer projects for applications built on C++ class
libraries, such as MFC (Microsoft Foundation Classes). Your best bet is to use the
Visual C++ project files that I've provided on the CD-ROM; in which case, all the
settings have already been made for you. If you need help tweaking the settings
for a specific development tool, visit the Forums section of my personal Web site
(http://www.michaelmorrison.com/) and browse the forum for this book. If you
don'’t see your specific tool already being discussed, feel free to post a message,
and I'll do my best to help you out.

If you're insistent on creating a Visual C++ project file from scratch, instead of
using mine, just follow these steps:

1. Select File, New, Project and choose Win32 Project. Give the project the
name of the current chapter’s project.

2. In Visual C++ 6, select An Empty Project from the next screen. In later ver-
sions, just move to the next step.

3. Click Finish.

4. Copy all the source files and resource files from the CD-ROM, less the
included project files (that is, files with the extensions .vcproj, .suo, .sln, and
.ncb), to the newly created project’s folder (typically under \Visual
Studio\My Projects\ProjectName\).

5. In Visual C++, click Project, Add to Project, Files, and select all files in the
new project folder.

6. Click on the File View tab in the Workspace window and expand the folders
to see Source, Header, and Resource files. Move any .ico, .bmp, .wav, or .rc
files to the Resource files folder.

7. Compile the program by clicking Build, Rebuild All.

8. If there are no errors, click Build, Execute (or press Ctrl+F5) to run the
program.

Selecting a Game Development Tool CD:553

If you are using a development environment other than Visual C++, you'll need
to perform a similar set of steps to create a project in your particular environ-
ment, or you might be able to use a ready-made project file. On the accompany-
ing CD-ROM, I've provided suitable project files for Borland C++Builder and
Bloodshed Dev-C++. I highly encourage you to use the project files I've provided if
you're using one of these development environments; work on learning game
programming with this book, and move on to the finer points of tweaking project
files after that.

Microsoft Visual C++

It’s safe to say that Microsoft Visual C++ is the industry standard for C++ program
development in Windows. It is technically part of the Visual Studio development
suite, but you can also purchase it as a standalone tool. Although it’s not the
cheapest option for game development, you aren't likely to find a better solution
when it comes to a professional grade C++ development environment for
Windows. The program examples and games created throughout the book were
developed using Visual C++ 7, and I've provided Visual C++ project files with the
source code located on the accompanying CD-ROM; you will need version 6 of
Visual C++ at a minimum. For the record, this isn’t an endorsement for Microsoft;
it’s just that Visual C++ has long been the industry standard for serious Windows
application development.

The latest version of Visual C++ is actually called Visual C++ .NET, which has to do
with Microsoft’s .NET framework for creating Web applications. None of the games
developed in this book have anything to do with .NET or features of Visual C++ relat-
ed to .NET.

To find out more about Microsoft Visual C++, visit its Web site at
http://msdn.microsoft.com/visualc/. It's a good idea to visit this Web site peri-
odically to stay current with downloadable patches for Visual C++.

Borland C++Builder

A close rival to Visual C++ is Borland C++Builder, which is also a very popular
professional grade C++ development tool. There was a time when an earlier ver-
sion of this tool was pretty much the only C++ development environment for
Windows, but Microsoft quickly geared up and challenged Borland with Visual
C++. Nevertheless, Borland C++Builder is a very capable development tool for

CD:554

Appendix A

Windows game construction. There is a version of C++Builder called C++Builder
Personal that is geared toward individual developers, and it is priced accordingly.
I highly encourage you to check it out.

To learn more about C++Builder and download a trial version to take for a test
drive, visit http://www.borland.com/cbuilder/.

Bloodshed Dev-C++

If you think that the cost of this book is about as much as you're willing to invest
in game programming, you'll probably want to steer clear of Visual C++ and
C++Builder. Fortunately, a high-quality C++ development environment is avail-
able that is completely free. I'm referring to Dev-C++ by Bloodshed Software,
which relies on an open source C++ compiler to power its graphical development
interface. Although Dev-C++ doesn’t have all the bells and whistles of Visual C++
or C++Builder, it can definitely get the job done. Perhaps even better, Bloodshed
Dev-C++ is included on the accompanying CD-ROM, ready for you to use.

Open source software is software that is created by a community for the purpose of
being freely accessible to anyone. Open source software is typically free, with any
voluntary costs usually consisting of a donation to help support open source initia-
tives.

DJGPP

Another option in the realm of open source C++ development tools is D]JGPP,
which is a command-line tool designed to work on several different platforms,
including Windows. Because it is a command-line tool, DJGPP is a little trickier to
install and use than a graphical environment, but it comes with straightforward
directions that really aren’t too tough to follow. The biggest challenge to using
DJGPP is setting up projects for your programs so that they compile in a single
step. Again, the documentation for DJGPP will help you along in this task.

For more information on D]JGPP, including a free online download, visit
http://www.delorie.com/djgpp/.

APPENDIX B

A C++ Programming
Primer

Although this book assumes a fair amount of competence in C++ pro-
gramming, I thought it might be helpful to provide a primer just in case
you are a C++ newbie or maybe haven't used it in a while. This primer is
in no way intended to serve as a comprehensive introduction to C++, but
it will help you hit the ground running with the game code in the book
in the event that your C++ skills need some brushing up.

C++ Language Basics

The C++ language was created as the next stage in the development of
the C language. C, which was created by Brian Kernighan and Dennis
Ritchie at Bell Labs between 1969 and 1973, was originally designed for
programming low-level computer services such as operating systems (in
Kernighan and Ritchie’s case, UNIX). It was meant to replace assembly
language programming. Assembly programming led to programs that
were hard to read and very difficult to create as separate units. C attained
widespread acceptance and became the key language for UNIX and,
eventually, Windows.

From its inception, C has been focused on producing high-performance
programs, and so is C++. C represents the procedural programming style
of creating programs. Procedural programming creates programs that are
a collection of functions or procedures that operate on data to produce a
result. Functions can call on other functions for services and assistance,
which makes it possible to simplify problem solving using the “divide
and conquer” strategy.

CD:556

Appendix B

C is also a strongly typed language. This means that every item of data in C has a
type and can only be used with other pieces of data in the ways that are defined
by their types. Weakly typed languages, such as BASIC, either ignore or hide this
important principle. Strong typing ensures that a program is reasonably correct
even before it is run for the first time.

Bjarne Stroustrup developed the C++ language in 1983 as an extension of C. C++
has most of the features of C. In fact, C++ programs can be written to look just
like C programs. C++ represents the object-oriented style of programming. Object-
oriented programming views a program as a collection of classes that are used to
produce objects. Each class contains a mix of data and functions. An object can
call on objects of other classes for services and assistance. Because data is hidden
away inside the class, object-oriented programs are safer and more easily modi-
fied than procedural programs (in which a change to the structure of data could
affect functions all over the program).

The C++ Development Cycle

If every C++ program worked the first time you tried it, the complete development
cycle would consist of writing the program, compiling the source code, and run-
ning it. Unfortunately, almost every program—no matter how simple—can and
will have errors in it. Some errors will cause the compilation to fail, but some will
only show up when you run the program.

In fact, every program’s development goes through the following stages:
» Analyze—Decide what the program needs to do.
» Design—Determine how the program will do what it needs to do.
» Edit—Create source code based on the design.
>

Compile—Use a compiler to turn the program into a file that your comput-

er can run. The compiler will produce error messages if you have not written
correct C++ “sentences,” and you will need to understand these often cryptic
error messages and fix your code until you get a “clean compile.”

» Link—Usually, the compiler will automatically link a clean-compiled pro-
gram with any standard code libraries it needs.

» Test—The compiler doesn’t catch every error, so you must run the pro-
gram—sometimes with specially planned input—and make sure that it
doesn’t do something wrong at runtime. Some runtime errors will just cause
the operating system to stop the program, but others will produce the wrong
results.

A C++ Programming Primer

» Debug—Runtime errors require you to work with the program to find what
is wrong. The problem is sometimes a design flaw, sometimes an incorrect
use of a language feature, and sometimes an incorrect use of the operating
system. Debuggers are special programs that help find these problems. If
you don’t have a debugger, you must include source code that will cause the
program to tell you what it’s doing at every stage.

Whatever type of bug you find, you must fix it, and that involves editing your
source code, recompiling, relinking, and then rerunning the program until it is
correct. In game programming especially, you will get intimately familiar with
this process.

Creating a Simple C++ Program

The best way to learn is by doing, so you need to see some C++ code in action in
order for it to make any sense. Let’s start with a minimal program just to show
the basic structure of C++. The following program doesn’t actually do anything,
but the compiler doesn’t care:

int main(int argc, char* argv[])

{

return 0;

}

Note

It’s important to understand that this program is a command-line C++ program,
which is known in Windows as a console application. This means that the program
has no graphical user interface and must be executed from the command line within
Windows, or you won’t see any output that it generates; in this case, there is no out-
put. To compile a program such as this in Windows, make sure you specify that it is
a “console application” when configuring its project in a development environment.
All the examples in this appendix are console applications, as opposed to the graph-
ical applications covered in the rest of the book.

Make certain that you enter this exactly as shown while paying careful attention
to the punctuation. In C++, every character, including punctuation, is critical and
must be entered correctly. In addition, C++ is case sensitive—return and Return,
for instance, are not the same term.

This program consists of a single function called main (). This function, which
appears in the first line of code, has two parameters (inside the parentheses) and
returns a number value (the starting int).

CD:557

CD:558

Appendix B

A function is a single group of code lines that perform a particular task. It has a
heading at the top with the function name as the second word and a body that
starts with an opening brace ({) and ends with a closing brace (}). The closing
brace optionally ends with a semicolon. More details about functions will be dis-
cussed later in the section titled “Functions.”

main() is a function required in all C++ console programs; graphical Windows
programs use a similar function called WinMain (). Your system provides the
parameters that the main() function receives, which come from the command
line when the program is run. These are

» int argc—The count of words in the line you typed to run the program.

» char* argv[]—The line you typed to run the program, broken into words.

The function has a header (the first line) and a body (the remaining lines). The
braces on the second line and last line show where the body starts and ends. Any
set of lines with a brace before and after it is called a block or compound statement.
The third line is a simple statement that returns a number to the system when the
program finishes—in this case, 0.

This program is a single .cpp file. Such a file is also called a module. Sometimes a
module consists of two files—a header file (ending in .h) and a .cpp file.

To get a better feel for some additional C++ language elements, let’s expand on
the program example a little. More specifically, we’ll add a line to the empty pro-
gram so that it won’t be empty any longer. That line will display the program
result. The following is the new version of main.cpp:

#include <iostream.h>
int main(int argc, char* argv[])

// Without "using" statement, this would be std::cout
cout << "Hi there!" << endl; // "endl" = next line
return 0;

}

This program displays the text "Hi there!". It does this by using a library of
already written program components called iostream. iostream has this name
because it acts as if input and output are a stream of characters.

On the first line, the #include compiler directive tells the compiler to include the
header file iostream.h. This header file describes what components the library
provides so that the compiler can recognize names such as cout. Including the

A C++ Programming Primer

header file for iostream gives you the ability to use the iostream library. You can
open the iostream.h file if you can find it on your system (usually in the include
subdirectory of the directory where your compiler is installed). You will probably
find its source code hard to understand. Fortunately, the compiler doesn’t.

The iostream library includes the declaration of the standard output stream—
referred to as cout in the example code. It also includes the declaration of the
stream inserter (<<) and a stream manipulator (endl). The iostream library will
generally be automatically linked with your code as part of the link phase. Check
your compiler documentation to make sure.

The program'’s result will be displayed as text in the window or on the screen,
depending on where you run the program.

Going back to the first line of the program example, the first character is the
pound symbol (#), which is a signal to the preprocessor. The job of the preproces-
sor is to read through your source code looking for lines that begin with # and,
when it finds one, to modify the code as requested by that command. This all
happens before the compiler sees your code.

include is an instruction that says, “What follows is a filename. Find that file
and read it in right here.” The angle brackets around the filename tell the pre-
processor, “Look in all the usual places for this file.” If your compiler is set up cor-
rectly, the angle brackets will cause the preprocessor to look for the file
iostream.h in the directory that holds all the header files for your compiler. The
effect of the #include instruction is to include the file iostream.h into this pro-
gram as if you had typed that file into the code yourself.

Documenting Code with Comments

A comment is text you add to explain (to yourself or other programmers) why you
have done something a particular way in your code. The comment does not make
it through the compiler into the program file you actually run—it serves only as
documentation. Comments should not be used to explain everything. Use them to
explain the design or why you chose to turn the design into this particular code.

There are two types of comments in C++. The double-slash (//) comment, which
is referred to as a C++-style comment, tells the compiler to ignore everything that
follows the slashes until the end of the line. The C-style slash-star (/*) comment
mark tells the compiler to ignore everything that follows until it finds a star-slash
(*/) comment mark. These are less commonly used, except when a comment
spans multiple lines.

CD:559

CD:560 Appendix B

Providing Code Separation
with Whitespace

Some lines in your program should be intentionally left blank. A blank line,
called whitespace, makes it easier to read your program because it separates sec-
tions of code into related statements. The second line in the program example is
whitespace because it contains nothing more than a carriage return.

Organizing Code into Functions

Although main() is a function, it is an unusual one because it is called automati-
cally when you start your program. All other functions are called by your own
code as the program runs. A program is run line by line, starting at the top of
main (), until another function is called. Control is then transferred to that func-
tion. When that function finishes, it returns control to the line after its call in
main(). If the function you call, in turn, calls another function, control flows in
the same way—returning to the line in the first function that follows its call to the
other function.

Even if a function is defined above main() in the listing (as you'll see later), it is
not performed before main(). main() always runs first. Functions either return a
value or return void (as in “the void of space”), meaning they return nothing.
Note that main() always returns an int.

Note

Windows programs use a function named WinMain () instead of main(). To learn
more about the WinMain () function, check out the Windows programming primer in
Appendix C.

Manipulating Data with Expressions

Expressions are the next step in this quick tour of the C++ programming lan-
guage. To understand how expressions work, take a look at the new program
example, which has been expanded to perform a simple calculation:

#include <iostream.h>
int main(int argc, char* argv[])

// Should print the number 6

A C++ Programming Primer

cout << ((6/2)+3) << endl;
return 0;

}

This program displays the value 6, which is the result of calculating ((6/2)+3).
((6/2)+3) is an example of an expression. In this case, the expression uses literal
numbers, operators (/ and +), and parentheses.

Every expression that uses operators must be interpreted by the compiler. In the
most basic interpretation, the compiler could simply read the expression from left
to right. If you leave out the parentheses, the expression looks like this:

6/2+3

If you perform this expression by hand, you get 6. But what if the expression were
this:

3+6/2

The result of this expression is 4.5, which might not be what you want. Normally,
multiplication and division are performed before addition and subtraction, so if
you interpret 3+6/2 that way, you get 6 again.

C and C++ are operator-rich languages and have a complex set of rules that
determine the precedence of operators. Higher precedence causes an operator and
its operands (6 and 2 are the operands of / in the preceding expression) to be eval-
uated before any operator and operands with lower precedence. (An operator and
its operands are sometimes called subexpressions.)

Programmers often don’t do well at remembering these rules. If you have any
doubt, use parentheses. In fact, even if you don’t have any doubt, using parenthe-
ses is a good idea. Parentheses guarantee a specific precedence. Subexpressions
in parentheses are evaluated at a higher precedence than any of the mathemati-
cal operators. For instance, consider this version of the code:

3+(6/2)

This code guarantees that 6 is divided by 2 before 3 is added to that result.

With complex expressions, you might need to nest parentheses (put a subexpres-
sion inside another subexpression). For example, consider this expression:

4*(3+(6/2))

This expression with nested parentheses should be read from the inside out. First,
divide 6 by 2. Then add 3 to that result. Then multiply the updated result by 4.

CD:561

CD:562

Appendix B

Because C++ doesn’t require an expression to be written on a single line, you can
make this more understandable by using the parentheses as if they were braces:
4%

(

3+
(6/2)

This makes it easier to be sure that every opening parenthesis has a closing
parenthesis (thus avoiding a common programming mistake). Even so, I wouldn't
advise you to actually structure your expressions this way in your code because it
could easily result in your code spanning too many lines and becoming unwieldy
to navigate through.

Enhancing the Program Example

If you are using an Integrated Development Environment (IDE), such as Borland’s
C++Builder or Microsoft’s Visual C++, you might find that running the example
creates a window where the result (if any) is displayed and that the window
almost instantly disappears when the program stops running. If that happens,
you'll need to make the program pause before it ends to see whether the output is
what you expect.

Even if you are running your programs directly from the command line of a DOS
or shell window, you will find the following code interesting, as it lets the pro-
gram get information from the user.

#include <iostream.h>

int main(int argc, char* argv[])
{
cout << ((6/2)+3) << endl;

// Note: You must type something before the Enter key
char stopCharacter;

cout << endl << "Press a key and \"Enter\": ";

cin >> stopCharacter;

return 0;

The most important code in this example begins with the declaration of the
stopCharacter variable. This variable is a place to keep the single character that
the user must type to end the pause. You can tell what input is expected because
of the word char, which identifies what type of variable this is. Because C++
requires every variable to have a name, this one is called stopCharacter.

A C++ Programming Primer

The next line contains a string, which is displayed as follows:

Press a key and "Enter":

Note that the backslashes (\) in the string allow you to use quotation marks
inside a string literal. Without a \, the compiler sees a quote and assumes that it
has reached the end of the string literal. Try taking it out and see what happens.
You will probably get an error message when you try to compile the program.

The next line of code waits for a single character from the user (this is the pause)
and puts it in stopCharacter. The cin standard input stream from <iostream.h>
is used for this purpose. Here, you can see the use of the >> operator, which is
called the extractor. The extractor points the opposite direction from the inserter.
Through its direction, it shows that information is coming from cin and is being
put in the variable.

Now, the program runs and prints 6. Then, it prints the string Press a key and
"Enter":. (This kind of request for input is often called a prompt.) It waits for the
user to press a letter, number, or punctuation key on the keyboard followed by the
Enter key. When that happens, the program returns @ and stops.

Note

As indicated by the wording of the prompt and the comment, just pressing Enter will
have no effect on the program. You must press some other key first.

Variables and Constants

Earlier, you saw how almost everything in a program has a name. Of course, lit-
erals are an exception to this rule. They are what they are, and they have no
name.

Variables let you give a name to a value. Actually, you are naming a place to
keep that data in the computer’s memory. When you define a variable in C++,
you must tell the compiler not only what its name is, but also what kind of infor-
mation it will hold: a number, a character (such as char stopCharacter), or
something else. This is called a variable’s type. You might recall that C++ is said to
be a strongly typed language, and identifying the type of a variable is part of
what makes strong typing work.

CD:563

CD:564

Appendix B

The type of the variable tells the compiler, among other things, how much room
to set aside in memory to hold the variable’s value. It also enables the compiler to
make sure that the variable is used appropriately. (For instance, it will produce an
error message if you try to divide a number by a character.)

The smallest unit of memory used for a variable is called a byte. In most cases, a
character is one byte in size; but for international applications, a character might
require more than one byte.

The ASCII Character Set

Variables of type char typically contain values from the ASCII character set. This is a
set of 256 characters standardized for use on computers. ASCII is an acronym for
American Standard Code for Information Interchange. Nearly every computer operat-
ing system supports ASCII. However, ASCII cannot represent some large character
sets, such as Japanese, which require characters more than one byte in size (multi-
byte characters) because of the large size of their alphabet. A type called wchar_t
is often used for such characters.

A short int is 2 bytes on most computers, a long int is usually 4 bytes, and an
int (without the keyword short or long) can be 2 or 4 bytes. In 32-bit Windows
environments, such as Windows XP, your int is likely to be 4 bytes in size, but
you should rarely (and then only carefully) depend on this.

A constant is similar to a variable, but its value can never change. You use the
const keyword to declare a constant. The following are some examples of how to
declare constants:

const int dividend = 6;
const int divisor = 2;

This code declares two constants named dividend and divisor and initializes
their values to 6 and 2, respectively. The = is called the assignment operator and
puts the value on the right side into the variable on the left side. These constants
are declared as type int, which is a number with no decimal places. Although
these are technically variables because they have names, the use of the word
const on these variable declarations makes it clear to the compiler that the pro-
gram is not allowed to change the content of these variables in any way.

You can use constants to perform calculations that store the results in variables,
as this code demonstrates:

int result = (dividend/divisor);

A C++ Programming Primer

This code declares a variable and assigns the result of an expression to the vari-
able. It uses the names of the constants in the expression, so the value in result
depends on the content of those constants. The following is another example of
how you can use a variable in a calculation to ultimately change its own value:

result = result + 3; // result is now its old value+3=6

Remember that the variable is a named location in memory, and its content can
change over time. This code says, “Add the current content of result and the
number 3 together and put the calculated value into the location named by
result, wiping out what used to be there.” The result of this code is still 6.

Types of Variables

Integers come in two varieties: signed and unsigned. The idea here is that some-
times you need negative numbers, and sometimes you don’t. Integers (short and
long) that aren’t labeled unsigned are assumed to be signed. signed integers are
either negative or positive. unsigned integers are always positive.

Use the int data type for most number variables

Unless you carry out calculations that require decimal places or enormous values,
you can simply declare your simple number variables as ints—these are signed
integers.

Several variable types are built into C++. They can be conveniently divided into
integer variables (the type discussed so far), character variables (usually char),
and floating-point variables (float and double).

Floating-Point Variables

Floating-point variables can have fractional values and decimal points, unlike
integers.

The types of variables used in C++ programs are described in Table B.1. This table
shows the variable types, how much room they typically take in memory, and
what ranges of values can be stored in them. Note that the e in 3.4e38 (the num-
ber at the high end of the range of values for float) means “times ten to the
power of,” so the expression should be read “3.4 times ten to the 38th power,”
which is 340,000,000,000,000,000,000,000,000,000,000,000,000.

CD:565

CD:566

Appendix B

TABLE B.1 Variable Types

Type Size Values

unsigned short int 2 bytes 0 to 65,535

short int 2 bytes -32,768 to 32,767

unsigned long int 4 bytes 0 to 4,294,967,295

long int 4 bytes -2,147,483,648 to
2,147,483,647

char 1 byte 256 character values

bool 1 byte true or false

float 4 bytes 1.2e-38 to 3.4e38

double 8 bytes 2.2e-308 to 1.8e308

Case Sensitivity

C++ is case sensitive. This means that words with different combinations of upper-
case and lowercase letters are considered different words. A variable named age is
not the same variable as Age or AGE.

Keywords

Some words are reserved by C++, and you may not use them as variable names.
These are keywords used by the compiler to understand your program. Keywords
include if, while, for, and main. Your compiler manual should provide a com-
plete list, but generally, any reasonable name for a variable is almost certainly
not a keyword.

Strings and Arrays

String variables are a special case. Strings are actually sequences of characters
stored together in structures called arrays. An array is a named sequence of loca-
tions for data. Each location is called an element, and each element holds the
same type of data. You use an element by specifying the name of the array and
an index that is the numeric offset of the element in the array; this starts at zero.

You define an array by identifying the type of data it will hold in each element,
followed by the array name and the count of elements it will contain in brack-

ets—for instance, int someArray[3]. The count can be any literal, constant, or

constant expression.

A C++ Programming Primer

You reference an element to get or change its value using the array name and the
element sequence (0 is the first element) in brackets—for instance, int x =
someArray[0];. An element reference can be on the left or right side of an assign-
ment statement, just like a variable.

The if Statement

The if statement is used in a C++ program to branch the flow of program execu-
tion and control which portion of the code will be run next. As discussed earlier, a
program normally starts running at the top of the main function and ends at the
bottom, only deviating from this order when calling a function to perform some
service. However, a program that performs the same code on every run is not as
flexible as code that runs differently in various circumstances. The if statement is
the key to that capability. It uses a bool expression to make its decision.

The 1998 ISO/ANSI standard introduced a special type called bool (named for
George Boole, the famed developer of Boolean algebra, which is the basis for all
program decision making). This new type has two possible values, false and
true. You can think of these as 0 and 1. Every expression can be evaluated for its
truth or falsity. Expressions that evaluate mathematically to zero have a value of
false; all others have a value of true.

The if statement relies on the bool type. A true value causes the if statement to
perform one set of statements; false causes it to follow another path. The if
statement, then, has the following format:

if (/* bool expression */)

{

// if true, this part of the code runs
}
else
{

// if false, this part of the code runs
b

To improve the readability of the if statement, the code in each of the blocks has
been indented. You'll also notice the use of braces to enclose the code in each of
the blocks.

Often, you'll need to structure an if statement so that it executes code when the
opposite of something happens. In this case, the if expression uses the special !
operator (sometimes called the bang operator or the not operator). The bang opera-
tor takes a true result and makes it false or takes a false result and makes it
true. The bang operator is often read as “not,” so the expression !readyToRoll()
would be read as “not ready to roll.”

CD:567

CD:568

Appendix B

The bang operator is what is called a prefix unary operator, meaning that it must
appear before its operand (it is a prefix), and it has only one operand (it is
unary). This is different from the addition operator (+), which is an example of an
infix operator—one that goes between two operands.

Relational Operators

What exactly is the relationship between these “not” and “or” operators? First,
let’s recap the simple bool expression in a little more detail. Remember that a
bool expression can be true or false. There are six bool relational operators used
to compare values. Like +, they are infix operators, so they have an operand to
the left and an operand to the right. Table B.2 shows their names, symbols,
examples of their use, and the example values.

TABLE B.2 The Relational Operators

Name Operator Example Value
Equal to == 100 == 50; false
50 == 50; true
Not equal to I= 100 != 50; true
50 != 50; false
Greater than > 100 > 50; true
50 > 50; false
Greater than >= 100 >= 50; true
or equal to 50 >= 50; true
Less than < 100 < 50; false
50 < 50; false
Less than <= 100 <= 50; false
or equal to 50 <= 50; true

There are also two infix operators used to create complex bool expressions—a&&
(and) and !} (or).

&& means that when its two operands are true, the expression is true; if one or
both operands are false, the expression is false. Therefore, (true && true) ==
true, (true && false) == false, and (false && false) == false.

i | means that when either operand is true, the expression is true. So (true ||
true) == true, (true || false) == true, and (false || false) == false.

A C++ Programming Primer

Don't forget the prefix unary bool operator—the bang operator (!), which means
“not.” If an expression is true, ! makes it false; if an expression is false, ! makes
it true. This is called negation.

Now, take a closer look at the following bool expressions:
(

(

(answer == 'y')
[l
[
(answer == 'n'")

Remember, you want to print an error and loop when a user enters anything that
is not a y or an n. (Note that when parentheses are used, you have to read an
expression from the inside out.)

The fourth and sixth lines are the innermost expressions. When the answer vari-
able is set to y or n, one of the expressions will be true. Otherwise, neither expres-
sion will be true. The fifth line is the “or” that combines the two expressions into
one. If either of the expressions is true, the result of the “or” expression will be
true; otherwise, it will be false. The second line negates the result using the bang
operator.

Remember that the if statement and the loop will only perform their blocks
when the condition is true. You want this condition to be true when the input is
invalid, but the expression is true when the input character is valid. Thus, you
must negate the true result using the bang operator. This makes the condition
false when valid characters have been input and true when they have not.

If you read the expression as if it were natural language, it is a little easier to see
how this works:

If not (answer is y or answer is n), then you have an error.
Here’s an alternative form:

If (answer is not y and answer is not n), then you have an error.
Written in code, this would be

(answer != 'y') && (answer != 'n')

This has the same effect as the first form. Some people find the “and” in this style
of expression a little harder to understand. Settle on one style or the other and
stick with it consistently.

CD:569

CD:570

Appendix B

Functions

When people talk about C++, they mention objects first. Yet objects rely on func-
tions to get their work done. A function is, in effect, a subprogram that can act on
data and return a value. Every C++ program has at least one function, main()—
or, in the case of Windows programs, WinMain (). When your program starts,
main() is called automatically. main () might call other functions, some of which
might call still others.

Each function has its own name, and when that name is encountered, the execu-
tion of the program branches to the body of that function. This process is known
as calling the function. When the function completes all of its code, it returns, and
execution resumes on the next line of the calling function.

A well-designed function will perform a specific task. That means it does one
thing and then returns. Complicated tasks should be broken down into multiple
functions, and then each can be called in turn. This makes your code easier to
understand and maintain.

Before you can use a function, you must first define the function header and then
the function body. A function header definition consists of the function’s return
type, name, and argument list. The body of the function is a set of statements
enclosed in braces. The following is an example of a simple function:

void DoNothing() // Takes no parameters, returns nothing
{

// I'm doing nothing!
}

This function is truly a worthless function in that it does nothing useful. It does
demonstrate, however, how to structure a function declaration that accepts no
parameters and doesn’t return anything. The void keyword at the front of the
code indicates that nothing is returned by the function. If you did want to return
something from the function, you would place a data type in place of void, as
this code demonstrates:

float GetAmount() // Takes no parameters, returns a float

{
float amount = 0;

cout << "Amount: ";
cin >> amount;

return amount; // Returns a copy of amount

}

A C++ Programming Primer

This function prompts the user to enter an amount, and because the amount vari-
able is a floating point type, the amount can have decimal places. It’s important
to note that the return value of the function (float) is specified first, followed by
the name of the function and any parameters that might be passed to it (none in
this case because the parentheses are empty). It's important to clarify that the
local variable amount is created when the function is entered and disappears
when the function is finished.

For even more flexibility, you can create functions that accept parameters and
return a value, as the following code demonstrates:

float Divide(float dividend, float divisor) // Takes 2 floats, returns a float
{

return (dividend/divisor)

}

This function takes two parameters, a floating point dividend and a divisor.
Parameters serve as placeholders for whatever actual literal, expression, or other
value is provided to the function when it is called. In this case, whatever values
you pass into the Divide () function when you call it are divided, and the result is
returned. The following is an example of how you might call this function:

float result = Divide(5280.4, 3.768);

C++ requires that you declare everything before you use it. Thus, a function must
be declared before it is used in another function. Because of this, functions called
within the main() function are typically placed in the space above main() in C++
programs. Functions used by a function called from main() are defined above
that function, as shown here:

void A(void)

{
}

void C(void)
{
}

void D(void)
{
}

void B(void)

CD:571

CD:572

Appendix B

You should typically start reading C++ programs at the main() function and then
look up above the main() function for the functions that are mentioned. If possi-
ble, those functions should appear in the order in which they are mentioned in
the calling function.

Global Variables

It is possible to have variables that are not in any specific function. Such a vari-
able is called a global variable and can be declared at the top of the module’s
.cpp file. Because a global variable is not “in” a particular function, it is visible to
all functions. This means that any function can get or change its value. This
increases the dependence (coupling) between any functions that use the global
variable, which makes maintenance more difficult.

One other issue with global variables arises when local and global variables have
the same name. In these instances, the local variable takes priority over the glob-
al variable so that any changes are made to the local variable, not the global
variable. In a complex program that uses many global and local variables, this
can cause subtle errors that are difficult to debug. For instance, a function might
accidentally change the content of (or update) a local variable, intending to
update the global variable.

The program examples in this book use global variables whenever necessary to
help make the code easier to follow, but generally speaking, you're better off plac-
ing data within classes as member variables. Even so, sometimes global variables
are just easier to use to get the job done—just be careful, and make sure that you
keep track of how and where you are accessing them.

Modules

Modules are files that can be compiled separately. The result of compiling these
modules is a set of compiler output files. These files can be brought together by a
linker to generate a single program you can run. You've already made use of a
module—iostream—earlier in the appendix.

A C++ Programming Primer

Two files—a header file (ending in .h) and an implementation file (ending in
.cpp)—make up a C++ module. main.cpp is the only exception to this rule. It is
an implementation file that never has an accompanying header file. The imple-
mentation is the part of a program that contains the code that can be run. A
header declares the allowable ways to call on that code. main.cpp does not have
a header because the operating system knows that the only way to call on its
code is to use the main() function.

Modules let you compile pieces of your program separately. This is important for
two reasons:

» When the program gets big, you only have to recompile the pieces you
change; this saves time.

» You can share your modules across different projects and with other pro-
grammers, and they can leverage the code you've created in the same way
that you use the iostream library.

Header files tell the compiler what is in the implementation module, such as the
names and arguments of functions and the definitions of constants and data

types.

The functions named in the header file are public because any user of the module
can see them. The implementation file, however, can contain functions not men-
tioned in the header file that cannot be used by anything other than the module
implementation. Such functions are referred to as private.

Implementation files are a lot like main.cpp, except that they include their own
header files as well as any others they need. Standard C++ requires that there be
something in an implementation file. There doesn’t have to be anything more
than a #include of its header file, but it usually contains substantial code.

Doing Things More Than Once

A control structure is any statement that changes the flow of control through the
program. Normal control flow is from top to bottom in each function called. An
if statement determines whether control flows to the “then” or “else” block. Even
a function is a control structure, in the sense that a call sends the flow of control
to a new function and allows it to return later. Every control structure is responsi-
ble for at least one block surrounded by braces.

CD:573

CD:574

Appendix B

C++ offers several control structures, similar to the if statement, that repeatedly
run the code in a block. (This is called a loop.) Loops use a bool expression to
control whether the repetition should continue. This means that the program can
perform its activity many times without stopping.

Doing Things at Least Once

In many cases, you want to do something at least once and perhaps many times.
This is best handled by the do/while loop. The form of this loop is as follows:

do
{

statements

}

while (condition);

The following is an example of how to perform a countdown using a do/while
loop:

int i = 10;

do

{

cout << i—;

}
while (i >= 0);

The second line of code indicates the beginning of the loop, with the third line
containing the brace that starts the block affected by the loop. The last line of
code contains the expression that determines whether repetition continues. In this
case, the loop is repeated while the i variable is greater than or equal to zero,
which results in the code counting down and outputting numbers from 10 to O.

In many cases, you can carry out a similar looping task with a variety of different
C++ looping constructs. However, each particular loop has unique features that
make it better suited to certain tasks. The neat benefit of the do/while loop is that
the statements are guaranteed to be executed at least once, regardless of the con-
dition, because the first condition test isn’t performed until after the first iteration
of the loop.

Doing Things Zero or More Times

The do/while loop places the loop conditional after the statements to be executed,
which means that the statements are executed at least once, no matter what. If

A C++ Programming Primer

you’d like to perform the conditional test before any code is executed, you should
use a while loop. The while loop has the following form:

while (condition)

{

statements

}

You'll notice that this loop puts the while at the beginning, instead of the end.
Since the conditional test comes first, it is possible in some while loops for state-
ments to never get executed, not even once. The following is a modified count-
down example that shows how to carry out the same countdown using a while
loop:

int i = 10;

while (i >= 0)

{

cout << i—;

}

The while loop, unlike the do loop, ends with a simple closing brace. There is no
keyword or condition at the end because both the keyword and the condition are
at the top. In the case of the countdown example, the choice between a do/while
loop and a while loop is simply a matter of taste because they are both equally
suited to the task.

The for Loop

The for loop combines three parts—initialization, condition, and step—into one
statement at the top of the block it controls. A for statement has the following
form:

for (initialization; condition; step)

{

statements;
}s

The first part of the for statement is the initialization. Any legal C++ statements
can be put here (separated by commas), but typically, this is used to create and
initialize an index variable. Such a variable is most commonly an int. This part
ends with a semicolon and is only performed once before the loop starts.

Next is the condition, which can be any legal C++ bool expression. This serves
the same role as the condition in the while loop and should be read as “while
condition is true.” This part also ends with a semicolon, but it is performed at the
start of every repetition.

CD:575

CD:576

Appendix B

Finally, there is the step. Typically, an integer counter variable (index) is incre-
mented or decremented here, although any legal C++ statements, separated by
commas, are valid. This part is performed at the end of every repetition.

Note that the index of the loop, or any other variable declared in the initializa-
tion part of the for statement, can be used inside the loop, but not outside it.

switch Statements

if and else...if combinations can become quite confusing when nested deeply,
and C++ offers an alternative. Unlike if, which evaluates one value, switch state-
ments enable you to change control flow based on any of a number of different
values for an expression. The general form of the switch statement is as follows:

switch (expression)

{
case constantexpressioni:
statement;
break;

case constantexpression2:
statement;
break;

case constantexpression3:
statement;
break;

default:
statement;

The expression part of the switch statement is any legal C++ expression resulting
in a character or other simple result (such as int or float), and the statements
are any legal C++ statements or blocks. The switch statement evaluates the
expression and compares the result to each of the case constant expressions.
These can be, and usually are, literals, but they can be something as complex as
3+x*y, as long as x and y are constants.

If one of the case values matches the expression, control flows to that case’s
statement and continues from there to the end of the switch block until a break
statement is encountered. If nothing matches, control flows to the optional
default statement. If there is no default and no matching value, the statement
has no effect, and control flows on.

A C++ Programming Primer

Note

It is almost always a good idea to have a default case in switch statements. If you
have no other need for the default, use it to test for the supposedly impossible case
and display an error message.

It is important to note that if there is no break at the end of a case’s statement or
block, control will flow through to the next case. The absence of a break is some-
times intentional and necessary, but usually indicates a common error with sur-
prising effects. If you decide to let control flow through, be sure to put a comment
indicating that you didn't just forget the break.

Incrementing and Decrementing

The most common value to add (or subtract) and then reassign into a variable is
1. In C++, increasing a value by 1 is called incrementing, and decreasing by 1 is
called decrementing. The increment operator (++) increases the value of its vari-
able by 1, and the decrement operator (—) decreases it by 1. Thus, if you had a
variable, x, and you wanted to increment it, you would use this statement:

x++; // Start with x and increment it.

Both the increment operator and the decrement operator come in two styles:
> Prefix—The operator is written before the variable name (++x).

> Postfix—The operator is written after the variable name (x++).

In a simple statement, it doesn’t matter which of these you use. However, in a
complex statement, when you are incrementing (or decrementing) a variable and
then assigning the result to another variable, it does. Prefix means “increment
the value and then get it.” Postfix means “get the value and then increment the
source.” In other words, if x is an int whose value is 5 and you write

int a = ++x;
the program will increment x (making it 6) and then assign it to a. Thus, a is now
6 and x is now 6.

If, after doing this, you write

int b = x++;

CD:577

CD:578

Appendix B

the program will get the value in x (6), assign it to b, and then increment x. Thus,
b is now 6, but x is now 7.

This can be tricky, and you should be careful that you're using the prefix and
postfix operators as intended. Although the compiler will not prevent you from
mixing prefix and postfix operators in confusing ways, the person who has to
maintain your program might not appreciate how clever you've been.

Learning the Bare Essentials of Classes

Earlier, I briefly mentioned classes, which make up an extremely important part
of the C++ language. Classes are structures with member functions, as well as
member variables, that can both contain and process data. A variable of a class
type is usually referred to as an object.

Just as a program or function’s internal state is based on the content of its vari-
ables, an object’s internal state is based on the content of its member variables.
The content of member variables can change as control flows through the mem-
ber functions of an object, and the object will retain those changes for the next
member function call. Member variables of an object can be simple, structured,
enumerated, or class types.

Member functions are just like any other functions, except that they have access
to member variables without needing to use the member selection operator.

Classes Versus Instances

A class and an object of a class are not the same thing any more than blueprints
and buildings are the same. A class describes the objects that can be created from
it. You create an object by creating an instance of a class—that is, by defining a
variable of the type of the class. This is called instantiation.

The member variables of an object come into existence when the object is instan-
tiated, and they are automatically destroyed when the object is destroyed. An
object is destroyed when the program terminates, when it is deleted, or when its
variable goes out of scope.

Declaring a Class

To declare a class, you use the class keyword followed by the name of the class,
like this:

A C++ Programming Primer

class ClassName

{
// Class members

b

Some classes have only member variables, but most have member functions as
well. Class members can have varying degrees of visibility to other classes, as
indicated by the keywords private, public, and so on within the class
declaration.

Understanding Methods

The header file for a class contains the class declaration that declares member
variables and member functions, which are also known as methods. The imple-
mentation file contains the method definitions.

Normally, a module contains the declaration and definition of only one class, but
the compiler does not enforce this. In the implementation file for the module,
each member function, or method, for the class must be defined. To identify a
function as a member of the class, the header for the function has the name of
the function prefixed by the name of the class, like this:

type ClassName::FunctionName (parameters)

// Method code
}

The use of the scope resolution operator (::), which you previously used with
namespaces, tells the compiler the name of the class where the method is
declared and enables the compiler to make sure that the declaration matches the
definition.

Initializing and Cleaning Up Objects

When you create an object variable, the values of its member variables are not
defined until you initialize them from your program. However, the class allows
you to declare and define a special method, the constructor, which can initialize
member variables when an object of the class is instantiated. The constructor is
called automatically by code that the compiler generates as part of the process of
instantiating the object.

The constructor has the same name as the class. It has no return type, not even
void, and the most basic constructor has no parameters. The following is an
example of a minimal constructor:

CD:579

CD:580

Appendix B

ClassName: :ClassName ()

{
// Constructor code

}

The constructor should be declared in the public section of the class declaration,
generally after any public types and before any public methods. A private con-
structor means that the class cannot be instantiated, and though this has an
occasional use, it is very rare.

Although a method in an implementation file is defined by a head and a body, a
constructor has an additional section between the two used specifically to define
the initialization of member variables. For example, the following code initializes
the member variable counter to zero for each object of MyClass that is instantiat-
ed from the class:

MyClass::MyClass(): counter(0)
{
}

An initialization section consists of the names of member variables separated by
commas—with each variable name followed by an initial value in parentheses.
These are referred to as initializers. In this case, the initial value is a literal. You
can also initialize member variables in the constructor function body. Usually,
this is more appropriate when the initialization is complex enough to require
some decisions or functions to be performed as part of the initialization.

The basic or default constructor has no parameters, but constructors can have
parameters. The declaration of constructor parameters is just like the declaration
of method parameters.

Note

A class can have several constructors, and the compiler will call the one used where
the class is instantiated.

Destructors

Not only will the compiler generate code to call the constructor of your choice
when an object is instantiated, but it will also be willing to generate code to call
another special member function, the destructor, when the object either goes out
of scope or is deleted.

A C++ Programming Primer

A destructor has the name of the class and should be prefixed with “virtual ~” or
“~." (~ is called a tilde.) The following is an example of a basic destructor:

ClassName: :~ClassName ()

{

// Destructor code

}

There can be only one destructor, and it never has either a return type or an
argument. Usually, you only need a destructor when you allocate member vari-
ables from the heap. An object should call delete on its heap-allocated member
variable storage in the destructor, preventing a memory leak.

Where to Go Now

Although it serves as a good way to brush up on C++, this appendix should in no
way be used in place of a thorough introduction to the C++ language. If you are
learning C++ for the first time, I encourage you to find a good introductory book
and spend some time getting more comfortable with the language before diving
into the game code in this book. Of course, if you're a bit more hardheaded, like
me, and you enjoy the challenge of learning as you go, by all means, attack the
game code in this book with reckless abandon! This primer is enough to get you
through most of the basic C++ issues, although I'd still recommend having a C++
reference on hand to look up things you don’t understand when the game code
veers into deeper C++ topics.

I've tried to make the code throughout the book as understandable as possible
and to avoid complex C++ issues, such as multiple inheritance, but sometimes the
very nature of game programming steers the C++ code into rough waters. Even
then, you’ll hopefully be able to follow along without too much trouble. You can
always refer back to this primer if you forget the details of a C++ language topic.
Also, don't forget that Appendix C provides a similar primer for Windows API
programming.

CD:581

A Windows Game
Programming Primer

Believe it or not, there was a time not so long ago when the notion of a
game other than Solitaire on Windows was considered a joke. I should
know because during that same time period, I was attempting to get a
job as a game programmer who specialized in Windows games. I knew it
was only a matter of time before DOS went away and games had to
migrate to Windows, but back then, no one inside the game community
wanted to think about it because Windows was so limited in terms of per-
formance. So I found work elsewhere. Now only a few short years later,
the concept of developing a computer game for any operating system
other than Windows is considered a joke, barring a few Macintosh and
Linux games.

If you've never written a program specifically for Windows, this appendix
is for you. This appendix shows you how to assemble a minimal
Windows program, which is an important prerequisite for developing
Windows games.

Windows Programming Essentials

Before you can even think about developing games for Windows, you
need to have some knowledge about what it takes to develop a basic
Windows program. Windows programming is unlike other kinds of tradi-
tional programming, as you'll soon find out. Windows programming
begins and ends with the Win32 API (Application Programming Interface),
which is the set of data types and functions used to create Windows pro-
grams. The Win32 API is quite massive, and it requires a significant
learning curve to get comfortable with its many facets. Fortunately, you
only need to use a relatively small portion of the Win32 API to create
Windows games.

CD:584

Appendix C

The Win32 API is built into all compilers that support Windows programming, such
as Microsoft Visual C++. By the way, the “32” in Win32 has to do with the fact that
the APl is a 32-bit API. This is significant because the original Windows APl was
developed for 16-bit programming. Remember Windows 3.17?

Certain aspects of Win32 programming are common to all Windows programs,
regardless of whether you're creating a game or a word processor. These common
Windows program features are primarily what you learn about in this appendix.
This will provide you with a solid foundation on which to build game-specific
knowledge and code.

If you have some experience with object-oriented programming (OOP), you might be
surprised to learn that Win32 isn’t really object-oriented; it is a procedural API that
relies on object-oriented constructs to represent Window elements, such as windows
and icons. An example of this is the window object, which represents a rectangular
area on the screen. Window objects have data associated with them, along with
Win32 API functions that are used to manipulate them. You can think of Win32 pro-
gramming as a hybrid type of object-oriented programming.

Event-Driven Programming

The most dramatic switch for most people new to Windows programming is the
fact that Windows programs are event-driven. This is a fancy way of saying that
Windows programs respond to their environment, as opposed to the environment
taking cues from the program. In the world of events, the flow of your program
follows events external to the program, such as mouse clicks and key presses.
Instead of writing code to scan for a key press, you write code to take some action
whenever a key press is delivered to the program. As you get more comfortable
with the concept of events, you'll see how just about any change in the environ-
ment can trigger an event. You can design your programs to ignore or respond to
any events you choose.

The event-driven nature of Windows has a lot to do with the fact that it is a
graphical operating system. When you think about it, Windows faces a seriously
challenging problem in allowing multiple programs to run at the same time and
share screen space, memory, input devices, and virtually every other system
resource. The event-driven approach to handling user interactions and system
changes is extremely important in making Windows as flexible and powerful as it
is. In terms of games, events make it possible to divide tasks according to what
has taken place. In other words, a left mouse click, a right mouse click, and a key
press on the keyboard are handled as separate events.

A Windows Game Programming Primer

Communicating with Messages

In traditional non-graphical programs, a program calls a system function to
accomplish a given task. Graphical Windows programs introduce a twist on this
scenario by enabling Windows to call a program function. When I say “Windows
calls a program function,” I mean that Windows sends the program a message,
which is a notification containing information about an event. Windows sends
messages whenever something takes place that a program might want to know
about and respond to, such as the user dragging the mouse or resizing the main
program window.

Windows programs are also commonly referred to as Windows applications. So,
you'll often see me using the terms program and application interchangeably—just
know that they mean the same thing.

Messages are always sent to a specific window, usually the main program win-
dow; every Windows program has a main window. Many windows are floating
around during a typical Windows session, and all of them receive messages at
one time or another that inform them of changes going on around them. Each of
these windows has a window procedure, which is a special function that processes
messages for the window. Windows handles the details of routing messages to the
appropriate window procedures; your job is to write code in the window procedure
for your program that responds to certain messages.

With the probability of many different messages being sent to a window, you
might wonder how many of them you need to worry about in a game. Also, what
happens to the messages you ignore? In the average Windows program, includ-
ing most games, you usually only concern yourself with a handful of messages.
You write code to respond to these messages, and you allow a default Windows
message handler to take care of messages you ignore; Windows provides default
handlers for all messages. By the way, a handler is simply a chunk of code that is
called in response to a message; its job is to take care of the event.

Understanding Device Independence

In the golden era of DOS games, it was common for game developers to program
games so that they worked directly with the memory on your graphics card. The
benefit to this was that it made games extremely fast because the graphics for a
game were being processed directly by the graphics card. Although this worked
great for DOS games, you don’t have quite the same luxury in Windows.
Generally speaking, Windows is specifically designed to keep you from interacting

CD:585

CD:586

Appendix C

directly with hardware, such as graphics cards. This design is known as device
independence, which simply means that Windows programs draw graphics in a
manner that is independent of the specific hardware devices that get drawn on.
The upside to this approach is that Windows programs work on a wide range of
hardware without any special modifications. This was impossible in the DOS
world.

Technically speaking, it is possible and often useful to access memory directly on a
graphics card from within a Windows game. In fact, the need for direct hardware
memory access is what prompted Microsoft to originally create DirectX, their
Windows game API. However, DirectX involves complex technology that is outside the
scope of this book and is not necessary for the creation of many types of games.

Device independence in Windows is made possible by the Graphical Device
Interface or GDI, which is the part of the Win32 API that deals with graphics. The
GDI sits between a program and the physical graphics hardware. Under the GDI,
graphics are drawn to a virtual output device; it is up to Windows to resolve the
virtual device down to a specific hardware device via the system configuration,
hardware drivers, and so on. Even though the GDI is designed to keep you at an
arm'’s length from graphics hardware, it is still quite powerful. In fact, all the
games developed throughout this book are based solely on the GDI.

Storing Program Information as Resources

Just about every Windows program relies to some extent on resources, which are
pieces of information related to a program, but outside the program code itself.
For example, icons are good examples of resources, as are images, sounds, and
even menus. You specify all the resources for a Windows program in a special
resource script, which is also known as an RC file. The resource script is a text file
containing a list of resources compiled and linked into the final executable pro-
gram. Most resources are created and edited with visual resource tools, such as
the icon editor integrated into the Visual C++ development environment.

Dealing with Strange Data Types

Perhaps the toughest part of Windows programming is getting comfortable with
the strange data types that are part of every Windows program. One of the most
common data types you'll see is called a handle, and it’s nothing like a door han-
dle in the real world. A handle in Windows is really a unique number that refers
to a graphical Windows object, such as a window or icon. Handles are important

A Windows Game Programming Primer

because an object is often moved around in memory by Windows, which means
that its memory address is a moving target. A handle gives you a fixed reference
to an object independent of the object’s physical location in memory. You can
think of a handle as acting a little like a P.O. box—even if you move your physi-
cal residence, people can still send you mail, thanks to your P.O. box. Handles are
used throughout the Win32 API when dealing with Windows objects. Don’t worry
if handles sound a little complicated right now because they’ll start making more
sense as you see them used in a real Windows program.

In addition to handles, the Win32 API introduces a variety of new and different
data types that you might find strange at first. All Win32 data types appear in
uppercase, so they are easily identifiable. For example, a fairly simple and com-
monly used Win32 data type is RECT, which represents a rectangle structure (four
numbers for left, top, right, and bottom). There is also an HWND data type, which
represents a handle to a window. Win32 is chock full of data types, so it’s futile to
try and cover them all in one place. Instead, you'll learn about new data types as
you encounter them throughout the book.

In order for your Windows programs to be able to recognize and use Win32 data
types, you must import them into your program’s source files. This is accom-
plished with a single line of code:

#include <windows.h>

The header file windows. h defines the entire Win32 API and is essential in every
Win32 application. It’s generally a good idea to import it first in every relevant
source file.

Unconventional Coding Conventions

If you've ever seen the code for a Windows program before, you might have won-
dered what was going on with the weird variable names. Programmers have long
struggled with the problem of writing code that is easy to understand. Windows
makes this problem worse by introducing a lot of different data types, which
makes it difficult to keep up with which variables are of which type. Legendary
Microsoft programmer Charles Simonyi came up with a pretty crafty solution to
this problem that is now known as Hungarian notation. (Mr. Simonyi is
Hungarian.) With Hungarian notation, variable names begin with a lowercase
letter or letters indicating the data type of the variable. For example, integer vari-
able names begin with the letter i. The following are some Hungarian notation
prefixes commonly used in Windows programming:

CD:587

CD:588

Appendix C

i—integer

b—Boolean (BOOL)

sz—string terminated by zero
p—pointer

h—handle

w—unsigned short integer (WORD)

dw—unsigned long integer (DWORD)

vV v v v v v v.Y

1—long integer

BOOL, WORD, and DWORD are commonly used Win32 data types.

Applying Hungarian notation is very simple. For example, an integer count
might be named iCount, whereas a handle to an icon might be named hIcon.
Similarly, a null-terminated string storing the name of a sports team might be
named szTeamName. Keep in mind that Hungarian notation is completely option-
al, but it really is a good idea. You’'ll encounter Hungarian notation in all the
code in this book, and after a while, you'll hopefully begin to appreciate the con-
venience it offers, even if it does look a bit cryptic at times.

Peeking Inside a Windows Program

Although I could certainly go on and on about the Win32 API, the best way to
get you closer to creating a Windows game is to take a look at what actually goes
into a Windows program. The next few sections break apart the major aspects of
a Windows program, along with the code that makes them tick. It’s not terribly
important for you to understand every line of code at this point because much of
what goes into a generic Windows program is overhead code that you won't both-
er with once you dive into game creation. Nevertheless, it's important to at least
have a feel for what is required of every Windows program.

Where It All Begins

If you come from the world of traditional C/C++ programming in non-graphical
environments, you are no doubt familiar with the main() function. The operating
system calls main() when a program is first run, and your program code starts
executing inside main(). There is no main() function in a Windows program.

A Windows Game Programming Primer

However, Windows offers a similar function called winMain ()that serves as the
starting point for a Windows program. Unlike main(), WinMain()simply creates
and initializes some things and then fades into the background. After WinMain ()
creates a main window for the program, the rest of the program executes by
responding to events in the main window procedure. The window procedure is
where most of the really interesting things take place in a Windows program.

The Window Class

All windows in a Windows program are created based on a window class, which is
a template that defines the attributes of a window. Multiple windows can be cre-
ated from a single window class. For example, there is a standard Win32 window
class that defines the attributes of a button, and all buttons in Windows are creat-
ed from it. If you want to create a new window of your own, you have to register
a window class and then create a window from it. In order to create new windows
from a window class, the window class must be registered with Windows using
the RegisterClassEx() Win32 API function. After a window class has been regis-
tered, you can use it to create as many windows as you want.

Window classes are represented by a data structure in the Win32 API called WND -
CLASSEX, which defines the attributes of a window. The following is how the WND-
CLASSEX structure is defined in the Win32 API:

typedef struct _WNDCLASSEX {

UINT chSize;
UINT style;
WNDPROC 1pfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hIcon;
HICON hIconSm;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR 1pszMenuName;
LPCSTR 1pszClassName;
} WNDCLASSEX;

This code reveals some of those strange Win32 data types I talked about earlier. It
isn’t important for our purposes to go through each and every member of this
structure. Instead, let’s focus on a few of the more interesting members:

> 1pfnWndProc—A pointer to the window procedure for the window class
» hicon—The icon for the window class

> hIconSm—An optional small icon for the window class

CD:589

CD:590

Appendix C

» hCursor—The mouse cursor for the window class

» hbrBackground—The background brush for the window class

These members hopefully make some sense because they are related to fairly
obvious parts of a window. The first member, 1pfnWndProc, is probably the tricki-
est because it is a pointer to the window procedure for the window class; you'll
find out what this procedure looks like in a moment. The hIcon and hIconSm
members are used to set the icons for the window class, and they correspond to
the program icons you see when a program is running in Windows. hCursor is
used to set a special mouse cursor (pointer) for the window class if you decide you
want something other than the standard arrow cursor. Finally, hbrBackground is
used to set the background for the window class, which is the color that fills the
background of the inside of the window. Most windows use white as the back-
ground color, but you're free to set it to any color you want.

Again, it's not imperative that you feel totally comfortable with the window class
structure at this point. The goal right now is just to get acclimated with Win32
programming to a degree in which we can assemble a complete program. Later
in the appendix, you put the window class structure to use in creating a minimal
Windows program.

Creating a Window

A critical part of any Windows program, including games, is the creation of the
main program window. Creating a window involves using a window class, which
you learned about in the previous section. Although window classes define gener-
al characteristics for a window, other attributes of a window must be defined
when a window is created. These attributes are provided as arguments to the
CreateWindow() function, which is the Win32 API function used to create win-
dows. The following is an example of creating a window using the
CreateWindow() function:

hwnd = CreateWindow(szAppName,
"My Game",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

A Windows Game Programming Primer

It’s not terribly important to understand every line of this code, but it is possible
to focus on a few interesting aspects of the window creation. First of all, the name
of the window class is specified in the first argument, szAppName. The second argu-
ment is the window title, "My Game", which is displayed in the title bar of the win-
dow when the program is run. The WS_OVERLAPPEDWINDOW style is a standard
Win32 style that identifies a traditional window that can be resized. The four
CW_USEDEFAULT styles indicate the initial XY position of the window on the screen,
as well as the window’s width and height; you can use specific numbers for these
settings, but CW_USEDEFAULT tells Windows to use a reasonable default value. The
remaining parameters aren'’t terribly important right now, so we won't bother
with them.

Keep in mind that I'm not expecting you to immediately absorb all this informa-
tion; the main goal here is to start getting familiar with the general structure of
the CreateWindow() function and its arguments. Notice that CreateWindow()
returns a window handle to the newly created window. It's also worth pointing
out that I could’ve used numeric values when specifying the window’s X position,
Y position, width, and height. For example, the previous code could have used
hard-coded values such as 0, 9, 640, and 480. In fact, it is often helpful for games
to use a fixed window size, which is why you’ll usually plug in real numbers for
the width and height of your game windows.

Handling Messages

Earlier in the appendix, you learned that Windows communicates with your pro-
gram by sending it messages. Let’s take a closer look at messages to see how they
work. A message has three pieces of information associated with it:

> A window
> A message identifier

> Message parameters

The window associated with a message is the window to which the message is
being sent. The message identifier is a number that specifies the message being
sent. The Win32 API defines numeric constants that represent each message. For
example, WM_CREATE, WM_PAINT, and WM_MOUSEMOVE are all numeric constants
defined in the Win32 API that identify messages associated with window creation,
window painting, and mouse movement, respectively.

CD:591

CD:592

Appendix C

The message parameters consist of two pieces of information that are entirely spe-
cific to the message being sent. These 32-bit values are called wParam and 1Param,
and their meanings are completely determined by the message being handled.
For example, the wParam parameter for the WM_SIZE message contains information
about the type of sizing performed on the window, whereas the 1Param parameter
contains the new width and height of the window’s inside area, which is also
known as the window’s client area. The width and height are packed into the low
and high words of the 32-bit 1Param value, which is a common approach that
Win32 uses to shove two pieces of information into a single location.

When a message is delivered to a program by Windows, it is processed in the
wndProc () function. Although WndProc () is responsible for handling messages for
a given window class, your program must still take on the task of routing mes-
sages to the appropriate window procedures. This is taken care of by a message
loop, which must be placed in the heart of the WinMain() function:

while (GetMessage(&msg, NULL, @, 0)) {
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}

This code essentially processes all messages at the application level and routes
them to the appropriate window procedures. Code in each different window pro-
cedure is then responsible for taking action based on the messages they receive. If
window procedures sound mysterious at this stage, read on to learn how they
work.

The Window Procedure

Every window in a Windows program has an associated window procedure, which
is a special function capable of being called by Windows. Windows calls a win-
dow procedure to deliver messages to a given window. You can think of a window
procedure as a message-processing function. In object-oriented terms, a window
procedure is the behavioral part of a window object, whereas Windows maintains
the data part of the object. Figure C.1 shows how a window procedure fits into the
object-oriented concept of a window.

Every window procedure is associated with a window class. You can create more
than one window from the same class, which means that multiple windows creat-
ed from a single class share the same window procedure. This is logical because
the behavior of a given class of windows should be the same. A window proce-
dure is defined in the Win32 API like this:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM 1lParam);

A Windows Game Programming Primer

Application Windows
Window
Window | Messages Window
Procedure = Data
\\\ //’
Window
“Object”

Don'’t sweat it if this prototype looks a little intimidating. You are only concerned
with the meaning of the arguments, which should be somewhat familiar from the
previous explanation of messages:

» hwnd—Handle of the window to which the message is being sent
> iMsg—Message identifier

» wParam—Primary message parameter

4

1Param—Secondary message parameter

Practically every WndProc () function contains a large switch statement that is
responsible for separating the messages being handled. The following is an exam-
ple of a WndProc () function with a very common piece of code that handles the
WM_DESTROY message, which is passed to a window whenever it is being destroyed:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM 1Param) {
switch (iMsg) {
case WM_DESTROY :
PostQuitMessage(0);
return 0;

}

return DefWindowProc (hwnd, iMsg, wParam, 1Param);

}

Notice that the switch statement operates on the iMsg argument, and in this
case, it only looks for the WM_DESTROY message. The PostQuitMessage () function
call causes the application to quit because the main window is being destroyed.
This code gets called when you click the X in the upper-right corner of a window
or otherwise close a window. Notice in this code how any messages not handled
in the switch statement are passed through to the DefWindowProc() function.
This is a strict requirement of all window procedures because DefWindowProc () is
responsible for the default handling of messages. If you left this code out, some
strange things would happen in your program.

CD:593

FIGURE C.1

In object-oriented
terms, a window is
an object whose
behavior is deter-
mined by a window
procedure and
whose data is man-
aged by Windows.

CD:594

Appendix C

Working with Resources

You might not realize it, but as a Windows user, you are already very familiar
with an important part of Windows programming: resources. Resources are special
data items associated with a Windows program that typically define portions of a
program’s user interface. Unlike data, such as variables used in program code,
resources are stored in a program’s executable file and are loaded only as needed.
The following are some of the standard resources supported by Windows:

> Bitmap
Cursor
Dialog box

Icon

vV VvV VvV

Menu

In addition to these standard resources, Windows also supports user-defined
resources, which are custom resources that you write special code to handle. User-
defined resources are very important in game programming because they allow
you to include digital sound effects and music with a program as resources.

Resources are defined in a program using a resource script, which is a text file with
a .RC extension. You use a resource compiler to compile a resource script into a
binary resource file with a .RES extension. This binary resource file is then linked
with an application’s object code to create a complete executable application. The
process of compiling and linking resources to an application’s .EXE file is usually
a standard part of a Windows compiler’s overall build process; in other words,
you shouldn’t have to worry about manually compiling resource scripts. The
following is an example of a simple resource script that defines an icon and a
cursor:

IDI_MINE ICON "Mine.ico"
IDC_MINE CURSOR "Mine.cur"

You might initially be a little confused by the fact that resources are compiled
into a binary form, especially considering that resources don’t have any C/C++
code directly associated with them. The compilation process for resources is actu-
ally quite different from the process for C/C++ code. A special resource compiler is
required to compile resources, but its main job is to assemble all the resources
defined in a resource script into a single binary file. A compiled binary resource
file is also very different from an object file of compiled C/C++ code. You can
think of a compiled resource file as a group of resources combined in binary

A Windows Game Programming Primer

form. Even though compiled resource files aren’t directly related to object files,
they are merged together at the link stage of application development to create
an executable application file (.EXE).

Perhaps the most commonly used resource is the icon, which forms a vital part of
the user interface for Windows applications. If you don't specifically set a custom
icon for an application, the default Windows icon is used. Fortunately, it’s very
simple to set a custom icon for an application. In fact, it only involves two steps:

1. Define the icon in the application’s resource script.

2. Load the icon when you define and register the application’s window class
in the winMain() function.

The first step is accomplished by adding a single line to the resource script for
your application:
IDI_MINE ICON "Mine.ico"

This code uses the ICON resource statement to define an icon named IDI_MINE
that is stored in the file Mine.ico. When the resource script is compiled, the icon
will be referenced from the Mine.ico file and compiled into the binary resource
file. The size of the icon can be either 32x32 or 16x16, depending on how you are
going to use it; the default icon size for an application is 32x32. In the next sec-
tion of the appendix, you'll learn how to define both a small (16x16) and a large
(32x32) icon for the Skeleton program example.

The second step to setting a custom icon involves loading the icon and assigning
it to the hIcon field of the WNDCLASSEX structure used to define a window class. You
do this by calling the LoadIcon() Win32 API function and passing in the name of
the icon:

wndclass.hIcon = LoadIcon(hInstance, "Mine.ico");

The hInstance parameter to LoadIcon() is passed into the WinMain() function by
Windows and is a handle to the application instance. This handle references the
executable file from which the icon resource is to be loaded.

Building the Skeleton Example

At this point, you've seen the major portions of a Windows program isolated into
individual parts. Understandably, it’s difficult to get a feel for a complete
Windows program when viewing it in small chunks of code. For this reason, it’s

CD:595

CD:596

Appendix C

very important to see how a complete Windows program comes together. This sec-
tion shows you a complete, yet minimal, Windows program called Skeleton that
forms the basis for games throughout the book. The following are the files that go
into the Skeleton program example:

> Skeleton.h—Header file for the application
> Skeleton.cpp—Source code file for the application
» Resource.h—Header file for the resource IDs

> Skeleton.rc—Resource file for the application

The next couple of sections explore the program code and the related resources
that go into the Skeleton application. All this code is available on the accompa-
nying CD-ROM, along with Microsoft Visual C++ project files.

Writing the Program Code

The Skeleton.h header file is surprisingly simple and does nothing but import a
couple of headers for use by Skeleton.cpp. Listing C.1 contains the code for this
file.

LISTING C.1 The Skeleton.h Header File Simply Imports a Couple of
Header Files
#pragma once

#include <windows.h>
#include "Resource.h"

In case you aren’t familiar with it, the first line of code shows how to use the
#pragma once compiler directive to keep the Skeleton.h header from being acci-
dentally referenced more than once. This gets to be more of an issue in larger pro-
grams in which there are a lot of dependencies between different source files, but
it's a good idea to get in the habit of using the directive. The remaining code in
the header file imports the standard windows.h header file and the Resource.h
resource identifier header file, which you’ll learn about in a moment.

The bulk of the code for the Skeleton program is in the Skeleton.cpp source code
file, which is shown in Listing C.2.

A Windows Game Programming Primer

LISTING C.2 The Skeleton.cpp Source Code File Builds on the Code You
See Throughout This Appendix to Create a Complete Windows Program

/- ———— — — — — — — ———— — — -
// Include Files

/- ————— — — — — — — —— —— — — -
#include "Skeleton.h"

/[—— — —— —— — — — — — — —— —— — —
// Global Function Declarations

/[—— — —— —— — — — — — — —— — — — —
LRESULT CALLBACK WndProc(HWND hWindow, UINT msg, WPARAM wParam, LPARAM 1lParam);
/- ————— — — — — — — ——— — — — -
// Global Functions

/- ———— — — — — — — — ————— — -

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)
{
static TCHAR szAppName[] = TEXT("Skeleton");
WNDCLASSEX wndclass;
HWND hwindow;
MSG msg;

// Create the window class for the main window

wndclass.cbhSize = sizeof(wndclass);

wndclass.style = CS_HREDRAW | CS_VREDRAW;

wndclass.lpfnWndProc = WndProc;

wndclass.cbClsExtra = 0;

wndclass.cbWndExtra =0;

wndclass.hInstance = hInstance;

wndclass.hIcon = LoadIcon(hInstance,
MAKEINTRESOURCE (IDI_SKELETON)) ;

wndclass.hIconSm = LoadIcon(hInstance,
MAKEINTRESOURCE (IDI_SKELETON_SM)) ;

wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);

wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

wndclass.lpszMenuName = NULL;

wndclass.lpszClassName = szAppName;

// Register the window class
if (!RegisterClassEx(&wndclass))
return 0;

/| Create the window

hwWindow = CreateWindow(szAppName, szAppName, WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hInstance, NULL);

// Show and update the window
ShowWindow (hWindow, iCmdShow);
UpdateWindow (hWindow) ;

// Enter the main message loop
while (GetMessage(&msg, NULL, 0, 0))

continues

CD:597

CD:598

Appendix C

LISTING C.2 Continued

{
/| Process the message
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

ieturn (int)msg.wParam;
}
LRESULT CALLBACK WndProc (HWND hWindow, UINT msg, WPARAM wParam, LPARAM 1lParam)
{

HDC hDC;

PAINTSTRUCT ps;

RECT rect;

switch (msg)
{
case WM_PAINT:
// Draw some text centered in the client area of the main window
hDC = BeginPaint (hWindow, &ps);
GetClientRect (hWindow, &rect);
DrawText (hDC, TEXT("This is a skeleton application!"), -1, &rect,
DT_SINGLELINE | DT_CENTER | DT_VCENTER);

EndPaint (hWindow, &ps);
return 0;

case WM_DESTROY:
// Exit the application

PostQuitMessage(0) ;
return 0;
}
return DefWindowProc (hWindow, msg, wParam, lParam);

}

This is admittedly a lot of code to throw at you at once, but I wanted you to see
the Skeleton.cpp source code file in its entirety so that there would be no mysteries
regarding what goes into a Windows program. Fortunately, the game engine that
you build in Chapter 2, “Creating an Engine for Games,” helps to hide a great
deal of this code so that you never have to worry with it again. But for now, we
must push on and learn how it works!

The Skeleton.h header file is first imported, which is important because it, in turn,
imports windows.h and Resource.h. A forward declaration of the WndProc () func-
tion is then provided, which is necessary because the function must be referenced
in winMain () before its code appears. Speaking of WinMain (), its jobs are to create
the main window class, register the window class, create the main window, show
the main window, and then get the application message loop going. This certain-
ly looks like a lot of interesting code, but it’s actually quite boring once you see a

A Windows Game Programming Primer

few Windows programs; this code is largely duplicated verbatim in every
Windows program. Fortunately, this code gets hidden in the game engine in
Chapter 2.

Getting back to WinMain (), you might be curious why the string for the program
name is placed inside the apparent function call, TEXT() (line 18). TEXT() is actu-
ally a macro, not a function, and its job is to convert text into a form that can be
used on a wide range of Windows systems. I won't get into all the details, but let’s
just say that it’s a good idea to work with text using the TEXT() macro so that
your program won't act strange on computers that are set up with a version of
Windows designed for another language, such as Japanese.

Another important thing to notice in WinMain() is how both large and small
icons are set for the Skeleton program. This is more important than you might
realize because Windows XP typically displays the small 16x16 icon for programs,
even though the large 32x32 size was more prevalent in older versions of
Windows.

The remainder of the code in the Skeleton.cpp source code file is the WndProc ()
function, which handles only two messages: WM_PAINT and WM_DESTROY. The
WM_PAINT message is sent whenever a program needs to paint the client area
(inside) of its window. In this case, a sentence of text is being drawn in the center
of the client area to indicate that this is a skeleton application. You learn all
about painting both text and graphics in Chapter 3, “Learning to Draw Basic
Graphics.”

Assembling the Resources

The Skeleton program only uses two resources: the large and small application
icons. Before listing these icons in a resource script, it’s important to assign them
unique numeric identifiers, which are also known as resource IDs. This is accom-
plished in the Resource.h header file, which is shown in Listing C.3.

LISTING C.3 The Resource.h Header File Contains Resource IDs for the
Skeleton Program Example

#define IDI_SKELETON 1000
#define IDI_SKELETON_SM 1001

CD:599

CD:600

Appendix C

As you can see, it only takes two lines to define identifiers for the icon resources.
Pulling the resources into the Skeleton application simply involves listing them in
the application’s resource script, as shown in Listing C.4.

LISTING C.4 The Skeleton.rc Resource Script Contains the Resources for
the Skeleton Program Example

#include "Resource.h"

/1 Icons

[= — = —— = — —
IDI_SKELETON ICON "Res\\Skeleton.ico"

IDI_SKELETON_SM ICON "Res\\Skeleton_sm.ico"

Notice that the Skeleton.rc resource script first includes the Resource.h header file,
and it then specifies the two icon resources by referencing their IDs (identifiers)
and their physical locations (paths and filenames). As long as you associate the
Skeleton.rc file with the project file for your program in the development environ-
ment (compiler) that you're using, it will be automatically compiled and linked in
with the application. As an example, I used Visual C++ to create the examples in
this book, and after I added Skeleton.rc to the Skeleton project, I didn't have to
worry about compiling or linking it.

A Skeleton project file is included on the accompanying CD-ROM for Visual C++,
Borland C++Builder, and Bloodshed Dev-C++. You will find it much easier to success-
fully build the Skeleton example, as well as other examples throughout the book, if
you use the project files that I've provided.

| like to organize all the resources for my Windows programs (games) into a folder
named Res that is just below the main directory where all the code for the program
is stored. This explains why the path for the Skeleton icons in the Skeleton.rc
resource script include the Res folder as part of their path.

A Windows Game Programming Primer CD:601

Testing the Finished Product

I wish I could tell you that the Skeleton program example is full of excitement
and intrigue when you run it for the first time, but unfortunately, this just isn’t
the case. Seeing as how it is a minimal Windows application, there isn’'t a whole
lot you can do with it. However, when you consider that the program “inherits” a
lot of functionality from Windows because you can minimize it, maximize it,
resize it, drag it around with the mouse, and so on, you start to realize that the
Win32 API is quite powerful in its own way. Figure C.2 shows the finished
Skeleton application in action.

i e B W=l FIGURE C.2

The Skeleton pro-
gram is a good
example of a mini-
mal Windows pro-
gram and not much
else.

This is a skeleton application!

I warned you: There isn’'t much to look at here. Fortunately, you now have
enough basic Windows programming skills to start doing some fun things.

APPENDIX D

Creating Graphics
for Games

The graphical appearance of a game is the first impression a user has of
the game. Even though game play is the ultimate measure of how
engaging a game is, weak graphics can often kill a potentially cool
game. For this reason, it’s important for you to take the time to carefully
create graphics and animation for your games that are sure to catch
someone’s attention.

Assessing Game Graphics

If you aren’t fortunate enough to have a staff of artists at your disposal,
you are like the rest of us and have to work graphical magic with the
limited resources at hand. Even if you decide to get help from an artist on
your game graphics, you still need to have a solid understanding of the
role of graphics in your game. Either way, any insight that a game devel-
oper has into the process of creating game graphics can only serve to
ease the development and improve the visual appeal of the game. This
appendix gives you a good dose of this insight.

Before you begin any actual graphics creation, it’s important to decide
exactly what you need in terms of game graphics. You already should
have the game pretty well defined before progressing to this stage. The
next step is to take what you know about the game and assess the graph-
ical content required to make it a reality. This consists of making deci-
sions regarding the game’s graphical elements and itemizing the graph-
ics needed.

Determining the Game Screen Size

The first major decision to make regarding a game’s graphics is the size
of the game screen. The game screen is the rectangular surface on the

CD:604

Appendix D

screen where the game is displayed, not including the standard Windows compo-
nents, such as the application title bar and menu. Although there might be a
temptation to make every game huge to allow for a lot of visual content and
more detailed graphics, there is a potential limitation related to performance.

You might wonder how performance could be related to the size of the game
screen. In games with animation, the game screen is usually constantly redrawn
with animation frames. The amount of time it takes to redraw the game screen is
based on the screen’s size; the larger the game screen, the longer it takes to
redraw because there is more to draw. Therefore, in games that use extensive ani-
mation, you need to weigh the game screen size against the performance of the
game. I've found that a game screen size in the range of 500 to 600 pixels in both
width and height yields decent performance results on a wide variety of systems.

Of course, there is the argument that modern computers are fast enough to
accommodate just about anything you throw at them in terms of graphics com-
plexity. Although this is true to a degree, the kinds of games you focus on in this
book actually look better when they don’t monopolize the desktop.

Reaching the Target Audience

The target audience for your game can impact the graphics requirements a great
deal. Games for children typically use graphics with bright colors to help keep
their interest. Games aimed at very young children often use highly contrasting
bright colors and larger graphic images. Very young children have much more
difficulty with mouse precision and timing, so you need to address these issues in
your game design. Most children are drawn toward animals and cartoon-type
characters. These types of graphics make a good addition to almost any children’s
game.

If you're developing a game aimed at teenagers or an older crowd, the graphics
pretty much depend on the game itself. Many teens and young adults are attract-
ed to games with realistic violence and a lot of gory graphics. Both inside and
outside the commercial game community, there is much debate about violence in
video games, and the decision to include bloody graphics in your game is ulti-
mately your own to make. I personally don't see gory graphics as being any dif-
ferent than special effects in movies; they have their place in some games and
can certainly add to the excitement, but they aren’t appropriate for everyone.

Movies are a good example of how the target audience dictates the graphic
detail. Children gravitate toward cartoons; the characters are easily recognizable

Creating Graphics for Games

and contrast well with the background. Within cartoons, there are varying levels
of graphic detail typically associated with the target age group for the cartoon.
Older kids usually are more interested in cartoons that more closely approach
realism. Similarly, most adults prefer movies with human actors, instead of
cartoons.

Note

It is possible to aim primarily for a particular target audience while also including
elements that appeal to other audiences. This approach is sometimes referred to as
shotgun marketing because the appeal of a game spreads across a wide group of
people. Shotgun marketing is regularly employed in movies with great success. As
examples, consider the immensely popular Pixar animated movies, which clearly tar-
get children, but always include plenty of humor that adults can appreciate.

Establishing a Game Setting and Mood

Perhaps even more important than the target audience of your game are the set-
ting and mood of the game. Where is your game taking place—both in time and
in location? If it’s a futuristic space game, your graphics might include metallic
colors contrasting with dark space backgrounds. A gothic vampire game probably
would have dark, gloomy graphics based mostly at night. By using dark colors,
you can more effectively portray the gloomy mood of the game, with creatures
emerging from the moonlit shadows.

In these two game examples, I've alluded a great deal to the colors used for the
graphics. This is important because colors can really dictate the mood of a game
more effectively than specific graphical images. The best way to understand the
impact of colors on the mood of a game is to think about the dimmer switch on a
light. Have you ever dimmed the lights in a room and noticed an immediate
change in mood reflected by the dimming? Whether the mood is interpreted as
gloomy or romantic, it is altered nonetheless. This lighting technique is used fre-
quently in movies and can certainly be used in games as well.

You can easily apply the dimmer idea to your game graphics by altering the
brightness of the graphics in a graphics editor. Most graphics editors provide
image filtering features that enable you to specifically alter the brightness of an
image.

CD:605

CD:606

Appendix D

Adhering to a Graphics Style

The style you choose for your game graphics is the final requirement you need to
address before moving on to creating them. More than likely, you already have
an idea of the style, so this decision probably won't take too much time. Graphics
style basically means the look of the images, such as cartoon style, lifelike, ren-
dered, and so on. Lifelike graphics, such as scanned photographs or digitized
video, usually contain a very broad range of colors. On the other hand, cartoon-
type graphics usually consist of black or gray edges with solid color fills.

After you select a graphics style, you should try to keep all the graphics consistent
throughout the game. It probably wouldn't be a good idea to have a scanned
background with cartoon characters moving around in front of it. On the other
hand, maybe your game has some Roger Rabbit-type theme to back up this mix
of graphics. It's totally up to you; just remember that a more consistent style used
for graphics results in a more absorbing and realistic game.

The graphics style of the game is closely related to how the graphics are created.
It will be hard to commit to a cartoon style for the graphics if you don’t have
access to an artist and have no artistic abilities yourself, for example. So, while
you're thinking about the style you want for the game, weigh into your decision
the resources you have for carrying out the graphics development.

Exploring Graphics Tools

Whether you create your own graphics or hire an artist, you will need a graphics
utility at some point in the graphics development process. Even if you don’t need
to change the content of the graphics, you often will need to resize or change the
transparency color of the images. A nice graphics editor is the most important
tool for developing and maintaining game graphics. Although you might end up
wanting to invest in a professional graphics editor with a wider range of features,
such as Adobe Photoshop, you can’t go wrong by starting out with a good share-
ware editor.

Note

It is worth noting that Adobe Photoshop is the standard for image editing in the pro-
fessional game developer community. If you can afford the money to buy it and the
time to learn it, you will certainly reap big benefits.

Creating Graphics for Games

This section focuses on some popular shareware graphics editors you can use to
create and edit bitmap images for Windows games. They all support the BMP
graphics format and provide varying degrees of image processing features.

Image Alchemy

Image Alchemy, by Handmade Software, is a very extensive graphics editor and
conversion utility with versions available on a wide range of platforms. Image
Alchemy reads and writes more than 90 different image formats. Although it is
geared more toward image conversion than editing, its strong conversion features
and incredibly wide support for multiple platforms make it a very useful graphics
utility to have.

Handmade Software has versions of Image Alchemy for almost every major com-
puter platform. It even has an online demo version that enables you to convert
images over the Web via a connection to its Image Alchemy server.

You can get information about Image Alchemy and download the latest
version from the Image Alchemy Web site, which is located at
http://www.handmadesw.com/.

Paint Shop Pro

Paint Shop Pro, by Jasc Software, is a graphics editor for Windows with a full suite
of editing, conversion, and image processing tools. Paint Shop Pro contains a
wide variety of paint tools, as well as image filters and conversion features for
most of the popular image formats. Paint Shop Pro is arguably the best share-
ware graphics editor for Windows.

You can get information about Paint Shop Pro and download the latest version
from the Jasc Web site, which is located at http://www.jasc.com/.

Graphic Workshop

Graphic Workshop, by Alchemy Mindworks, is another graphics editor for
Windows that is comparable to Paint Shop Pro. Graphic Workshop is geared more
toward image conversion, rather than editing. However, you might find some use-
ful features in it that complement Paint Shop Pro, so definitely take a look at
them both.

You can get information about Graphic Workshop and download the latest ver-
sion from the Alchemy Mindworks Web site, which is located at
http://www.mindworkshop.com/.

CD:607

CD:608

Appendix D

Note

Keep in mind that there are plenty of other packaged commercial image editing tools
that you might want to also consider. Although they are usually more expensive than
their shareware counterparts, you will likely find that they are packed with powerful
features.

Creating and Editing Graphics

You've learned how to assess the graphical requirements for games and the differ-
ent types of game graphics, but you still haven't really covered the specifics of
how to create graphics. Unfortunately, there is no simple explanation of how to
create graphics. As in all art forms, there is much about the subject that must be
grafted out of experience. However, I want to cover the basic techniques of creat-
ing graphics for games, and then you can chart your own course.

Line-Art Graphics

The first method of creating graphics is called line-art graphics. I call this method
line-art because it encompasses practically all hand-drawn graphics, whether
drawn and scanned from paper or drawn in a software paint program. Either
way, you have total control over the colors used and the resulting image.
Cartoon-type graphics fall into this category.

You usually draw line-art graphics by hand on paper and scan them, or you use
a graphics editor to draw and modify the images. The freehand technique is use-
ful if you have some traditional art experience. The graphics editor approach is
usually better if you don’t have any art experience because you can “cheat” to a
certain extent by using software image processing tools. An in-between solution is
to draw rough outlines of what you want on paper, scan them as digitized
images, and color and clean them up in a graphics editor. This is a really nice
way to create graphics because you get to draw freehand and still benefit from
software tools, while ultimately maintaining complete control over the image.

3D Rendered Graphics

3D rendered graphics have pretty much taken over the commercial game world.
There is a reason for this; rendering provides the capability to create incredibly
complex and realistic 3D graphics that sometimes aren’t even possible with free-
hand drawing, especially when it comes to animation. Before I get into that, you
should quickly learn how modeling and rendering work.

Creating Graphics for Games

Using 3D modeling software, such as Caligari’s trueSpace or Discreet’s 3D Studio
Mazx, you create mathematical wireframe 3D objects. Of course, the majority of
the math is hidden, so all you really have to worry about is learning how to
model 3D objects using the software tools. These modeling programs provide all
kinds of methods for creating and manipulating the wireframe objects into just
about any shape you can imagine. After you come up with a shape with which
you're happy, you specify the surface of the object, along with any sources of
light. You even can place cameras to get different views of the object. After speci-
fying all these attributes, you tell the application to render the image of the
object.

Rendering is the process of composing a graphical image of a purely mathemati-
cal object. Rendering can yield incredible results for game graphics, and I highly
suggest looking into it. However, it usually takes a fair amount of practice to get
good at creating and working with wireframe objects to a point where you can
create complex models. On the other hand, it might come easy to you. Either
way, rendering can be a lot of fun and can achieve results far beyond the artistic
grasp of most game programmers.

In the past, rendered objects have sometimes been criticized for having a certain
graphical style that is hard to shake. Remember that rendering is a computer
process, so it’s hard to make rendered objects show emotion like you can with
hand-drawn images. Keep in mind that a delicate balance of tools usually gener-
ates the most effective results. You might find that rendering is great for produc-
ing backgrounds, whereas hand-drawn images are better for individual charac-
ters. If you do decide on a mixture of graphics-creation techniques, be sure to
blend their respective styles with each other as best you can.

One final note about rendering: I mentioned that rendering can make creating
animations much easier. Most modeling/rendering software packages come with
tools that enable you to place and move a camera. You usually have the option
of moving individual objects, as well as the camera, over time to generate anima-
tions. You can generate amazing animations with very little work using these
types of tools.

Scanned Photography and Video-Captured Graphics

Another interesting way to create graphics for games is by using scanned photog-
raphy and video-captured graphics. Scanned photography basically consists of
scanned photographic images captured with a digitizing scanner. These can be
useful, but because of the two-phase photographic development/image scan

CD:609

CD:610

Appendix D

process, they aren’t used too much in games. On the other hand, video-captured
graphics, which rely on a very similar concept, have been used a great deal; these
graphics were used in the original DOOM game. Using video-captured graphics
involves setting up a video camera and grabbing frames of video of an object as
bitmapped images. Video-captured graphics differ from video sequences in that
video-captured graphics are used to generate snapshots of different views of an
object, not real-time animation.

One problem with video capturing is that it usually involves having to build a
small video studio with lighting and a backdrop, not to mention buying the nec-
essary video equipment to record and capture digital video. You also have to be
able to somehow construct physical models of the game objects. However, if you
are willing to go the extra step and do these things, the results are certainly worth
the trouble.

Background Graphics and Textures

Background graphics are any graphics that appear behind the main objects in
the game, such as walls, forests, clouds, and so on. Many background graphics,
such as walls, benefit from textured bitmap images. A texture is an image that
models a piece of a graphical surface that can be tiled without notice. Textures
are very useful, primarily because they take up relatively little space; this is
because they are tiled repeatedly to create a larger image at runtime. I highly rec-
ommend using textures whenever possible. You've no doubt already seen many
textures at work as backgrounds in Web pages.

Libraries of royalty-free textures are available that can serve as great resources for
finding game textures. Of course, you are free to draw your own textures, but be
warned that drawing a textured image so that it can be tiled correctly with the
edges blending smoothly is a little tricky. Although textures are nice for creating
tiled backgrounds, you can also draw the background graphics as complete
images; just remember that the file sizes of the images will increase. You can find
texture artwork at The Clip Art Connection Web site, which you learn about a lit-
tle later in the “Finding Graphics” section.

Animated Graphics

The animation frames for an object in a game sometimes are referred to as phases
of the object. The phases depict the movements that the object goes through inde-
pendent of positional motion. The phase animations usually mean different

Creating Graphics for Games

things for different objects. A fire object might have four frames of animation
that depict the movement of the flames, for example. On the other hand, a tank’s
phases in a battle game might consist of the rotations of the tank.

It is also possible for objects to change phase in more than one way. In this case,
you will have a two-dimensional array of animation frames, rather than a hori-
zontal strip. An example would be a crawling soldier with different animations
reflecting the crawling motion. You might have eight rotations for the soldier,
along with two different frames to show the leg and arm crawling movements.

Practically speaking, you would need more frames of animation than these
examples show, especially when it comes to rotation. Four frames are hardly
enough to depict smooth rotation of an object. I recommend a minimum of eight
frames when you are showing an object rotating, unless the object is very small—
in which case, four frames might work.

Finding Graphics

If you've decided that creating game graphics isn’t for you, you have a few
options. The first is to try to find royalty-free art. This isn’t always a very viable
option because games typically require very unique graphics. However, you might
be able to find interesting clip art that will work for your game graphics. The last
thing I want to do is discourage you from trying a possibly useful outlet for
obtaining graphics.

A good starting point for finding existing clip art graphics is The Clipart
Connection Web site, which is located at http://www.clipartconnection.com/.
The Clipart Connection contains links to many different clip art sites, as well as
to artists and commercial stock art collections. This site is definitely worth check-
ing out.

Another excellent clip art site (and perhaps my personal favorite) is the Clip Art
and Media Web site for Microsoft Office, which is located at
http://office.microsoft.com/clipart/. I know; you're thinking Office is boring
business software that couldn’t possibly have anything to offer game graphics.
Not only does Microsoft’s Clip Art and Media site have clip art categorized by key-
word and organized by type, but it also has sound effects that are organized in a
similar fashion.

One final option (and the one I suggest when you don’t have the ability to create
your own graphics and you can’t find anything by way of clip art) is to hire an

CD:611

CD:612

Appendix D

artist to draw or render the graphics for you. You might be surprised by how inex-
pensive it can be; some people might even be willing to draw the graphics free
just to be involved in a game. (Just don't forget to give them full credit, a free
copy of the end product, and probably a nice thank you card or email.)

Before you contact an artist, be sure to have a very solid idea of what you want.
It's a good idea to write down all your thoughts on the game and what it should
look like, including sketches or written descriptions of the graphics. The better the
communication between you and the artist, the more likely he will deliver graph-
ics to your liking. You might want to ask for some samples of the artist’s work to
check out the style and see whether it matches what you have in mind. The last
step is to work up a formal agreement with the artist outlining exactly what is
expected on both ends of the deal, along with a due date that is agreeable to both
parties.

	Appendix A: Selecting a Game Development Tool
	Appendix B: A C++ Programming Primer
	Appendix C: A Windows Game Programming Primer
	Appendix D: Creating Graphics for Games

