HOLGER
GAST

HOW TO USE

FREE SAMPLE CHAPTER
¥ 9 8 @ @

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321995544
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321995544
https://plusone.google.com/share?url=http://www.informit.com/title/9780321995544
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321995544
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321995544/Free-Sample-Chapter

How to Use Objects

This page intentionally left blank

How to Use Objects

Code and Concepts

Holger Gast

vvAddison-Wesley
Boston e Columbus e Indianapolis ¢ New York e San Francisco ¢ Amsterdam e Cape Town
Dubai e London e Madrid e Milan e Munich e Paris ¢ Montreal e Toronto e Delhi @ Mexico City
Sao Paulo e Sidney e Hong Kong e Seoul e Singapore e Taipei @ Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sale opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 383-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.
Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Names: Gast, Holger, 1975- author.

Title: How to use objects : code and concepts / Holger Gast.

Description: New York : Addison-Wesley Professional, 2015. | Includes
bibliographical references and index.

Identifiers: LCCN 2015038126 | ISBN 9780321995544 (hardcover : alk. paper)

Subjects: LCSH: Object-oriented programming (Computer science)

Classification: LCC QA76.64 .G39 2015 | DDC 005.1/17—dc23

LC record available at http://lccn.loc.gov/2015038126

Copyright (©) 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, request forms and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions,/ .

ISBN-13: 978-0-321-99554-4

ISBN-10: 0-321-99554-6

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2015

http://lccn.loc.gov/2015038126
http://www.pearsoned.com/permissions/

To Dorothea, Jonathan, and Elisabeth
—HG

This page intentionally left blank

Contents

Preface

Acknowledgments

About the Author

Introduction

Part | Language Usage

Chapter 1

Basic Usage of Objects

1.1 The Core: Objects as Small and Active Entities
1.2 Developing with Objects

1.2.1
1.2.2
1.2.3
1.3 Fields
1.3.1
1.3.2
133
1.34
1.35
1.3.6
1.3.7
1.3.8
1.4 Methods
141
1.4.2
1.4.3
1.4.4
1.45
1.4.6
1.4.7
1.4.8

Effective Code Editing in Eclipse

Refactoring: Incremental Design Improvements

The Crucial Role of Naming

Data Structures

Collaborators

Properties

Flags and Configuration
Abstract State

Caches

Data Shared Between Methods
Static Fields

An Object-Oriented View on Methods
Method Overloading

Service Provider

Convenience Method

Processing Step

Explanatory Methods

Events and Callbacks

Reused Functionality

XV

xvii

Xix

vii

viii

149
1.4.10
1.4.11
1.4.12
1.4.13
1.4.14
1.5 Exceptions
151
15.2
153
154
155
1.5.6
1.5.7

Template Method

Delegated to Subclass
Extending Inherited Behavior
Factory Methods

Identity, Equality, and Hashing
Refused Bequest

Basic Usage

Exceptions and the System Boundary
Exceptions to Clarify the Program Logic
Exceptions for Checking Expectations
Exceptions to Signal Incompleteness
Exception Safety

Checked Versus Unchecked Exceptions

1.6 Constructors

1.6.1
1.6.2
1.6.3
1.64
1.6.5
1.7 Packages
1.7.1
1.7.2

Initializing Objects

Initialization by Life-Cycle Methods
Constructors and Inheritance
Copying Objects

Static Constructor Methods

Packages as Components
The Facade Pattern

1.8 Basics of Using Classes and Objects

1.8.1
1.8.2
1.8.3
1.8.4
1.8.5
1.8.6
1.8.7
1.8.8
1.8.9

General Facets of Objects
Service Provider

Information Holder

Value Object

Reusable Functionality
Algorithms and Temporary Data
Boundary Objects

Nested Classes

The null Object

Chapter 2 Fundamental Object Structures
2.1 Propagating State Changes: Observer

2.1.1

2.1.2 Crucial Design and Implementation Constraints

2.1.3
2.1.4
2.2 Compound
2.2.1
222
2.2.3
224

Example: Observing Background Jobs

Implementation Details and Decisions
Judging the Need for Observers
Objects

Ownership

Structure Sharing

Compound Objects and Encapsulation
Compound Objects and Observers

Contents

48
50
51
51
55
57
58
58
61
62
63
66
66
68
71
71
73
73
75
75
77
77
78
79
79
81
82
83
85
86
87
88
93

97

97

99
101
104
107
108
109
112
113
115

Contents

2.3 Hierarchical Structures

2.3.1 The Composite Pattern

2.3.2 The Visitor Pattern

2.3.3 Objects as Languages: Interpreter

2.3.4 Excursion: Composites and Stack Machines
2.4 Wrappers: Adapters, Proxies, and Decorators

2.4.1 The Adapter Pattern

2.4.2 The Decorator Pattern

2.4.3 The Proxy Pattern

2.4.4 Encapsulation Wrappers

Chapter 3 Abstraction and Hierarchy
3.1 Inheritance
3.1.1 The Liskov Substitution Principle

3.1.2 Interface Between the Base Class and Subclasses

3.1.3 Factoring Out Common Behavior
3.1.4 Base Classes for Reusable Infrastructure
3.1.5 Base Classes for Abstraction
3.1.6 Reifying Case Distinctions
3.1.7 Adapting Behavior
3.1.8 Inheritance Versus Delegation
3.1.9 Downcasts and instanceof
3.1.10 Implementation Inheritance
3.1.11 The Fragile Base Class Problem
3.2 Interfaces
3.2.1 Behavioral Abstraction
3.2.2 Client-Specific Classification and Abstraction
3.2.3 Abstraction Hierarchies
3.2.4 Multiple Classification
3.2.5 Extension Interface
3.2.6 Specifying Callbacks
3.2.7 Decoupling Subsystems
3.2.8 Tagging Interfaces
3.2.9 Management of Constants
3.2.10 Inheritance Versus Interfaces

Part Il Contracts

Chapter 4 Contracts for Objects
4.1 The Core: Assertions Plus Encapsulation
4.2 Elaborating the Concepts by Example
4.2.1 Invariants and Model Fields
4.2.2 Contracts in Terms of Model Fields
4.2.3 Contracts, Invariants, and Processing Steps

116
116
122
128
132
136
137
139
140
141

143
143
144
145
147
148
150
152
154
155
156
162
164
167
169
171
174
175
176
178
178
182
182
182

185

187
188
201
203
205
207

424 The Role of Constructors
4.2.5 Pure Methods for Specification
4.2.6 Frame Conditions: Taming Side Effects
4.3 Motivating Contracts with Hindsight
4.4 Invariants and Callbacks
4.5 Checking Assertions at Runtime
4.6 The System Boundary
4.7 Arguing About the Correctness of Programs
4.7.1 Assignment
4.7.2 Loops: Summing over an Array
4.7.3 Conditionals and Loops: Binary Search
4.7.4 Outlook

Chapter 5 Testing
5.1 The Core: Unit Testing
5.2 The Test First Principle
5.3 Writing and Running Unit Tests
5.3.1 Basic Testing Guidelines
5.3.2 Creating Fixtures
5.3.3 Dependency Injection
5.3.4 Testing OSGi Bundles
5.3.5 Testing the User Interface
5.4 Applications and Motivations for Testing
5.4.1 Testing to Fix Bugs
5.4.2 Testing to Capture the Contracts
5.4.3 Testing to Design the Interface
5.4.4 Testing to Find and Document the Requirements
5.4.5 Testing to Drive the Design
5.4.6 Testing to Document Progress
5.4.7 Testing for Safety
5.4.8 Testing to Enable Change
5.4.9 Testing to Understand an API
5.4.10 Testing for a Better Work—Life Balance

Chapter 6 Fine Print in Contracts
6.1 Design-by-Contract
6.1.1 Contracts First
6.1.2 Weaker and Stronger Assertions
6.1.3 Tolerant and Demanding Style
6.1.4 Practical Examples of Demanding Style
6.1.5 Stronger and Weaker Class Invariants
6.2 Contracts and Compound Objects
6.2.1 Basics
6.2.2 Ownership and Invariants
6.2.3 Invariants on Shared Objects

Contents

210
211
212
214
215
218
219
223
224
228
232
237

243
244
250
253
253
258
260
262
264
266
266
268
270
272
274
274
275
276
277
282

285
285
285
286
288
291
293
297
298
300
308

Contents

6.3 Exceptions and Contracts

6.4 Inheritance and Subtyping
6.4.1 Contracts of Overridden Methods
6.4.2 Invariants and Inheritance

Part Il Events

Chapter 7 Introduction to the Standard Widget Toolkit
7.1 The Core: Widgets, Layouts, and Events
7.2 The WindowBuilder: A Graphical Editor for Uls
7.2.1 Overview
7.2.2 Creating and Launching SWT Applications
7.3 Developing with Frameworks
7.3.1 The Goals of Frameworks
7.3.2 Inversion of Control
7.3.3 Adaptation Points in Frameworks
7.3.4 Liabilities of Frameworks
7.4 SWT and the Native Interface
7.4.1 Influence on the API
7.4.2 Influence on Launching Applications
7.5 Compound Widgets
7.6 Dialogs
7.7 Mediator Pattern
7.8 Custom Painting for Widgets
7.9 Timers
7.9.1 Timeouts and Delays
7.9.2 Animations
7.10 Background Jobs
7.10.1 Threads and the User Interface
7.10.2 Long-Running Tasks
7.10.3 Periodic Jobs
7.11 Review: Events and Contracts

Chapter 8 A Brief Introduction to Threads
8.1 The Core: Parallel Code Execution

8.2 Correctness in the Presence of Threads

8.3 Notifications Between Threads

8.4 Asynchronous Messages

8.5 Open Calls for Notification

8.6 Deadlocks

Chapter 9 Structuring Applications with Graphical Interfaces

9.1 The Core: Model-View Separation
9.2 The Model-View-Controller Pattern
9.2.1 The Basic Pattern
9.2.2 Benefits of the Model-View-Controller Pattern

xi

327
329
330
334

339

341
342
351
352
354
355
355
356
360
362
363
364
366
367
374
380
383
387
388
391
393
394
401
407
407

413
413
416
423
431
434
437

443
444
453
453
458

xii

9.2.3 Crucial Design and Implementation Constraints
9.2.4 Common Misconceptions
9.2.5 Behavior at the User Interface Level
9.2.6 Controllers Observing the Model
9.2.7 Pluggable Controllers
9.2.8 The Document-View Variant

9.3 The JFace Layer
9.3.1 Viewers
9.3.2 Finishing Model-View-Controller with JFace
9.3.3 Data Binding
9.3.4 Menus and Actions

9.4 The MVC Pattern at the Application Level
9.4.1 Setting up the Application
9.4.2 Defining the Model
9.4.3 Incremental Screen Updates
9.4.4 View-Level Logic

9.5 Undo/Redo
9.5.1 The Command Pattern
9.5.2 The Command Processor Pattern
9.5.3 The Effort of Undo/Redo
9.5.4 Undo/Redo in the Real World

9.6 Wrapping Up

Chapter 10 State Machines
10.1 The Core: An Object’s State and Reactions
10.2 State Machines in Real-World Scenarios
10.2.1 Additional Fundamental Elements
10.2.2 Ongoing Activities
10.2.3 Nested State Machines
10.3 Implementing Finite State Machines
10.3.1 Running Example: Line Editor
10.3.2 States-as-Assertions
10.3.3 Explicit States
10.3.4 State Pattern

Part IV Responsibility-Driven Design

Chapter 11 Responsibility-Driven Design
11.1 The Core: Networks of Collaborating Objects
11.2 The Single Responsibility Principle

11.2.1 The Idea

11.2.2 The SRP and Abstraction

11.2.3 The SRP and Changeability

Contents

460
462
464
467
468
470
472
472
482
484
491
494
495
497
500
502
505
506
513
515
517
520

523
524
533
533
541
544
547
547
548
555
558

565

567
568
586
586
590
591

Contents

11.3 Exploring Objects and Responsibilities
11.3.1 Example: A Function Plotter
11.3.2 CRC Cards

11.3.3 Identifying Objects and Their Responsibilities

11.3.4 Summing Up
11.4 Responsibilities and Hierarchy
11.5 Fundamental Goals and Strategies
11.5.1 Information Hiding and Encapsulation
11.5.2 Separation of Concerns
11.5.3 Compositionality
11.5.4 Design-Code Traceability
11.5.5 DRY
11.5.6 The SOLID Principles

Chapter 12 Design Strategies
12.1 Coupling and Cohesion
12.1.1 Coupling and Change
12.1.2 Coupling and Shared Assumptions
12.1.3 Cohesion
12.1.4 The Law of Demeter
12.2 Designing for Flexibility
12.2.1 Techniques for Decoupling
12.2.2 The Layers Pattern
12.3 Extensibility
12.3.1 Basic Techniques and Considerations
12.3.2 The Interceptor Pattern
12.3.3 The Eclipse Extension Mechanism
12.3.4 Pipes and Filters
12.4 Reusability
12.4.1 The Challenge of Reusability
12.4.2 The Case of the Wizard Dialogs in JFace
12.4.3 Building a Reusable Parser
12.4.4 Strategies for Reuse

Part V Appendix

Appendix A Working with Eclipse Plugins
A.1 OSGi: A Module System for Java
A.1.1 The Structure of OSGi Bundles
A.1.2 Working with Bundles in Eclipse
A.1.3 OSGi as an Application Platform
A.1.4 Defining Target Platforms
A.2 Launching Plugins
A.2.1 JUnit Plugin Tests
A.2.2 Contributions to the Eclipse IDE

xiii

593
593
595
596
615
616
620
621
625
628
630
631
634

637
638
638
643
647
649
652
652
669
678
678
681
685
705
710
711
712
717
722

727

729
730
731
734
739
739
744
744
745

xiv Contents

A.2.3 Eclipse Applications 746
A.2.4 Installing Plugins in the Workspace 746
A.2.5 Java Programs 749
A.3 Where to Go from Here 749
Bibliography 751

Index 769

Preface

In roughly 15 years of teaching software engineering subjects at the University of Tiibingen,
from introductory programming courses through software engineering to software architec-
ture, with a sideline on formal software verification, I have learned one thing: It is incredibly
hard for those with basic—and even advanced—programming skills to become professional
developers.

A professional developer is expected to deliver workable solutions in a predictable and
dependable fashion, meeting deadlines and budgets, fulfilling customer expectations, and all
the while writing code that is easy to maintain, even after the original project has long been
declared finished.

To achieve all of this, the professional developer has to know both concepts and code.
The concepts of software engineering, software design, and software architecture give high-
level direction toward the goal and provide guidelines toward achieving it. Above all, they
provide recurring solution patterns that are known to work and that other professionals will
recognize. The concrete coding techniques must complement this knowledge to create good
software. The guidelines come with many pitfalls and easy misconceptions, and the patterns
must be put into a concrete shape that follows implicit conventions to be recognized. This
is the second thing I have learned: It is incredibly hard to translate good concepts to good
code.

I have written this book to present professional strategies and patterns side by side with
professional code, in the hope of providing precisely the links and insights that it takes
to become a professional developer. Rather than using classroom-sized toy examples and
leaving the remainder to the reader’s imagination, I select and analyze snippets from the
code base of the Eclipse IDE. In many cases, it is the context of the nontrivial application
that explains why one code structure is good, while a very similar structure fails.

XV

This page intentionally left blank

Acknowledgments

In finishing the book, I am deeply grateful to many people. To my academic advisor, Pro-
fessor Herbert Klaeren, who taught me how to teach, encouraged me to pick practically
relevant topics for my lectures, and improved the original manuscript by reading through
every chapter as it came into existence. To my editor, Christopher Guzikowski, for trusting
me to write this book and for being generous with his advice and guidance in the writing
process. To the reviewers, who have dedicated their time to help me polish the manuscript
into a book. To my wife, Dorothea, who taught me how to write, encouraged me to write, and
suffered the consequences gladly. And finally, to my students, who entrusted me with their
feedback on and criticism of my lectures, and who were always eager to discuss their design
proposals and solutions freely. The core idea of this book, to present code and concepts side
by side, would not have been possible without these constant and supportive stimuli.

Xxvii

This page intentionally left blank

About the Author

Holger Gast graduated with a degree in computer science from the University of Tiibingen,
Germany, in 2000, and received a Ph.D. with a dissertation on type systems for programming
languages in 2005 (Tiibingen). As a post doctoral fellow, he worked on formal correctness
proofs for software and finished his Habilitation for Computer Science in 2012 (T{ibingen).

Since 2000, he has being teaching in the area of software engineering at different levels
of the computer science curriculum, starting from introductory programming courses to
lectures on software design and architecture. His other interests include scientific databases
for the humanities and the model-driven construction of data-driven web applications.

Xix

This page intentionally left blank

Introduction

What makes a professional developer? The short answer is obvious: A professional developer
produces good-quality code, and reliably so. It is considerably less obvious how the profes-
sional developer achieves this. It is not sufficient to know all the technical details about
a language and its frameworks, because this does not help in strategic decisions and does
nothing for the communication within a team. It is also not sufficient to know the buzz
words of design and architecture, because they give no hints as to the concrete implemen-
tation. It is not sufficient to read through catalogs of design patterns, because they focus
on particular challenges and are easily misunderstood and misused if seen out of context.
Instead, the professional developer has to have a firm grasp of all of these areas, and many
more. He or she must see the connections and must be able to switch between the different
perspectives at a moment’s notice. The code they produce, in the end, is just a reflection
of a large amount of background considerations on many different details, all of which are
interconnected in often subtle ways.

This book aims to cover some of the difficult terrain found along the path to profes-
sionalism that lies ahead of a developer who has just finished an introductory course on
programming, a university curriculum on computer science, or a first job assignment. It
presents the major topics that have proved relevant in around 30 years since the main-
stream adoption of object-oriented development. Beyond that, it highlights their crucial
points based on my 15 years of experience in teaching software development at all levels of
a university curriculum and working through many and various software projects.

The Central Theme: Code and Concepts

The main theme of this book is that object-oriented development, and software development
in general, always requires a combination of concepts and code. Without code, there will
obviously be no software. Without concepts, the code will have an arbitrary, unpredictable
structure. Concepts enable us to talk about the code and to keep it understandable and
maintainable. They support us in making design and implementation decisions. In short,
they explain why the code looks the way it does.

The field of object-oriented development offers a particularly fair amount of time-proven
concepts. Here are just a few examples. At the smallest scale, the idea of replacing “method
calls” with “messages” helps to keep objects independent. The approach of designing objects
to take on “responsibilities” in a larger network of objects explains how even small objects
can collaborate to create substantial applications. It then turns out that networks of objects
often follow “patterns” such that standard problems can be solved consistently and reliably.
The idea of describing method calls by “contracts” gives a consistent guide for obtaining

XXI

xxii Introduction

correct code. “Frameworks” and “inversion of control” have become essential for building
large applications effectively.

Concepts are useful and even necessary for writing good-quality object-oriented code,
but it takes a fair amount of diligence, insight, and experience to translate them into code
faithfully. Teaching experience tells us that the concepts are easily misunderstood and that
subtle deviations can sometimes have disastrous consequences. In fact, the same lesson
applies to many tutorials and introductory expositions. For instance, the famous MODEL-
VIEW-CONTROLLER pattern is often given with a “minimal” example implementation. We
have seen several cases where the model holds a reference to the concrete view class, and a
single instance, too. These blunders break the entire pattern and destroy its benefits. The
fact that the code works is just not good enough for professional developers.

Because code and concepts are both essential and must be linked in detail, this book
always takes you all the way. For each topic, we introduce the central concepts and explain
the general lay of the land with a few illustrations. But then we go on immediately to
show how the concepts are rendered in concrete code. We do not stop at giving minimal
examples but also explore the more intricate points. In the example of the MODEL-VIEW-
CONTROLLER pattern, it is easy to get right for small examples. But as soon as models
get more complex, the professional developer makes sure that only those parts that have
changed are repainted. Similarly, attaching an event-listener to a button in the user interface
is simple enough, but the professional must avoid freezing the display by executing long-
running operations. This, in turn, requires concurrent execution.

Of course, there might still be the danger of oversights in “minimal” examples. Wherever
feasible, we therefore present code taken from the Eclipse platform and highlight those
elements that exhibit the concept at hand. This choice has a further advantage: It shows the
concepts in action and in context. Very often, the true value of an approach, and sometimes
even its justification, shows up only in really large applications. For instance, it is essential
to keep software extensible. Convincing examples of extensibility can, however, be found
only in modular systems such as Eclipse. Finally, if you want to dig a bit deeper into a
particularly interesting point, you can jump right into the referenced sources.

In connection with the resulting code, there is one final story that is usually not told: the
story of how the code actually gets written. Professional developers can become amazingly
productive if they do not insist on typing their code, but know all the tricks that will
make their IDE generate the code for them. For instance, knowing about the concept of
“refactoring” is all right and useful. But professionals must also master the refactoring tools
in Eclipse, up to the point where they recognize that three particular tools in sequence will
bring about the desired code change. On the theme of code and concepts, we will therefore
also highlight the Eclipse tools that apply to each concept.

The Structure of the Book

The book is organized in four parts. They approach the topic of object-oriented development
by moving roughly from the “small” aspects of individual language elements to the “large”
aspects of design and architecture. However, they also provide complementary answers to
the same question: What does a professionally designed “object” really look like?

Introduction xxiii

Part I: Language Usage Professional code always starts with professional language us-
age: A professional applies the language elements according to their intentions, rather
than misusing them for seemingly nifty tweaks and hacks. The term “usage” is actually
meant as in “usage dictionary” for natural languages; that is, if code obeys the idioms,
the phrases, and the hidden connotations of the language constructs, it becomes more
readable, understandable, and maintainable.

Part II: Contracts Professional code must above all be reliable. It must work in all situ-
ations that it is constructed for and it must be clear what these situations really are.
The idea of design-by-contract gives a solid foundation for the necessary reasoning.
It carries all the way from high-level descriptions of methods down to the details of
formal software verification. As a complementary approach, the behavior of objects
must be established by comprehensive testing.

Part III: Events Software of any size is usually event-driven: The application functionality
is triggered by some framework that establishes the overall structure and fundamental
mechanisms. At the core, the interpretation of methods changes, compared to Part II:
A method does not implement a service that fulfills a specific request by the caller, but
a reaction that seems most suitable to the callee. We follow this idea in the particular
area of user interfaces and also emphasize the architectural considerations around the
central model-view separation in that area. Because almost all applications need to do
multiple things at once, we also include a brief introduction to multithreading.

Part IV: Responsibility-Driven Design One goal of object-oriented development is to
keep the individual objects small and manageable. To achieve a task of any size, many
objects must collaborate. The metaphor of assigning “responsibilities” to individual
objects within such larger networks has proved particularly useful and is now pervasive
in software engineering. After an introductory chapter on designing objects and their
collaborations, we explore the ramifications of this approach in taking strategic and
architectural decisions.

Together, the four parts of this book are designed to give a comprehensive view of object-
oriented development: They explain the role of individual objects in the overall application
structure, their reactions to incoming events, their faithful fulfillment of particular service
requests, and their role in the larger context of the entire application.

How to Read the Book

The topic of object-oriented software development, as described previously, has many facets
and details. What is more, the individual points are tightly interwoven to form a complex
whole. Early presentations of object-oriented programming tended to point out that it takes
an average developer more than a year in actual projects to obtain a sufficient overview of
what this approach to programming truly entails. Clearly, this is rather unsatisfactory.
The book makes an effort to simplify reading as much as possible. The overall goal is
to allow you to use the book as a reference manual. You can consult it to answer concrete

XXiv Introduction

questions without having to read it cover-to-cover. At the same time, the book is a proper
conventional textbook: You can also follow longer and more detailed discussions through to
the end. The central ingredients to this goal are the following reading aids.

Layered Presentation The presentation within each chapter, section, and subsection pro-
ceeds from the general points to the details, from crucial insights to additional remarks.
As a result, you can stop reading once you feel you have a sufficient grasp on a topic
and come back later for more.

Core Sections Each chapter starts with a self-contained section that explains the chapter’s
core concepts. The intention is that later chapters can be understood after reading the
core sections of the earlier ones. By reading the core sections of all chapters, you
get a “book within a book”™—that is, a high-level survey of object-oriented software
development. The core sections themselves are kept to a minimum and should be read
through in one go.

Snappy Summaries Every point the text explains and elaborates on is headed by a one-
sentence summary, set off visually in a gray box. These snappy summaries give a quick
overview of a topic and provide landing points for jumping into an ongoing discussion.

Self-Contained Essays All top-level sections, and many subsections, are written to be
self-contained treatments of particular topics. After reading the core section of a chap-
ter, you can usually jump to the points that are currently most interesting.

Goal-Oriented Presentation The book’s outline reflects particular goals in development:
How to write good methods? How to use inheritance and interfaces? How to structure
an application? How to use multithreading? How to work with graphical user inter-
faces? How to obtain flexible software? Everything else is subsumed under those goals.
In particular, design patterns are presented in the context to which they contribute
most. They are kept very brief, to convey the essential point quickly, but the margin
always contains a reference to the original description for completeness.

Extensive Cross-Referencing Jumping into the midst of a discussion means you miss
reading about some basics. However, chances are you have a pretty good idea about
those anyway. To help out, all discussions link back to their prerequisites in the margin.
So if you stumble upon an unknown concept, you know where to look it up. It is
usually a good idea to read the core section of the referenced chapter as well. In the
other direction, many of the introductory topics have forward pointers to more details
that will give additional insights. In particular, the core sections point to further
information about individual aspects.

The cross-referencing in the margin uses the following symbols:

Reference to literature with further information or seminal defini-
tions, ordered by relevance
“ Reference to previous explanations, usually prerequisites

» Reference to later material that gives further aspects and details

Introduction XXV

Furthermore, many paragraphs are set apart from the normal presentation by the following
symbols:

A Crucial details often overlooked by novices. When missed, they
break the greater goals of the topic.

An insight or connection with a concept found elsewhere. These
insights establish the network of concepts that make up the area
of object-oriented development.

(@)

An insight about a previous topic that acquires a new and helpful
meaning in light of the current discussion.

D

An additional remark about some detail that you may or may not
stumble over. For instance, a particular detail of a code snippet
may need further explanation if you look very closely.

h¢)

2?2 A decision-making point. Software development often involves de-
cisions. Where the normal presentation would gloss over viable
alternatives, we make them explicit.

A nifty application of particular tools, usually to boost produc-
tivity or to take a shortcut (without cutting corners).

A (small) overview effect [259] can be created by looking at a
language other than Java or by moving away from object-oriented
programming altogether. Very often, the specifics of objects in
Java are best appreciated in comparison.

R

Hints for Teaching with the Book

The book emerged from a series of lectures given by the author in the computer science
curriculum at the University of Tiibingen between 2005 and 2014. These lectures ranged
from introductory courses on programming in Java through object-oriented programming
and software engineering to software architecture. For this book, I have chosen those topics
that are most likely to help students in their future careers as software developers. At the
same time, I have made a point of treating the topics with the depth that is expected
of university courses. Particularly intricate aspects are, however, postponed to the later
sections of each chapter and can be omitted if desired.

If you are looking at the book as a textbook for a course, it may be interesting to
know that the snappy summaries actually evolved from my transparencies and whiteboard
notes. The style of the lectures followed the presentation in the book: After explaining the
conceptual points, I reiterated them on concrete example code. The code shown in the book
is either taken from the Eclipse platform or available in the online supplement.

The presentation of design patterns in this book, as explained earlier, is geared toward
easy reading, a focus on the patterns’ main points, and close links to the context to which
the patterns apply. An alternative presentation is, of course, a traditional one as given
in [100,59,263], with a formalized structure of name, intent, motivation, structure, down

XXVi Introduction

to consequences and related patterns. I have chosen the comparatively informal approach
here because I have found that it helped my students in explaining the purpose and the
applications of patterns in oral exams and design exercises. In larger courses with written
exams, I have often chosen a more formalized presentation to allow students to better predict
the exam and to prepare more effectively. For these cases, each pattern in the book points
to its original publication in the margin.

The layered presentation enables you pick any set of topics you feel are most appropriate
for your particular situation. It may also help to know which sections have been used together
in which courses.

CompSci2 This introductory programming course is mostly concerned with the syntax
and behavior of Java and the basics of object-oriented programming (Section 1.3,
Section 1.4, Section 1.6, Section 1.5). I have included event-based programming of
user interfaces (Section 7.1) because it tends to be very motivating. Throughout, I
have used the view of objects as collaborating entities taking on specific responsibilities
(Section 11.1). This overarching explanation enabled the students to write small visual
games at the end of the course.

Software Engineering The lecture gives a broad overview of practical software engineer-
ing so as to prepare the students for an extended project in the subsequent semester.
I have therefore focused on the principles of object-oriented design (Section 11.1, Sec-
tion 11.2.1, Section 11.5.1). To give the students a head start, I have covered those
technical aspects that would come up in the projects—in particular, graphical user
interfaces (Section 7.1), including the principle of model-view separation (Section 9.1,
Section 9.2.1), the challenges of frameworks (Section 7.3), and the usability issue of
long-running jobs (Section 7.10). I have also covered the fundamental design princi-
ples leading to maintainable code (Section 11.5), focusing on the Single Responsibility
Principle (Section 11.2.1) for individual objects and the Liskov Substitution Principle
for hierarchies (Section 3.1.1). Throughout, I have discussed prominent patterns—
in particular, OBSERVER (Section 2.1), COMPOSITE (Section 2.3.1), ADAPTER (Sec-
tion 2.4.1), PROXY (Section 2.4.3), LAYERS (Section 12.2.2), and PIPES-AND-FILTERS
(Section 12.3.4).

Object-Oriented Programming This bachelor-level course builds on CompSci2 and con-
veys advanced programming skills. We have treated object-oriented design (Sec-
tion 11.1, Section 11.2.1, Section 11.3.2, Section 11.3.3) and implementation
(Section 1.2.1, Sections 1.3-1.8) in some depth. Because of their practical relevance,
we have covered user interfaces, including custom-painted widgets and the MODEL-
VIEW-CONTROLLER pattern (Section 7.1, Section 7.2, Section 7.5, Section 7.8, Sec-
tion 9.2). Finite State Machines served as a conceptual basis for event-based pro-
gramming (Chapter 10). As a firm foundation, I have included a thorough treatment
of contracts and invariants, including the practically relevant concept of model fields
(Section 4.1). I have found that practical examples serve well to convey these rather
abstract topics (Section 4.2) and that interested students are happy to follow me into
the realm of formal verification (Section 4.7.2).

Introduction XXVil

Software Architecture 1 This lecture treats fundamental structuring principles for soft-
ware products. Because of the varying backgrounds of students, I started with a
brief survey of object-oriented design and development (Section 11.1, Section 11.3.2,
Section 10.1). This was followed by the basic architectural patterns, following [59]
and [218]: LAYERS, PIPES-AND-FILTERS, MODEL-VIEW-CONTROLLER, and INTER-
CEPTOR (Section 12.2.2, Section 9.2, Section 12.3.4, Section 12.3.2). Because of their
practical relevance, I included UNDO/REDO (Section 9.5) and the overall structure of
applications with graphical interfaces (Section 9.4). The course ended with an outlook
on design for flexible and in particular extensible and reusable software (Section 12.2,
Section 12.3, Section 12.4).

Software Architecture 2 This lecture covers concurrent programming and distributed
systems. For space reasons, only the first area is included in the book (Section 7.10,
Chapter 8).

This page intentionally left blank

Chapter 9

Structuring Applications
with Graphical Interfaces

Chapter 7 introduced the technical and conceptual basis for building user
interfaces using the SWT framework that comes with Eclipse. At the core,
development comprises two aspects: setting up a widget tree with layout
information to create the visual appearance, and attaching event-listeners
to the individual widgets to implement the application’s reaction to user
input. Although this seems simple enough, this basis alone is too weak
for building larger applications: Since the application’s functionality tends
to be scattered throughout event-listeners, one will almost certainly end
up with a code base that cannot be maintained, extended, and ported to
different platforms—in other words, software that must be thrown away
and redeveloped from scratch.

This chapter investigates the architectural building block that keeps ap-
plications with user interfaces maintainable and portable: In the code, one
always separates the application’s business logic strictly from its graphical
interface. Section 9.1 introduces this approach, called model-view separa-
tion, and traces it through different examples within the Eclipse platform.
Next, Section 9.2 discusses its conceptual and technical basis, the classi-
cal MODEL-VIEW-CONTROLLER pattern. Section 9.3 introduces the JFace
framework, which complements the basic SWT widgets by connecting them
to the application’s data structures. Section 9.4 uses a running example
MiniXcel, a minimal spreadsheet implementation, to give a self-contained
overview and to explore several implementation details of model-view sep-
aration that must be mastered to create truly professional applications.
Finally, Section 9.5 adds the aspect of making edits undoable, which is
indispensable for achieving usability.

Throughout the presentation, we will pay particular attention to the
fact that model-view separation is deceptively simple: While the concept
itself is rather straightforward, its rendering in concrete code involves many
pitfalls. We will discuss particularly those aspects that have often been
treated incorrectly in the work of novices to the field.

Before we start to delve into these depths of software design and imple-
mentation, there is one general piece of advice to set them into perspective:

Always gear the application toward the end users’ requirements.

443

444
E=l258
E=229
EEPE
»9.2.2
«7.1145.3.5

Chapter 9 Structuring Applications with Graphical Interfaces

The reason for placing this point so prominently is that it is neglected so
often. As developers, we often get swept away by our enthusiasm for the
technically possible and the elegance of our own solutions. However, soft-
ware development is not a modern form of ’art pour l’art, but a means of
solving other people’s pressing problems. These people, called “users,” do
not care about the software’s internals; they care about their own workflows.
So before you even start to think about the software’s view and model and
the elegance of their separation, talk to the end users: What are their expec-
tations of the software’s concrete behavior? How do they wish to interact
with the software? Which particular tasks must the software support? The
conscientious professional software engineer starts application development
by learning about the users’ work—in other words, by learning about the
software’s application domain. Everything said subquently must be subject
to this overall guideline.

9.1 The Core: Model-View Separation

Every application has a purpose for which it is built and which provides its
unique value to its users. Correspondingly, the application contains code
that implements the business logic to fulfill that purpose. Apart from that,
most applications need a graphical user interface, simply because they have
nontechnical users who do not appreciate command-line tools too much.

Apart from all of the strategic considerations related to software quality
and maintenance, to be discussed later, it is useful to keep the code imple-
menting the business logic and the user interface separate simply because
they have different characteristics (Fig. 9.1). Users buy, for instance, CAD
software because its business logic can do CAD and nifty computations,
but they accept it into their working routine because they like the way
they can interact with it. The business logic of a CAD system must be
extremely reliable to prevent bridges from collapsing, and it must be stable
enough through different software releases, for instance, to read the same
files correctly throughout projects running for several years. The interface,
in contrast, must be visually appealing and must adapt to the changing
working habits of its users so that they can, for instance, exploit new input
methods such as 3D interaction devices. To achieve stability, the business
logic must adhere to rigorous contracts and must be tested comprehensively,
while the interface is event-based and cannot be tested easily, especially if
it is liable to frequent changes. Finally, the business logic must deal with
internal data structures and basic services such as file I/O, which are easily
ported to different platforms. The API of graphical interfaces, in contrast,
varies dramatically between platforms, and user interface code is usually not
portable at all—for instance, from SWT to Swing. Keeping business logic
and user interface separate is therefore first of all a matter of separation of
concerns.

Business Logic

User Interface

Why users buy the application
The trusted, reliable, valuable core
Stable over a long time (e.g., file formats)
Dominated by software-intrinsic concerns
Governed by contracts and

service providers (Section 4.1)
Demanding style and non-redundancy (Section 4.5)
Comprehensive unit testing (Section 5.1)
Largely independent of operating system

Why users accept the application
Visually appealing front-end
Volatile to adapt to changing user expectations [229]
Dominated by usability
Governed by events and
reactions (Section 7.1, Section 7.11)
Defensive programming (Section 4.6)
Interface testing (Section 5.3.5)
Depends closely on window system (Section 7.1)

Figure 9.1 Characteristics of Business Logic and the User Interface

uonjesedag MIIA-PPOIN 210D 3yl T'6

1144

»9.2

A1

NA1.2

NA.1

446

Chapter 9 Structuring Applications with Graphical Interfaces

Keep the user interface and the business logic in different modules.

Accepting the goal of this separation, we have to investigate how it can be
accomplished in the concrete software. Fig. 9.2 gives an overview, whose
aspects we will explore in the remainder of this section. As a first step,
one places the user interface and the business logic into separate modules,
as indicated by the dashed horizontal dividing line in the figure. Refer-
ring to their roles in the MODEL- VIEW-CONTROLLER pattern, the business
logic and the user interface are also called the model and the view, respec-
tively, which explains the term model-view separation as a summary of the

principle.
[widget tree }

A
user interface update

events

(view) display
event
| observers I listeners
- J
change invoke
notifications operations

object structures with

business logic relevant operations

(model)

Figure 9.2 Overview of Model-View Separation

In Eclipse, modules are implemented as plugins. Throughout the Eclipse
code base, plugins with suffix .ui access the functionality provided by the
corresponding plugins without that suffix. For instance, org.eclipse. jdt
.ui accesses the Java Development Tools, whose logic comes in plugin
org.eclipse.jdt.core, as well as org.eclipse.jdt.launching, org
.eclipse.debug.core, and others.

Introducing separate plugins will at first appear as a somewhat large
overhead for small applications. However, the sophisticated support for
plugin development in Eclipse removes any technical complexity and ex-
hibits the benefits of the split: The functionality can be linked into different
applications to enable reuse; unit tests run much faster on plugins that do
not require the user interface to come up; the OSGi class loader ensures
that the logic code cannot inadvertently access interface classes; the logic
module remains small and focused on its task; and several more. And, fi-
nally, successful small applications have a tendency to grow quickly into
successful large applications; the split into different plugins ensures that
they will also grow gracefully.

9.1 The Core: Model-View Separation

The model contains the application’s core functionality.

From the users’ perspective, an application is all about the user interface,
since they are not and should not be aware of any other part. The interface
creates simplifications and abstractions that keep all the technical com-
plexity under the hood. When writing a letter with a word processor, for
example, one certainly does not want to think about linear optimization
problems for line and page breaking.

The software engineer, in contrast, focuses on the business logic, or the
model, in Fig. 9.2. That component contains the data structures and algo-
rithms that solve the problems that the application is built for. Its objects
constitute the machinery that the whole project relies on. Its answers to the
technical, conceptual, and maybe scientific challenges make up the team’s
and the company’s competitive advantage. The user interface from this per-
spective is merely a thin, albeit commercially all-important, wrapper that
enables nontechnical users to take full advantage of the functionality.

We have chosen the term “core functionality” rather than just “func-
tionality” in this summary because the user interface does provide its own
nontrivial behavior. Visual highlights and effects, reactions to drag-and-
drop gestures, and wizards to guide the user—they all require careful engi-
neering in themselves. Yet, they do not belong to the “core,” because they
would need to be rebuilt from scratch on a new platform.

Never mention user interface classes in the logic.

The goal of the proposed division is to keep the business logic independent
of the user interface, because this will establish precisely the separation of
concerns indicated in Fig. 9.2. This can, however, be accomplished only
if the code implementing the business logic never mentions user interface
classes, such as widgets, images, or other resources: A single reference to
a specific user interface library destroys portability and testability. At the
level of modules, this means that the user interface module will reference
the logic module, but not the reverse.

Connect the user interface to the logic using OBSERVER.

The question is then how logic objects can ever communicate with interface
objects at all. The key insight here is that the OBSERVER pattern enables
precisely this communication: The subject in the pattern accesses its ob-
servers only through an interface that is defined from the perspective of the
subject and is independent of the concrete observers.

In the case of model-view separation, the observer interface is contained
in the business logic module, and that module sends change messages to ob-
servers in the interface module (see Fig. 9.2). These observers will translate
the generic change notifications into concrete updates of the widgets.

E=229

E=l142

»11.1

»9.4.4

«2.1.2

447

«21.1

«2.1.2

»9.4.3

«1.3.8

448

Chapter 9 Structuring Applications with Graphical Interfaces

Let us look at the example of Eclipse’s management of background jobs,
which also exhibits several interesting facets beyond the bare fundamentals.
We have already seen that the platform’s JobManager allows observers to
register for change notifications:

org.eclipse.core.internal.jobs.JobManager

public void addJobChangelListener (IJobChangelListener listener)
public void removeJobChangeListener (IJobChangelistener listener)

The interface TJobChangeListener is contained in the same package as
the job manager itself, in org.eclipse.core.runtime. jobs. Neither that
interface nor the IJobChangeEvent is connected in any way to possible user
interfaces.

org.eclipse.core.runtime.jobs.lJobChangeListener

public interface IJobChangelListener {
public void scheduled(IJobChangeEvent event);
public void aboutToRun (IJobChangeEvent event);
public void running(IJobChangeEvent event);
public void done (IJobChangeEvent event);

The discussion of the OBSERVER pattern has pointed out that the definition of the
=l observer interface must be independent of specific intended observers. It should focus
instead on the possible changes occurring in the subject. This guideline becomes even
more important in the case of model-view separation, because here the express intention
is to keep the view exchangeable. Unfortunately, it is often tempting to reduce the
complexity of the user interface code by sending along detailed notifications that meet
the interface’s needs precisely, especially to obtain efficient incremental screen updates.
In the long run, the simplicity of the current implementation will have to be paid for
during subsequent changes and extensions of the user interface.

The standard user interface for jobs is the Progress view, implemented in
class Progressview and several helpers. They reside in the user interface
package org.eclipse.ui.internal.progress. The central class is the
(singleton) ProgressManager, which registers to observe the (singleton)
JobManager.

org.eclipse.ui.internal.progress. ProgressManager.JobMonitor

ProgressManager () {

Job.getJobManager () .adddobChangeListener (this.changelistener);

org.eclipse.ui.internal.progress.ProgressManager

private void shutdown () {

Job.getJobManager () .removeJobChangeListener (

9.1 The Core: Model-View Separation

this.changelistener);

Construct view-related information at the view level.

The example of the Progress view also illustrates a typical aspect that
accounts for a lot of the complexity involved in presenting the business
logic adequately to the user: the need to create intermediate view-related
data structures.

The model of jobs is essentially a flat list, where each job provides
progress reports through progress monitors. Usability, however, is improved
by arranging the display into a tree of running jobs, job groups, tasks, and
subtasks that integrates all available information. The ProgressManager
in the user interface therefore constructs a tree of JobTreeElement objects.
Since the information is useful only for a specific intended user interface and
might change when the users’ preferences change, the maintenance of the
tree is handled entirely in the view, not in the model.

27 This is actually a design decision. From a different perspective, the model itself might
4 .
* be structured. For instance, the JVM’s bare Threads naturally form a tree.

The ProgressManager’s internal logic then integrates two sources of
information into a single consistent tree: the running and finished jobs,
obtained through the observer registered in the preceding example, and the
progress reports sent by the running jobs, to be discussed next.

Let the model access the view only through interfaces.

The observer pattern is only one instance of a more general principle, if
we perceive the view and the model as different layers of the overall appli-
cation. In this context, a lower layer accesses a higher layer only through
interfaces defined in the lower layer, so as to allow higher layers to be ex-
changed later on. Furthermore, the calls to higher layers usually take the
form of event notifications (see Fig. 9.2). In a typical example, the operating
system’s networking component does not assume anything about applica-
tions waiting for data, but it will notify them about newly arrived data by
passing that data into the buffers belonging to the application’s sockets.

Both aspects—the access through interfaces and the notifications—can
also be seen in the handling of progress reports. The model-level Jobs re-
ceive an object to be called back for the reports, but this object is given as
an interface IProgressMonitor:

org.eclipse.core.runtime.jobs.Job

protected abstract IStatus run(IProgressMonitor monitor);

449

«7.10.2

»12.2.2E359

450

»n12.1

«7.1

«5.3.5
«5.4.8

“4.145.1

»9.4.4

Chapter 9 Structuring Applications with Graphical Interfaces

The user interface can then create a suitable object to receive the call-
backs. In Eclipse, this is also done in the ProgressManager class, where
progressFor () creates a view-level JobMonitor.

org.eclipse.ui.internal.progress.ProgressManager

public IProgressMonitor createMonitor (Job job,
IProgressMonitor group,
int ticks) {
JobMonitor monitor = progressFor (job);
handle grouping of jobs
return monitor;

The guideline of accessing the user interface only through interfaces can
also be seen as a positive rendering of the earlier strict rule that no class
from the user interface must ever occur in the model code. If the model
code must collaborate with a view object, it must do so through model-
level interfaces implemented by view objects.

Event-listeners mainly invoke operations defined in the model.

We have now discussed in detail the notifications sent from the model layer
to the view layer, depicted on the left-hand side of Fig. 9.2. This focus is
justified by the fact that the decoupling between model and view originates
from the proper use of interfaces at this point.

The right-hand side of Fig. 9.2 shows the complementary collaboration
between view and model. By technical necessity, the user input is always
delivered to the application code in the form of events. The question then
arises as to how the expected behavior of the overall application should be
divided between the event-listeners in the view and the code in the model
component.

The main insight is that the event-listeners are a particularly bad place
for valuable code. The code cannot be tested easily, which makes it hard
to get it stable in the first place, let alone keep it stable under necessary
changes. Also, the code will probably be lost entirely when the users demand
a different interface or the application is ported to a different platform
(Fig. 9.1).

It is therefore a good idea to place as little code and logic as possible
into the event-listeners, and to move as much as possible into the model
instead. There, it can be made reliable through contracts and testing; there,
it can be reused on different operation systems; there, it can be maintained
independently of the vagaries of user interface development.

In the end, the ideal event-listener invokes only a few methods on the
model. The only logic that necessarily remains in the event-listeners relates
to the interface-level functionality such as the handling of drag-and-drop of
data and of visual feedback on the current editing gestures.

9.1 The Core: Model-View Separation

In practice, one often starts adding functionality to meet concrete user demands, and

one usually starts at the interface. The user says, “I need a button right here to do
this particular thing,” and the developer starts developing right with the event-listener.
Such event-listeners tend to become long and complex, and it is useful to refactor them in
retrospect. First, try to factor code fragments that are independent of the user interface
into separate methods within the listener, then move those methods into the model.
There, they will also be available to other team members for reuse.

Design the model first.

It is tempting to start a new project with the user interface: You make
rapid progress due to the WindowBuilder, you get early encouragement
from prospective users, and you can show off to your team leader. All of
this is important, since nifty data structures without a usable interface
are not worth much—in the end, the users have to accept the application
and use it confidently. For this reason, it can also be strategically sensible
to start with the interface and even a mock-up of the interface, to check
whether anybody will buy the finished product.

Because starting with the user interface is such an obvious choice, we
wish to advocate the complementary approach: to start with the model.
Here are a few reasons for postponing work on the user interface for a little
while.

e You stand a better chance that the model will be portable and reusable.

As with the test-first principle, the missing concrete collaborators in
the user interface reduce the danger of defining the model, and in
particular the observer interfaces (Fig. 9.2), specifically for those col-
laborators.

e Test-first is applicable to the model, and it will have its usual benefits.

e The model will naturally contain all required functionality, so that the
danger of placing too much functionality into the listeners is avoided
from the start.

e There is no danger that a mock-up user interface presumes an API
for the model that cannot be supported efficiently.

e The mission-critical challenges, such as in algorithmics, will be en-
countered and can be explored before an expensive investment in the
user interface has taken place. If it turns out that the application will
take a longer time than expected or cannot be built at all, the com-
pany has lost less money. Also, there is still time to hire experts to
overcome the problems before the release.

e The user interface can focus on usability. Once the functionality is
available, the user interface team just has to provide the most effective
access paths to that functionality; it does not have to delve into the
business logic aspects.

«]1.2.2
«l1.4.5

«7.2

Esls59

«5.2

«2.1.2

«5.2

451

452

»9.2.2

«24.1

E=1220,145,266
Efl114

»9.2.2

w21
«2.14
»9.4.3

»n9.4

Chapter 9 Structuring Applications with Graphical Interfaces

Together, these aspects maximize the benefits of model-view separation.

Envision the interface while creating the model.

Conversely, a strict focus on the model is likely to have drawbacks for the
final product. From an engineering point of view, the API of the model
may not suit the demands of the interface, so that workarounds have to be
found:

e The event-listeners contain extensive logic to access the existing API.
This means that this logic will be lost when the interface has to
change.

e The model contains adapters to provide the expected API.

e The model has to be refactored.

From a usability perspective, the fixed model API may induce developers to
take the easy way out of these overheads and to provide a user interface that
merely mirrors the internals. A typical example comprises CRUD (CReate
Update Delete) interfaces to databases, which are easy to obtain, but which
are known to provide insufficient support for the user’s workflows.

Model-view separation incurs an extra complexity that will pay off.

‘We have seen much motivation and many benefits of model-view separation,
and we will discuss the details. At the end of this overview, however, let us
consider not the benefits, but the costs of model-view separation.

e Splitting the code into separate modules always involves the design of
interfaces between the modules, and the communication about them
can take a lot of time and presents the potential for mistakes that must
be remedied later at high cost. When a data structure is kept right
in the user interface, one can hack in a new requirement at the last
minute. In contrast, if the data is encapsulated in a different module,
one may have to negotiate with the developers who are responsible
first.

e The collaboration from model to view always takes place by generic
change notifications (Fig. 9.2), rather than specific method calls that
update parts of the screen. In the model, one has to provide the
general OBSERVER pattern for many objects, even if there is in the
end only a single concrete observer in the user interface. Furthermore,
the logic to translate the changes into screen updates itself can be
substantial and complex, especially if it is necessary to repaint the
smallest possible screen area to keep the application responsive.

Model-view separation is therefore an effort that must be taken at the
start of a project. The walk-through example of MiniXcel will give you a
mental checklist of the single steps, which allows you to assess the overall

9.2 The Model-View-Controller Pattern

effort up front. We hope that the checklist is then simple enough to convince
you of using model-view separation in all but the most trivial throwaway
applications. Even in projects of a few thousand lines, the investment in
the extra structure will pay off quickly, since the software becomes more
testable, maintainable, and changeable. And if the application happens to
live longer than expected, as is usually the case for useful software, it is
ready for that next step as well.

0.2 The Model-View-Controller Pattern

The MODEL-VIEW-CONTROLLER pattern (MVC) has proven a tremendous
success in many different areas of user interfaces, starting from the origi-
nal SmallTalk toolkit, through all major players such as Qt, GTK, SWT,
Swing, and MFC, right to web application frameworks such as Ruby on
Rails and ASP.MVC. Naturally, the different areas have produced different
variants that suit their specific needs. Nevertheless, the fundamental con-
cept remains the same. We will study here the classical version, which will
also clarify the workings of the variants. We will use a minimal example to
illustrate the conceptual details of the pattern clearly without swamping
the discussion with unnecessary technical complications. A more extended
example will be given in the MiniXcel application. Also, we start out with
the classical separation of view and controller, even if most practical imple-
mentations unify these roles. Understanding the separate responsibilities of
view and controller separately first will later help to create clearer struc-
tures.

9.2.1 The Basic Pattern

The structure of the MVC pattern is shown in Fig. 9.3. In essence, the pat-
tern reflects the model-view separation: The business logic is kept separate
from the user interface code, and the logic collaborates with the interface
only through generic change notifications in the OBSERVER. The pattern
adds a finer subdivision in the interface layer: The view is responsible for
rendering the application data on the screen, while the controller contains
the logic for reacting to user input.

The benefit of this additional split is mainly a stricter separation of
concerns. We have seen in the discussion of the MEDIATOR that the event-
listeners attached to widgets can quickly become complex in themselves.
Moving this code into a self-contained object will keep the code of the view
more focused on the visual presentation itself. Although many practical
implementations reunite the two roles in the DOCUMENT-VIEW variant,
is useful to consider them separately first, since this will lead to a clearer
structure within the view component of this later development.

146

Es59

»9.4

»9.2.8

«9.1

«2.1

7.7

»9.2.8

453

454

“«9.1

«7.11

«7.1

«138.1

«7.5

“«9.1

Chapter 9 Structuring Applications with Graphical Interfaces

window troll
system controller

invoke
operations

events

events

change
notifications

model

business | user interface

logic

Figure 9.3 The Basic Model-View-Controller Pattern

In summary, the three roles of the pattern then perform these tasks:

e The model maintains the application’s data structures and algorithms,
which constitute its business logic. The model is the valuable and sta-
ble core of the product; it is built to last through revisions and ports
to different window systems. It builds on precise contracts and is
thoroughly unit-tested.

e The view renders the current state of the application data onto the
screen. It accesses the model to retrieve the data, and registers as an
observer to be notified about any changes and to keep the display
up-to-date. By technical necessity, it also receives all user input as
events and passes those events on to the controller.

e The controller interprets the user input events as triggers to perform
operations and modifications on the model. It contains the logic for
handling the events. In this role, it is a typical decision maker: It
decides what needs to be done, but delegates the actual execution to
others. In the basic pattern, this means calling the model’s methods.

p The pattern describes all three roles as if they were filled by single objects. However,

this is hardly ever the case: The application logic is usually implemented in a complex

component with many helper objects that collaborate intensively, and even the view may
need helpers to fulfill its task.

To see the pattern in action, we implement a tiny widget that enables
a single integer value to be incremented and decremented by clicking on
different areas (Fig. 9.4). Rather than building a compound widget, we
implement this from scratch to show all of the details.

The model maintains the application data and supports observers.

Following the earlier advice, we start with the model. Its “functionality”
is to maintain a single integer value. To serve as a model in the pattern,
the object also implements the OBSERVER pattern. The crucial point to be
noted is that the model is in no way adapted to the intended presentation on

9.2 The Model-View-Controller Pattern
- 0O Cell Editor

Figure 9.4 Minimal MVC Example

the screen. In particular, the observers are merely notified that the content
has changed (line 21); there is no indication that this notification will trigger
a screen update later on.

celledit.mvc.IntCell

1 public class IntCell {

2 private int content;

3 private EventListenerList listeners = new EventListenerList ();
! public void addCellListener (CelllListener 1) {

6 }
7 public void removeCelllListener (CellListener 1) {

9 }

10 public int get () {

11 return content;

12 }

13 public void set (int cnt) {

14 int old = content;
15 this.content = cnt;
16 fireCellChanged(old);

17 }

18 protected void fireCellChanged(int old) {

19 for (Celllistener 1 : listeners.getListeners(
20 CellListener.class))
21 l.cellChanged(this, old, content);

The view displays the data on the screen.

The view in the pattern must paint on the screen, so it derives from Canvas.
It keeps references to the current model and controller, as well as the (larger)
font used for painting and the computed preferred size.

celledit.mvc.View

public class View extends Canvas {
private IntCell model;
private Controller controller;
private Font fnt;

«7.8
“7.4.1
«r7.1

455

“a78

“7.4.1

“a7.8

»9.4.3

456

Chapter 9 Structuring Applications with Graphical Interfaces

private Point sizeCache;

The main task of the view is to render the application data on the
screen. The following excerpt from the painting method gives the crucial
point: Line 3 gets the current value from the model and transforms it into
a string to be drawn on the screen in line 7. The remaining code serves to
center the string in the widget (bounds is the area available for painting).

celledit.mvc.View

1 private void paintControl (PaintEvent e) {

2 ... paint red and green fields

3 String text = Integer.toString(model.get());
4 Point sz = g.textExtent (text);

5 int x = bounds.width / 2 - sz.x / 2;

6 int y = bounds.height / 2 - sz.y / 2;

7 g.drawString(text, x, y);
8
9

The view keeps the display up-to-date by observing the model.

To keep the display up-to-date, the view must observe the model. Whenever
the model changes, the view observes the new model.

celledit.mvc.View

public void setModel (IntCell c) {
if (this.model != null)
this.model.removeCelllListener (modelListener);
this.model = c;
if (this.model != null)
this.model.addCelllListener (modelListener);

Do not forget to detach the view from the model when the view is disposed. This
can be achieved reliably by setting the model to null in a DisposeListener.

The modelListener merely requests a complete repainting of the wid-
get. In many scenarios, this is too inefficient for production use, so that
incremental repainting must be implemented. To demonstrate the pattern,
the simple choice is sufficient.

celledit.mvc.View

private Celllistener modellistener = new CellListener () {
public void cellChanged(IntCell cell, int oldval, int newVal) {
redraw () ;
}
}i

9.2 The Model-View-Controller Pattern

The view forwards user input to the controller.

Finally, the view must forward the events to the controller. This is usu-
ally achieved by registering the controller as an event-listener. For the cur-
rent example, we delegate the actual registration to the controller itself to
demonstrate an exchange of the controller later on.

celledit.mvc.View.setController

public void setController (Controller c) {

if (controller != null)
controller.detach (this);

controller = c;

if (controller != null)

controller.attach (this);

Having finished with the model and the view, we have set up the main
axis of Fig. 9.3: The display on the screen will always reflect the current
data, independent of how that data will be manipulated. We will now add
this last aspect by implementing the controller.

The controller receives all relevant user input.

The controller must receive all user input relevant to the expected reactions.
Since the input is technically sent to the view, the controller registers itself
as a listener on the view. In the current example, it becomes a mouse-
listener to receive the clicks that will trigger the increment and decrement
operations. (The super call merely remembers the view in a field view.)

celledit.mvc.MouseController.attach

public void attach (View view) ({
super.attach (view);
this.view.addMouselListener (this);
this.view.addMouseTrackListener (this);
this.view.addMouseMovelListener (this);

The controller interprets the events as operations on the model.

The summary of tasks given earlier states that the purpose of the con-
troller is to tramnslate raw input events into operations on the model. The
implementation can be seen in the callback methods for mouse clicks. The
controller accesses the model to be operated on (lines 2-3) and checks which
area the click actually occurred in (lines 4 and 7). Based on this information,
it decides whether the model value should be incremented or decremented
(lines 6 and 8). As a detail, the controller decides not to decrement the
value if it has already reached 0.

»9.2.7

»9.2.3

457

»9.4.3

458

Chapter 9 Structuring Applications with Graphical Interfaces

celledit.mvc.MouseController.mouseUp

public void mouseUp (MouseEvent e) {

1
2 if (view.getModel () != null) ({

3 IntCell m = view.getModel () ;

4 if (view.isInDecrementArea (new Point (e.x, e.y)) &&

5 m.get () > 0)

6 m.set (m.get () - 1);

7 else if (view.isInIncrementArea (new Point (e.x, e.y)))
8 m.set (m.get () + 1);

9 }

10 }

The pattern processes input through view, controller, and model.

The overall goal of the MODEL-VIEW-CONTROLLER pattern can also be
seen by tracing the user input through the different roles, until an actual
screen update occurs.

1. The view receives the input and hands it to the controller.
2. The controller decides which action to take on the model.

3. The model performs the invoked operation and sends the resulting
changes to the view, as one of possibly several observers.

4. The view interprets the model changes and decides which parts of the
screen need to be redrawn.

5. The view refetches the relevant data and paints it on the screen.

This sequence of steps highlights the contributions of the different objects.
It also points out that each of them can influence the final outcome: The
view will contribute the visual appearance; the controller implements the
reaction, since the view simply forwards events; and the model implements
the functionality, but does not see the input events.

The central point of model-view separation is seen in steps 2 and 3.
First, the controller alone is responsible for interpreting the input events;
the model is not aware of the real causes of the invoked operations. Second,
the model is not aware of the precise view class, or that there is a user
interface at all; it merely supports the OBSERVER pattern.

9.2.2 Benefits of the Model-View-Controller Pattern

The MODEL-VIEW-CONTROLLER pattern is, in fact, rather complex and
requires some extra implementation effort, compared to the naive solution
of implementing the application’s functionality directly in event-listeners
attached to the widgets. The investment into the extra structure and indi-
rections introduced by the pattern must therefore be justified.

9.2 The Model-View-Controller Pattern

The user interface remains flexible.

The most important benefit of the pattern derives from its ability to keep
the user interface flexible. Because the application’s functionality stays safe
and sound in the model component and does not depend on the user inter-
face in any way, it will remain valid if the interface changes. This can and
will happen surprisingly often over the software’s lifetime.

The first reason for changing the user interface is the user. The central
goal of a user interface is to support the users’ workflows effectively. As
these workflows change or the users develop new preferences, the interface
should ideally be adapted to match them. Also, different user groups may
have different requirements, and new views may need to be developed as
these requirements emerge. The MVC pattern confines such changes to the
actual interface, unless the new workflows also require new computations
and operations.

The second reason for changes relates to the underlying window system.
When APIs change or new widgets or interaction devices are developed, the
user interface must exploit them for the users’ benefit. Since these aspects
are usually not related to the functionality in any way, the MVC keeps the
application’s core stable.

Finally, it may be desirable to port the application to an entirely dif-
ferent platform. Here, the problem lies mostly in the user interface. In the
best case, an analogous set of widgets will be available: Whether you access
Windows, MacOS, GTK, or Qt, their widgets offer basically very similar
services and events. Nevertheless, the user interface must usually be rede-
veloped from scratch. The MVC pattern ensures that the valuable core of
the application, its functionality, will continue to work in the new environ-
ment, since this core uses only standard services such as file or network
access, for which cross-platform APIs are available or where the platform
differences can be hidden behind simple adapters.

Multiple, synchronized views can better support the users’ workflows.

Modern IDEs such as Eclipse give us a good grasp on our source code. For
example, while we work on the source in a text editor, we see an outline
of its structure on the side. When we rename a method in one of the two
windows, the other window reflects the change immediately. The reason is
simply that both windows are, possibly through an indirection of the Java
Model, views for the same text document, which fulfills the role of the view
component in the MVC pattern. Similarly, Eclipse’s compiler reports an
error only once by attaching an IMarker object to the file. The marker is
reflected in the editor, the problems view, and as a small icon in the package
explorer and project navigator.

The MODEL-VIEW-CONTROLLER pattern enables such synchronized
views on the application’s data structure because views observe the model

E=1229

«24.1

459

460

“54

«5.3.5

«41

“4.5

“4.641.52

«2.1.2

€9.2.2

Chapter 9 Structuring Applications with Graphical Interfaces

and are informed about its current state regardless of why changes have
occurred.

The display remains up-to-date with the internal state.

At a somewhat more basic level, users will trust an application only if
they are never surprised by its behavior. One common source of surprises
is inconsistency between the internal data structures and the displayed
data. The MVC pattern eliminates this chance completely and ensures that
the users always base their actions and decisions on the most up-to-date
information about the internal structures.

The application’s functionality remains testable.

The single most important technique for making a system reliable and keep-
ing it stable under change is testing. By making the functional core, the
model, independent of a user interface, its operations can also be exercised
in a testing fixture (see Fig. 5.1 on page 246) and its resulting state can
be examined by simple assertions in unit tests. Testing the user interface,
in contrast, is much more complex. Since the user interface itself tends to
change very often, the effort of adapting the existing test cases and creating
new ones will be considerable. The functional core, in contrast, is built to
remain stable, so that the investment of testing will pay off easily.

Model-view separation enables protection of the system’s core.

The stability of an application’s functionality relies heavily on precise con-
tracts. Within this reasoning framework, each method trusts its callers to
fulfill the stated pre-condition—that is, to pass only legal arguments and
to call the method only in legal object states. The non-redundancy prin-
ciple condenses the idea of trust into the development practice of never
checking pre-conditions. At the system boundary, in contrast, the code can
never trust the incoming data and requests. Methods must be written to
be robust, and to check whether they really do apply.

Model-view separation offers the benefits of localizing these necessary
checks in the user interface component and maintaining the functional core
in the clean and lean style enabled by the non-redundancy principle.

9.2.3 Crucial Design and Implementation Constraints

As with the OBSERVER pattern, the concrete implementation of the MODEL-
VIEW-CONTROLLER pattern must observe a few constraints to obtain the
expected benefits. We list here those aspects that we have found in teaching
to make the difference between the code of novices and that of professionals.

9.2 The Model-View-Controller Pattern

Do not tailor the OBSERVER pattern to a specific view.

The first aspect is the definition of the Observer interface for the model. Es-
pecially when dealing with complex models and the necessity of incremental
screen updates, there is always the temptation to “tweak” the change notifi-
cations a bit to simplify the logic that determines which parts of the screen
need to be updated. Certainly, one should use the “push” variant of the OB-
SERVER pattern; that is, the change notifications should be very detailed to
enable any view to work efficiently regardless of its possible complexity.

When targeting the messages at specific views, however, one endangers
the ability to add a new view or to change the existing one, or to port the
application to an entirely different platform. Suppose, for instance, that
the model manages a list of objects with some properties. It should then
send a change message containing a description of the change. However, it
should not use a message updateTableRow () simply because the current
view is a Table widget. A better choice is a message changedbata (), which
reflects the change instead of the expected reaction. If the view displays the
properties in a specific order, the model must not send messages update
Table (int row, int col), but rather changedbData (DataObject obj,
String property). Even if this means that the view must map objects to
rows and the property names to column indices, it increases the likelihood
that the view can change independently of the model.

The controller never notifies the view about triggered operations.

A second shortcut that one may be tempted to take is to let the controller
notify the view directly about any changes it has performed on the model,
rather than going through the indirection via the model. First, this short-
cut is marginally more efficient at runtime. What is particularly attractive,
however, is that it saves the implementation of the general OBSERVER pat-
tern in the model and the perhaps complex logic for translating changes to
screen updates in the view.

However, the shortcut really destroys the core of the pattern, and nearly
all of its benefits. One can no longer have multiple synchronized views. Also,
the information on the screen may no longer be up-to-date if the controller
neglects internal side effects and dependencies of the model. Finally, the
logic for the updates must be duplicated in ports and variations of the user
interface.

The controller delegates decisions about the visual appearance to the view.

A comparatively minor point concerns the relationship between the view
and the controller. If these roles are implemented as different objects at any
point, then one should also strive for a strict separation of concerns—for
instance, to keep the controller exchangeable.

»9.4.3

«2.1.3

«2.14

»9.4.2

»9.2.8

»9.2.7

461

462

»12.1.2

«9.2.1

»9.2.8

“«l1.5.24946

«7.11
“4.5

»n12.2

Chapter 9 Structuring Applications with Graphical Interfaces

One notable aspect is the possible assumptions about the visual appear-
ance. The controller often receives events that relate back to that visual
appearance. For instance, a mouse click happens at a particular point on
the screen, and the visual element at this point must determine the correct
reaction. If the controller makes any assumptions about this visual element,
it is tied to the specific implementation of the view. If several controllers
exist, then it becomes virtually impossible to change even simple things
such as the font size and spacing, since several controllers would have to
change as well.

In the following tiny example, we have therefore made the controller
ask the model whether the click event e occurred in one of the designated
“active” areas. The controller now assumes the existence of these areas, but
it does not know anything about their location and shape. That knowledge
is encapsulated in the view and can be adapted at any time.

celledit.mvec.MouseController.mouseUp

if (view.isInDecrementArea (new Point (e.x, e.y)) && m.get () > 0)
m.set (m.get () - 1);

else if (view.isInIncrementArea (new Point (e.x, e.y)))
m.set (m.get () + 1);

Even in the common DOCUMENT-VIEW variant of the MVC, where view
and controller are implemented together in one object, it is still useful to
obey the guideline by separating the concerns into different methods of the
object.

The controller shields the model from the user input.

The user interface is, of course, one of the system’s boundaries. Accordingly,
all user input must be treated with suspicion: Has the user really entered
valid data? Has the user clicked a button only when it makes sense? Does
the selected file have the expected format?

Many of these questions are best handled in the controller, because
it is the controller that receives the user input and decides which model
operations need to be called in response. Since the model is built according
to the principles of design by contract, it does not check any stated pre-
conditions. It is the controller’s task to ensure that only valid method calls
are made.

9.2.4 Common Misconceptions

The MODEL-VIEW-CONTROLLER pattern is rather complex, so it is not
surprising that a few misunderstandings arise when first thinking it through.
We have found in teaching that some misunderstandings tend to crop up
repeatedly. They seem to arise mostly from the correct impression that
the MVC is all about exchangeability and flexibility. However, one has
to be careful about what really is exchangeable in the end and must not

9.2 The Model-View-Controller Pattern

conclude that “all components can be exchanged and adapted to the users’
requirements.” We hope that highlighting the nonbenefits of the pattern
in this section will enhance the understanding of the benefits that it does
create.

Model-view separation is not a panacea.

The rather extensive mechanisms and logic necessary for establishing a
proper model-view separation must always be seen as an investment. It is an
investment that pays off quite quickly, even for medium-sized applications,
but it is still an investment. The decision for or against using the MVC
must therefore be based on a precise understanding of it benefits, so as to
relate them to the application at hand. A small tool written for one project
only will never need porting, for example, and if the developer is also its
only user, there is little chance of having to change the user interface. A
general understanding that the MVC offers “everything that can be wished
for” is not enough.

The model is not exchangeable and the view is not reusable.

The view and the controller necessarily target a specific model: They ask
the model for data and draw exactly that data; the view registers as an
observer and expects certain kinds of change messages; and the controller
translates user gestures into specific operations offered by the model. As a
result, the model cannot usually be exchanged for a different one; by switch
of perspective, this means that the view is usually not reusable.

Of course, it is still possible to implement generic widgets that access
the model only through predefined interfaces. For instance, a table on the
screen has rows, and the data in each row provides strings for each column.
Both JFace and Swing provide excellent examples of generic and reusable
tables. However, this is an exercise in library or framework design. To build
a concrete user interface, one has to supply adapters that link the generic
mechanisms to the specific application model, and one has to implement
listeners for generic table events that target the specific available model
operations. In this perspective, the generic table is only a building block,
not the complete user interface in the sense of the MVC.

The controller is usually neither exchangeable nor reusable.

The controller interprets user gestures, such as mouse moves, mouse clicks,
and keyboard input. These gestures have a proper meaning, and hence a
reliable translation to model operations, only with respect to the concrete
visual appearance of the view. It is therefore usually not possible to reuse
a controller on a different view. Exchanging the controller is possible, but
only within the confines of the event sources offered by the view.

463
»9.3.1 B280
«2.4.1
»9.2.7

«9.2.1

“«9.2.1

464

Chapter 9 Structuring Applications with Graphical Interfaces

9.2.5 Behavior at the User Interface Level

Effective user interfaces allow the user to invoke common operations by
small gestures. For example, moving a rectangle in a drawing tool takes
a mouse click to select the rectangle and a drag gesture to move it. Since
many similarly small gestures have similarly small but quite different effects,
the application must provide feedback so that the user can anticipate the
reaction. For instance, when selecting a rectangle, it acquires drag handles—
that is, a visual frame that indicates moving and resizing gestures will now
influence this object.

Implement user feedback without participation of the model.

The important point to realize is that feedback is solely a user interface
behavior: Different platforms offer different mechanisms, and different users
will expect different behavior. The model does not get involved until the
user has actually triggered an operation.

Suppose, for instance, that we wish to enhance the example widget with
the feedback shown in Fig. 9.5. When the mouse cursor is inside the widget,
a frame appears to indicate this fact (a versus b and c); furthermore, a
slightly lighter hue indicates whether a click would increment or decrement
the counter (b versus ¢), and which field is the current target of the click.

.
(a) (b) ()

Figure 9.5 User-Interface Behavior: Mouse Feedback

Feedback is triggered by the controller.

The second aspect of feedback concerns the question of which role will
actually decide which feedback needs to be shown. The answer here is clear:
Because the controller will finally decide which operation is triggered on the
model, it must also decide which feedback must be shown to apprise the
user of this later behavior. It is similarly clear that the controller will decide
on the feedback but will delegate the actual display to the view.

In the implementation of the example, the Controller tracks both the
general mouse movements into and out of the widget, and the detailed move-
ments inside the widget. The reaction to the mouseEnter and mouseExit
events is straightforward: Just tell the view to draw the frame or to re-
move it. When the mouse leaves the widget, any target highlight must,
of course, also be removed. The mouseMove proceeds in parallel to the
mouseUp method in the basic implementation: It checks which operation it
would perform and sets the corresponding highlight.

9.2 The Model-View-Controller Pattern 465

celledit.mvc.MouseController

public void mouseEnter (MouseEvent e) {
view.setInside (true);
}
public void mouseExit (MouseEvent e) {
view.setInside (false);
view.setTargetField (View.TARGET_NONE) ;
}
public void mouseMove (MouseEvent e) {
if (view.isInDecrementArea (new Point (e.x, e.y)))
view.setTargetField (View.TARGET_DECREMENT) ;
else if (view.isInIncrementArea (new Point (e.x, e.y)))
view.setTargetField (View.TARGET_INCREMENT) ;
else
view.setTargetField (View.TARGET_NONE) ;

p The naming of the view methods is worth mentioning. They publish the fact that

some visual effect can be achieved, but the effect itself remains a private decision of
the view. This parallels the earlier implementation of mouseUp, where the controller did
not know the exact shape of the clickable areas within the view.

We said earlier that mouseExit must “of course” remove any target highlight. The

question is whether this must be as explicit as in the code shown here: Would it not
be better if the call setInside (false) would also remove the target highlight? In other
words, shouldn’t the connection between the feedback mechanisms already be established
within the view class? It would certainly make the controller’s methods simpler and more
symmetric, and it would ensure a certain consistency within the view. We have chosen
the variant in the example to emphasize that all decisions about feedback lie with the
controller. In practical implementations, the other options can, however, be equally valid.

Feedback usually requires special state in the view.

In implementing the actual visual feedback within the view, we have to

take into account one technical detail: Painting always occurs in a callback, «7.8
at some arbitrary point that the window system deems suitable. The view

must be ready to draw both the data and the feedback at that point. We
therefore introduce special state components in the view:

celledit.mvc.View

private boolean inside = false;

public static final int TARGET_NONE = 0;
public static final int TARGET_DECREMENT = 1;
public static final int TARGET_INCREMENT

private int targetField = TARGET_NONE;

I
N

“7.8

466

Chapter 9 Structuring Applications with Graphical Interfaces

The view publishes the new state, but only to its related classes, such as
the Controller. The setter for the state stores the new value and invokes
redraw () to request a later painting operation. Since this is potentially
expensive, one should always check whether the operation is necessary at
all.

celledit.mvc.View

protected void setInside (boolean inside) {

if (this.inside == inside)
return;

this.inside = inside;

redraw () ;

The actual painting then merely checks the current feedback state at
the right point and creates the visual appearance. Here is the example
for highlighting the “decrement” field; the increment field and the “inside”
indications are similar.

celledit.mvc.View

private void paintControl (PaintEvent e) {

if (targetField == TARGET_DECREMENT)

g.setBackground (getDisplay () .getSystemColor (SWT.COLOR_RED)) ;
else

g.setBackground (getDisplay () .getSystemColor (

SWT .COLOR_DARK_RED)) ;
g.fillRectangle (bounds.x, bounds.y, bounds.width / 2,
bounds.height) ;

Separate view-level state from the application functionality.

The example of the feedback given here has introduced the necessity of state
that only lives at the view level but does not concern the application’s core
data structures. A plethora of similar examples comes to mind immediately:
the selection in a text viewer or the selected row in a table; the folding and
unfolding of nodes in a tree-structured display, such as SWT’s Tree; the
currently selected tool in an image editor; the position of scrollbars in a
list and the first row shown in consequence; the availability of buttons
depending on previous choices; and many more.

In the end, the view-level state and the model-level state must be merged
in one consistent user interface with predictable behavior. Internally, how-
ever, the two worlds must be kept separate: The one part of the state is
thrown away, and the other must be stable when the interface changes; the
one part is best tested manually, and the other must be rigorously unit-
tested. Consequently, one must decide for each aspect of the overall state
to which of the worlds it will belong.

9.2 The Model-View-Controller Pattern

The decision may seem rather obvious at first, but some cases might
merit deeper discussions and sometimes one may have second thoughts
about a decision. For instance, the GIMP image editor treats the selection as
part of the model: You can undo and redo selection steps, and the selection
even gets saved to the .xcf files. The reason is, obviously, that in the
image manipulation domain, selection is often a key operation, and several
detailed selection steps must be carried out in sequence to achieve a desired
result. Being able to undo and redo selection helps users to remedy mistakes
in the process.

9.2.6 Controllers Observing the Model

In the basic MODEL-VIEW-CONTROLLER pattern, the view necessarily ob-
serves the model, because it must translate any changes in the data to
updates of the display. In many scenarios, the controller will also observe
the model.

Controllers can observe the model to indicate availability of operations.

A typical example of this behavior is seen in menu items that get grayed
out if an operation is not available. For instance, a text editor will gray out
the “copy” and “cut” entries if there is currently no selection.

The controller decides on the availability of operations.

It might be tempting to integrate the feedback on available actions directly
into the view. After all, the view already observes the model and it can
just as well handle one more aspect while it is at work anyway. However,
since the controller decides which operations it will invoke for which user
input, it is also the controller which decides whether these operations are
currently available.

Suppose, for instance, that we wish to gray out the decrement field if
the current count is already 0. This requires an extension of both the view
and the Controller classes: The view acquires a new bit-mask stating
which of the fields need to be grayed out, and that information is used
when choosing the background color in paintControl (). The controller
observes the model and switches the “gray” flags of the fields according to
the current model value.

pYou might ask whether to bother graying out the “increment” field at all, since

the widget’s behavior does not assume an upper bound. We feel that keeping the
implementation slightly more general and symmetric at very little cost at this point
might help in future extensions. After all, similar widgets such as slider and ScrollBar
all do have upper limits.

»9.5

«9.2.1

467

»9.2.8

146

“«9.2.1

«7.6

468

Chapter 9 Structuring Applications with Graphical Interfaces

Controllers must assume that others modify the model.

One possible pitfall that leads to nonprofessional code lies in the fact that
the controller modifies the model itself and therefore seems to know pre-
cisely whether an operation causes some action to become unavailable. How-
ever, it should be noted that the MVC is built to support multiple synchro-
nized views, and that other controllers may invoke model operations as well.
Each controller that depends on the model’s state must therefore observe
the model.

9.2.7 Pluggable Controllers

Even if, as we shall see shortly, the view and controller are often coupled
so tightly that it is sensible to implement them in a single object, it is still
instructive to consider briefly the concept of making the controller of a view
pluggable to implement new interactions with an existing graphical presen-
tation. This flexibility can be achieved only after understanding precisely
the division of responsibilities between view and controller.

So, let us implement a controller that enables the user to access the
number entry field from the introductory example (Fig. 9.4 on page 455)
via the keyboard. The new KeyboardController waits for keyboard input
and modifies the model accordingly. Since the view observes the model, the
change will become visible to the user.

celledit.mvec.KeyboardController.keyReleased

public void keyReleased (KeyEvent e) {
IntCell m = view.getModel () ;
switch (e.character) {
case '+':
m.set (m.get () + 1);
break;
case '-':
if (m.get () > 0)
m.set (m.get () — 1);
break;

Keyboard input is different from mouse input in that it is not the current
location of some cursor, but the keyboard focus of the window system (and
SWT) that determines which widget will receive the events. The keyboard
focus is essentially a pointer to that target widget, but it has interactions
with the window manager (because of modal dialogs) and the tab order of
widgets in the window. It is therefore necessary to display feedback to the
users so that they know which reaction to expect when they press a key.
The new controller therefore registers as a FocusListener of the View.

9.2 The Model-View-Controller Pattern 469

celledit.mvc.KeyboardController.attach

public void attach (View view) {

view.addFocusListener (this);

}

The controller then uses the existing “inside” indication on the view for the
actual feedback:

celledit.mvc.KeyboardController

public void focusGained(FocusEvent e) {
view.setInside (true);

}

public void focusLost (FocusEvent e) {
view.setInside (false) ;

}

Another convention is that clicking on a widget with the mouse will
give it the focus. This is, however, no more than a convention, and the
widget itself has to request the focus when necessary. This reaction can
be implemented directly. (Note that the actual indication that the focus
has been obtained is shown indirectly, through the event-listener installed
previously.)

celledit.mvc.KeyboardController.mouseUp

public void mouseUp (MouseEvent e) {
view.setFocus () ;

}

Finally, it is also useful to give a visual indication, in the form of a short
flash of the respective increment/decrement fields, when the user presses
the “+” and the “-” keys. This, too, can be achieved with the existing
feedback mechanisms. The keyReleased () event then resets the target
field to “none.” The flash will therefore mirror precisely the user’s pressing
of the respective key.

celledit.mvc.KeyboardController.keyPressed

public void keyPressed (KeyEvent e) {

switch (e.character) {

case '+':
view.setTargetField (View.TARGET_INCREMENT) ;
break;

case '-':
view.setTargetField (View.TARGET_DECREMENT) ;
break;

The new controller emphasizes the division of logic between the view
and the controller: The display and highlights remain with the view, and
the controller decides what needs to be done in reaction to incoming user

470

»1i2.4

EZl214

«9.1

«9.2.1

“7.8

«2.1.3

Chapter 9 Structuring Applications with Graphical Interfaces

input. It is this division that has enabled us to reuse the existing highlight
mechanisms for new purposes.

You might, of course, be suspicious of this reuse: Was it just coincidence
that the existing mechanisms worked out for the new controller? Reuse
always requires anticipating the shape of possible application scenarios and
keeping the supported ones lean at the cost of excluding others. In the
current case, we would argue that the feedback mechanisms that the view
provides match the user’s understanding of the widget: The user “activates”
the widget by “zooming in,” either by the mouse or by the keyboard focus,
and then “triggers” one of the increment and decrement areas. All of these
interactions are then mirrored by the highlights.

Nevertheless, it must be said that views and controllers usually depend
heavily on each other, so that exchanging the controller is rarely possible.
One example where it is enabled is found in the pluggable edit policies
of the Graphical Editing Framework, which create a setup where reusable
controller-like logic can be attached to various elements of the user interface
in a flexible way.

9.2.8 The Document-View Variant

The view and controller in the MVC pattern are usually connected very
tightly: The controller can request only those events that the view provides,
and it can make use of only those feedback mechanisms that the view
implements. Since it is therefore often not possible to use either the view or
the controller without the other, one can go ahead and implement both roles
in the same object. This leads to the DOCUMENT-VIEW pattern, where the
document contains the application logic and the view contains the entire
user interface code. In this way, the interface code can share knowledge
about the widget’s internals between the logic of the display and the event-
listeners. This may facilitate coding and avoids having to design an API
that enables the view and the controller classes to communicate.

Let us examine this idea through the simple example of incrementing
and decrementing an integer value. We start from a technical perspective.
Since we need to implement a widget with custom painting, the overall
structure is that of a canvas with attached listeners. The drawing part
is actually the same as in the previous implementation. Only the code for
the event-listeners is integrated. In the simplest case, we wait for mouse
clicks. To avoid publishing this fact by making the view class implement
MouseListener, we attach an anonymous listener that delegates to the
outer class.

celledit.docview.View.View

addMouseListener (new MouseAdapter () {
public void mouseUp (MouseEvent e) {
handleMouseUp (e) ;

9.2 The Model-View-Controller Pattern

}) i

Keep the code for display and reaction loosely coupled.

On the first try, one is liable to take the freedom of “sharing knowledge”
between display and event-listeners very literally. For instance, we know
that paintComponent () draws the dividing line between the decrement
and increment fields right in the middle of the widget’s screen space. The
event-listener can therefore be written up like this:

celledit.docview.View

private void mouseUpl (MouseEvent e) {
Rectangle area = getClientAreal();
if (cell.get() > 0 && area.width / 2 <= e.x &&
e.x <= area.width &&
0 <= e.y && e.y <= area.height)
cell.set (cell.get () - 1);

bi

However, this is highly undesirable: It is not possible to change the vi-
sual appearance without going through the entire class and checking which
code might be influenced. It is much better to introduce a private helper
method that decides whether a particular point is in the increment or decre-
ment fields. Placing this helper near the paintComponent () —that is, split-
ting the class logically between display and reaction code—will greatly fa-
cilitate maintenance.
celledit.docview.View

private void handleMouseUp (MouseEvent e) {
if (cell.get() > 0 && isInDecrementArea (new Point (e.x, e.y)))
cell.set (cell.get () - 1);

Vi
private boolean isInDecrementArea (Point p) {

}

In the end, this implementation is very near the original division between
view and controller. One crucial difference is that now the helper method
is not an external API that may be accessed from the outside and must
therefore be maintained, but rather a private, encapsulated detail that
may be changed at any time without breaking other parts of the system.

With predefined widgets, access their API directly.

In many cases, the actual display consists of predefined widgets such as
text fields or tables. These widgets already encapsulate all painting-related

«l1.4.5

471

«7.1

«7.4

»9.3.3

“a7.4.2

»12.2.2

472

Chapter 9 Structuring Applications with Graphical Interfaces

aspects so that it is not necessary to introduce helpers. The DOCUMENT-
VIEW pattern then applies very directly, since listeners can get the content
or the selection of widgets without further ado.

9.3 The JFace Layer

SWT is a typical user interface toolkit that provides the standard interac-
tion elements, such as text fields, tables, and trees, out of the box. How-
ever, it is also designed to be minimal: Since it accesses the native widgets
of the platform that the application executes on, the SWT classes must
be ported to every supported platform. For that reason, SWT offers only
bare-bones functionality. Any higher-level functionality is factored out into
the JFace framework, which is pure Java and portable. JFace facilitates
connecting the application data structures to the existing SWT widgets,
and is therefore indispensable for effective development of user interfaces.
It also provides standard elements such as message dialogs and application
windows equipped with a menu, toolbar, and status bar.

From a conceptual point of view, JFace provides a complementary per-
spective on model-view separation. While usually the model is stable and
the user interface remains flexible, JFace provides fixed but generic user
interface components that connect flexibly to application-specific models.
Studying its mechanisms will enhance the understanding of model-view
separation itself.

pThe JFace layer is contained in the bundle org.eclipse.jface, with extensions in

org.eclipse.jface.databinding and org.eclipse.jface.text. For historical rea-
sons, it also relies on some elements of org.eclipse.core.runtime, which can be used
outside of the platform in just the way that we launched SWT applications as standard
Java applications.

9.3.1 Viewers

The basic approach of JFace is shown in Fig. 9.6(a). JFace establishes a layer
between the application’s business logic and the bare-bones SWT widgets.
JFace uses methods like setText and setIcon to actually display the data
in widgets and registers for low-level events as necessary. It also offers events
to the application itself, but these are special in that they translate from the
widget level to the model level. For instance, when a user selects a row in
a Table widget, SWT reports the index of the row. JFace translates that
index into the model element it has previously rendered in the row, and
reports that this model element has been selected. In effect, the application
is shielded from the cumbersome details and can always work in terms of
its own data structures. Of course, it still listens to events such as button

9.3 The JFace Layer

clicks directly on the SWT widgets, and translates those into operations on «9.2.1
the model. JFace follows model-view separation in getting the data to be 9.1
displayed from the model and listening to change notifications of the model
to keep the display up-to-date.

We will now discuss the various roles and relationships depicted in
Fig. 9.6. This section focuses on the viewers and their collaborators. The
listeners, which implement the application’s reactions to user input in the
sense of controllers, are discussed in Section 9.3.2. «9.2.1

setText
setlcon

events events

model-level
events
getData change

invoke
operations

(Widget
A
t
ZZ&L%XA lselection Uents
model-level
Vi events
—' iewer
A
getElements | frefresh getText™ [LabelProvider
4 getlcon
3 (ContentProvider)
S A
getData change nvoke
A 4 operations

5 Model)

(b)

Figure 9.6 JFace Architecture

JFace viewers target specific widget types.

A core contribution of the JFace layer relates to its selection of generic view-
ers, each of which targets a specific type of widget: A TableViewer targets
Tables, a ComboViewer targets a Combo combo box, and so on [Fig. 9.6(b),
at the top|. Viewers use the widget-specific methods for displaying data and
listen for widget-specific events.

473

474

«l1.3.4424.1

«24.1

»9.3.3

Chapter 9 Structuring Applications with Graphical Interfaces

JFace viewers access the application data through adapters.

One question not addressed in Fig. 9.6(a) is how JFace will actually access
the application-specific data: How is a generic viewer supposed to know the
right getData method and the implementation of the OBSERVER pattern
of the specific data structures? Fig. 9.6(b) supplies this detail. First, each
viewer holds a reference to the model, in its property input. However, that
input is a generic Object, so the viewer never accesses the model itself.
Instead, the viewer is parameterized by two adapter objects that enable it
to inspect the model just as required:

e The content provider is responsible for traversing the overall data
structure and for splitting it up into elements for display purposes.
For a table or list, it provides a linear sequence of elements; for a
tree-like display, it also accesses the child and parent links between
the elements. Furthermore, the content provider must observe the
model and notify the viewer about any changes that it receives.

e The label provider is called back for each element delivered by the con-
tent provider, usually to obtain concrete strings and icons to represent
the element on the screen. A Listviewer will request one text/icon
combination per element; a TableViewer or TreeViewer will request
one combination for each column. The viewer will also observe the la-
bel provider to be notified about changes of the text and icons to be
displayed.

The text-related viewers TextViewer and SourceViewer deviate from this schema in
that they expect an implementation of IDocument as their model. The document itself
then includes the text-specific access operations, without requiring a separate adapter.

pThe framework includes a deliberate redundancy regarding changes in the model:

When values change within a data element, then those may be translated for the
viewer either by the content provider, by calling the viewer’s update () method, or by
the label provider, by firing change events. Each mechanism has its merits. On the one
hand, the content provider observes the model anyway, so the label provider can often
remain passive. On the other hand, some generic label providers, such as those used in
data binding, may wish to avoid relying on specific content providers.

Let us start with a simple example, in which an application accepts
and monitors incoming TCP connections (Fig. 9.7). Whenever a new client
connects, the corresponding information gets shown. When the client dis-
connects, its row is removed from the table.

Keep the model independent of JFace.

9.3 The JFace Layer

#® — 0 TCPConnecktion Monitor

Local Port Remote IP Remote Port
2000 127.0.0.1 36996

2000 127.0.0.1 36997

2000 127.0.0.1 36998
Direct your browser or telnet to localhost:2000 Close Selected

Figure 9.7 Connection Monitor

We start by developing the model of the application, with the intention
of keeping it independent of the user interface, and more specifically the
JFace API. The model here maintains a list of connections (which contain
a Socket as the endpoint of a TCP connection). Furthermore, it imple-
ments the OBSERVER pattern, which explains the registration (and omitted
de-registration) of listeners (lines 13-16), as well as the fire method for
notifying the listeners (lines 18-20). The method opened () and correspond-
ing method closed () will be called back from the actual server code. Since
that code runs in a separate thread, all access to the internal data structures
needs to be protected by locking. Finally, we decide that the notification of
the observers can be performed in an open call (line 10), without holding
on to the lock.

connections.ConnectionList

public class ConnectionList {
private Arraylist<Connection> openConnections =
new ArrayList<Connection> () ;
private ListenerList listeners = new ListenerList();

1
2
3
4
5
6 void opened(Connection c) {

7 synchronized (this) {

8 openConnections.add(c);
9

}

10 fireConnectionOpened(c) ;

11 }

12

13 public synchronized void addConnectionListListener (

14 ConnectionListListener 1) {
15 listeners.add(l);

16 }
18 protected void fireConnectionOpened (Connection c) {

20 }

«9.1

«8.1

«8.5

475

“g

a7l

476

Chapter 9 Structuring Applications with Graphical Interfaces

pWe use synchronized for locking because the simplicity of the use case makes it
unlikely that we will ever need the flexibility of the library tools advocated in the
chapter on multithreading.

The important point about the model is that it is independent of the
user interface: It serves as a central list in which the server code manages
the open connections, it synchronizes the different possible accesses, and it
notifies interested observers. These observers are completely agnostic of a
possible implementation in the user interface as well:

connections.ConnectionListListener

public interface ConnectionListListener extends EventListener ({
void connectionOpened (ConnectionList p, Connection c);
void connectionClosed (ConnectionList p, Connection c);

This finishes the model in Fig. 9.6(b). We will now fill in the remaining
bits.

Create the widget and its viewer together.

The viewer in Fig. 9.6(b) is linked tightly to its SWT widget: The type of
widget is fixed, and each viewer can fill only a single widget, since it keeps
track of which data it has displayed at which position within the widget.
One therefore creates the viewer and the widget together. If a viewer is
created without an explicit target widget, it will create the widget by itself.
The viewer constructor also takes the parent widget and flags, as usual for
SWT. The SWT widget is not encapsulated completely, since the display-
related services, such as computing layouts, are accessed directly.

connections.Main.createContents

connectionsViewer = new TableViewer (shell, SWT.BORDER);
connections = connectionsViewer.getTable();
connections.setLayoutData (new GridData (
SWT.FILL, SWT.FILL, true, true,
2, 1))
connections.setHeaderVisible (true);

Connect the viewer to the model through a special content provider.

Each model has, of course, a different structure and API, so that each model
will also require a new content provider class. The viewer then receives its
own instance of that class.

connections.Main.createContents

connectionsViewer.setContentProvider (
new ConnectionListContentProvider());

9.3 The JFace Layer

The reason for this one-to-one match between content provider object
and viewer object is that the content provider usually has to be linked up
very tightly between the viewer and its input [Fig. 9.6(b)]. The life cycle
of the content provider clarifies this. Whenever the viewer receives a new
input, it notifies its content provider through the inputChanged () method.
The method must also make sure to de-register from the previous input
(lines 8-9). When the viewer is disposed, with the SWT widget, it calls the
method again with a new input of null. The logic for de-registering from
the old model therefore also kicks in at the end of the life cycle. At this
point, the viewer calls the content provider’s dispose () method for any
additional cleanup that may be necessary.

connections.ConnectionListContentProvider

1 public class ConnectionListContentProvider implements

2 IStructuredContentProvider, ConnectionListListener {
3 private ConnectionList list;

4 private TableViewer viewer;

5 public void inputChanged (Viewer viewer, Object oldInput,
6 Object newlInput) {

7 this.viewer = (TableViewer) viewer;

8 if (list != null)

9 list.removeConnectionListListener (this);

10 this.list = (ConnectionList) newlInput;

1 if (list != null)

12 list.addConnectionListListener (this);

13 }

14 public void dispose () {}

p Line 7 in this code assumes that the viewer is a Tableviewer. This can be justified

by stating in the class’s contract that the content provider may be used only with
that kind of viewer. The non-redundancy principle then decrees that line 7 must not
check whether the contract is actually obeyed. Many content providers in the Eclipse
code base are more defensive, or general, at this point and do something sensible for
different kinds of viewers.

The content provider knows how to traverse the model’s structure.

The content provider in Fig. 9.6(b) is an adapter that provides the interface
expected by the JFace viewer on top of the application’s model. Designing
this interface is an interesting task: Which kind of common structure can
one expect to find on all models? The approach in JFace is to start from the
minimal requirements of the Tableviewer, as the (main) client: A table is
a linear list of rows, so the viewer has to be able to get the data elements
behind these table rows. In the current example, each row is a Connection
and the model already provides a method to obtain the current list. The

«2.1.2

«4.5

€322

477

EZl60

«1.3.8

478

Chapter 9 Structuring Applications with Graphical Interfaces

inputElement is the viewer’s input model passed to inputChanged();
passing it again enables stateless and therefore shareable content providers.

connections.ConnectionListContentProvider.getElements

public Object[] getElements (Object inputElement) {
return ((ConnectionList) inputElement) .getOpenConnections();

To see more of the idea of generic interface components, let us consider
briefly a tree, rendered in a TreevViewer. A tree has more structure than a
flat table: The single elements may have children, and all but the top-level
elements have a parent. Tree-like widgets usually enable multiple top-level
elements, rather than a single root, so that the content provider has the
same method getElements () as the provider for flat tables.

org.eclipse.jface.viewers.| TreeContentProvider

public interface ITreeContentProvider
extends IStructuredContentProvider {
public Object[] getElements (Object inputElement);
public Object[] getChildren (Object parentElement);
public Object getParent (Object element);
public boolean hasChildren (Object element);

Now the JFace viewer can traverse the application model’s data struc-
ture by querying each element in turn. As long as the model has a table-like
or tree-like structure, respectively, it will fit the expectations of the JFace
layer. In general, each viewer expects a specific kind of content provider
stated in its documentation, according to the visual structure of the tar-
geted widget.

p You may find it rather irritating that all viewers offer only the generic method shown

next, which does not give an indication of the expected type. The deeper reason is
that it is in principle not possible to override a method and specialize its the parameter
types, because this co-variant overriding breaks polymorphism: A client that works with
only the base class might unsuspectingly pass a too-general object. Java therefore requires
overriding methods to have exactly the same parameter types.

org.eclipse.jface.viewers.StructuredViewer

public void setContentProvider (IContentProvider provider)

For simple display cases where the model does not change, one can also use the
ArrayContentProvider, which accepts a List or an array and simply returns its
elements. Since it does not have any state, it implements the SINGLETON pattern.

9.3 The JFace Layer

The label provider decides on the concrete visual representation.

In the end, SWT shows most data on the screen as text, perhaps with
auxiliary icons to give the user visual hints for interpreting the text, such
as a green check mark to indicate success. The label provider attached to
JFace viewers implements just this transformation, from data to text and
icons. In the example, the table has three columns for the local port, the
remote IP, and the remote port. All of this data is available from the Socket
stored in the connection, so the label provider just needs to look into the
right places and format the data into strings.

connections.ConnectionListLabelProvider

public class ConnectionlListLabelProvider
extends LabelProvider
implements ITablelLabelProvider ({

public String getColumnText (Object element, int columnIndex) {
Connection ¢ = (Connection) element;
switch (columnIndex) {
case 0: return Integer.toString(c.getLocalPort());
case 1: return c.getRemoteAddr () .getHostAddress () ;
case 2: return Integer.toString(c.getRemotePort ());
default:
throw new IllegalArgumentException();

pA corresponding getIcon() method remains empty here. If icons are allocated for
the specific label provider, they must be freed in its dispose () method, which the
viewer calls whenever the widget disappears from the screen.

;)'The base class LabelProvider, or actually its superclass BaseLabelProvider, imple-

ments an observer pattern that enables concrete label providers to notify viewers
about changes in the choice of text or icon. Model changes are usually handled through
the content provider, as seen next.

By separating the concerns of model traversal and the actual display,
JFace gains flexibility. For instance, different viewers might show different
aspects and properties of the same model, so that the same content provider
can be combined with different label providers.

The viewer manages untyped Objects.

“7.4.1

479

»11.1
»12.3

480

Chapter 9 Structuring Applications with Graphical Interfaces

We have found that at this point it is useful to get a quick overview of
the viewer’s mechanisms, so as to better appreciate the respective roles
and the interactions of the viewer, the content provider, and the label
provider. At the same time, these interactions illustrate the concept of
generic mechanisms, which will become fundamental in the area of frame-
works and for providing extensibility.

Fig. 9.8 shows what happens from the point where the application sup-
plies the model until the data shows up on the screen. The input is for-
warded to the content provider, which chops up the overall model into
elements. The viewer passes each of these elements to the label provider
and receives back a string. It then displays that string on the screen. For
deeper structures, the viewer queries children of elements, and again hands
each of these to the label provider, until the structure is exhausted.

(Widget)
setText T@

setInput»{ Viewer ¢ ’i LabelProvider |
@ C AW s ~Z getText
@getEIements‘T ®

ContentProvider

Figure 9.8 The Sequence for Displaying Data Through Viewers

In the end, the viewer’s role is to manage untyped objects belonging to
the application’s model: It keeps references to the model and all elements
as Objects. Whenever it needs to find out more about such an object, it
passes the object to the content or label provider. In this way, the viewer can
implement powerful generic display mechanisms without actually knowing
anything about the application data.

Forward change notifications to the viewer.

We have now set up the display of the initial model. However, the model
changes over the time, and it fires change notifications. Like any adapter
[Fig. 2.10(b) on page 137], the content provider must also translate those
notifications for the benefit of the viewer [Fig. 9.6(b)].

Toward that end, JFace viewers offer generic notification callbacks that
reflect the possible changes in the abstract list or tree model that they
envision in their content provider interface. A Tableviewer, for instance,
has callbacks for additions, insertions, deletions, and updates of single el-
ements. The difference between update () and refresh () is that the first
method locally recomputes the labels in a single table entry, while the latter
indicates structural changes at the element, though it is relevant only for
trees.

9.3 The JFace Layer 481

org.eclipse.jface.viewers.Abstract TableViewer

public void add(Object element)

public void insert (Object element, int position)
public void remove (Object element)

public void update (Object element, String[] properties)
public void refresh (Object element)

Even though these methods are public as a technical necessity, they are not for
general use but are intended for the content provider only. In particular, they do not
add or remove the given elements from the underlying model.

P As a matter of optimization, viewers offer variants of these methods for bulk updates

of several objects passed in an array. For large models, Tableviewer and Treeviewer
also support lazy population of the widget through the swr.vIirTUAL flag passed to the
constructor. In this case, the content provider can implement ILazyContentProvider or
ILazyTreeContentProvider, respectively. The viewer will call the content provider only
for rows that become visible—for instance, by scrolling or unfolding of tree nodes. The
overhead of initially filling the entire widget is avoided.

In the running example, connections can be added to and removed from
the list of current connections. The content provider listens to these changes
and notifies the viewer accordingly. Since the server uses several threads for
the processing of client connections, the content provider must also switch «7.10.1
to the event thread to notify the viewer.

connections.ConnectionListContentProvider.connectionOpened

public void connectionOpened(ConnectionList p, final Connection c¢) {
viewer.getControl () .getDisplay () .asyncExec (new Runnable () {
public void run() {
viewer.add(c);

Swing’s JTable takes a different—and very interesting—approach to these notifica-

tions, which renders the idea of an “adapter” more clearly. Its method setModel () «24.1
accepts any implementation of TableModel, and that model must provide the OBSERVER 42.1
pattern for TableModelListeners. The generic JTable widget merely registers as one
such listener. The JFace perspective, in contrast, is that the content provider is a close
collaborator of a single viewer, which it notifies directly. This approach saves the effort
of implementing the OBSERVER pattern. “«21.4

Viewers provide higher-level services at the application level.

JFace viewers offer more services than just a mapping from application
model to screen display. For instance, they enable the application code to

“7.6

«9.1

«24.1

«9.2.1

«7.1

482

Chapter 9 Structuring Applications with Graphical Interfaces

work almost entirely at the level of the application model. Consequently,
SWT widgets, for example, represent the concept of “selection” by pub-
lishing the indices of selected elements. JFace viewers, in contrast, pub-
lish IstructuredSelection objects, which are basically sets of model el-
ements. Furthermore, viewers do not map elements directly, but perform
preprocessing steps for filtering and sorting. As a final example, they imple-
ment mechanisms for inline editing: When the user clicks “into” a table cell,
the table viewer creates a small overlay containing an application-specific
CellEditor that fills the cell’s screen space but is, in fact, a stand-alone
widget.

Sorting and filtering are interesting in themselves as an instance of model-view sep-

aration: The fact that a user prefers, in certain situations and for certain tasks, to
see only a selection of elements in a particular order, must be dealt with independently
of the core functionality—after all, the next view or the next user may have entirely
different preferences. For instance, Eclipse’s Java Model reflects the structure of the
Java source code. The underlying abstract syntax tree keeps declarations in the order
of their appearance within a class. At the interface level, the user may prefer seeing
only public members or having the members be ordered alphabetically, as seen in the
Package Explorer.

9.3.2 Finishing Model-View-Controller with JFace

JFace viewers already cover much of the MODEL-VIEWER-CONTROLLER
pattern, in that the screen reliably mirrors the state of the application’s
functional core. The only missing aspect is that of controllers, which inter-
pret the raw user input as requests for performing operations on the model.
This will happen in the event-listeners shown in Fig. 9.6.

JFace enables controllers to work on the application model.

Suppose that we wish to implement the button labeled “Close” in Fig. 9.7.
Since the button itself is an SWT widget independent of any viewer, we
attach a listener as usual:

connections.Main.createContents

Button btnClose = new Button(shell, SWT.NONE) ;
btnClose.addSelectionlListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {

handleCloseSelected() ;

}
}) i

The method handleCloseSelected () then relies heavily on support
from JFace. Line 3 retrieves the viewer’s selection, which maps the indices
of rows selected in the table widget to the model elements shown in those
rows. As a result, line 5 can ask for the first (and only) selected element

9.3 The JFace Layer

and be sure to obtain a Connection, because the viewer’s content provider
has delivered instances of only that class. The crucial point now is that
the actual logic for implementing the desired reaction in line 7 remains at
the application level: The model’s Connection objects also offer a method
close () for terminating the TCP connection with the client.

connections.Main

1 protected void handleCloseSelected() {

2 IStructuredSelection s =

3 (IStructuredSelection) connectionsViewer.getSelection();
4 Connection selectedConnection =

5 (Connection) s.getFirstElement () ;

6 if (selectedConnection != null) {

7 selectedConnection.close();

8 }

9}

p The implementation of the Connection’s close method at first seems simple enough:
We simply have to close the underlying TCP connection.

connections.Connection

public void close () throws IOException {
channel.close () ;

}

However, this method finally runs in the event thread, while the server is concurrently
processing client input in background threads. This use case is not supported by the basic
socket API, but only by the asynchronously closeable TCP connections introduced with
the NIO API in Java 1.4. The details are explained in the documentation of the interface
InterruptibleChannel.

Screen updates follow the MVC pattern.

Let us finally reconsider the fundamental reaction cycle of the MODEL-
VIEW-CONTROLLER pattern: The window system delivers events to the
view, which forwards them to the controller, which interprets them as re-
quests for operations on the model, which sends change notifications to the
view, which repaints parts of the data on the screen. So far, we have seen the
first half: SWT delivers the button click to the application’s event-listener,
which serves as a controller and decides that the selected connection should
be closed.

And now something really interesting happens, because the model is
not a simple list, but involves side effects on the underlying TCP con-
nections. Executing close () on the connection goes down to the operation
system, which will declare the connection terminated some time later. This,
in turn, causes the read () method accepting client input (line 4 in the next
code snippet) to return with result “end of stream,” which terminates the
server loop (lines 4-6). As a result, this particular server thread terminates

«9.3.1

«7.10.1
«7.10

«9.2.1

483

«1.3.3

«7.2

E3201
EZl234
E=l222

«l1.3.3
«2.1

484

Chapter 9 Structuring Applications with Graphical Interfaces

(line 10), but not before notifying the ConnectionList about this fact
(line 8).

connections.Server.run

1 public void run() {

2 list.opened(conn) ;

3

4 while (channel.read(buf) != -1) {

5 ... send input back to client as demo
6 }

7

8 list.closed(conn);

9

10 }

Upon receiving this latter signal, the MVC mechanisms kick in to ef-
fect the screen update: The ConnectionListContentProvider observes
the model and translates the incoming connectionClosed () event into a
remove () notification of the table viewer, which removes the corresponding
row from the SWT display. That’s it.

9.3.3 Data Binding

The mechanisms of JFace presented so far make it fairly simple to display
data so that the screen is kept up-to-date when the data changes. How-
ever, the content and label providers have to be programmed by hand, and
changing the data is not supported by the framework at all. The concept
of data binding addresses both concerns. Broadly speaking, data binding
maps the individual properties of beans to widgets such as text fields or
lists. One also says that the properties are bound to the widgets, or more
symmetrically that the property and the widget are bound.

The WindowBuilder includes a graphical tool for creating bindings, so
that data binding makes it simple to bridge the model-view separation by
quickly creating input masks for given model elements. The usage is mostly
intuitive: Select two properties to be bound and click the “bind” button.
We will therefore discuss only the few nonobvious cases.

Many frameworks cover the concept of data binding. For instance, JavaServer Faces

(JSF) allows you to bind input components to model fields declaratively through spe-
cial Expression Language (EL) annotations. Ruby on Rails is famed for its effective way
of creating input masks through simple form helpers. Microsoft’s Windows Presentation
Foundation (WPF) offers an especially comprehensive treatment of data binding.

We will discuss the details of data binding in JFace using the example
of editing an address book, which is essentially a list of contacts (Fig. 9.9).
The AddressBook and its Contact objects are simple Java beans; that
is, their state consists of public properties and they send change notifi-
cations. From top to bottom in Fig. 9.9, we see the following features of

r.(_:_',"@' AddressbookDemo

Title

Contacts

Details

[Devel.opers]
Firstname Lastname Create ... |
Fred Freebody

seen (Goodman
Tom Smith
Claudia Miller
Firstname [Susan]
Lastname [Gmdrnan]
Email [suegood@cooldevelopers.org]

[] important
Last Contacted | 7/6/2014 |

Figure 9.9 Address Book Editor

J9ke] ade4r 9yl €6

q8Y

«9.3.1

“a7.2.2

“«9.1

“«9.1

«24.1

«9.2.1

486

Chapter 9 Structuring Applications with Graphical Interfaces

data binding, ordered by increasing complexity: The address book’s title
property is bound to a text field; its contacts property is a list of Contact
beans shown in a JFace viewer. In a master/detail view, the details of the
currently selected contact are shown in the lower part. Here, the first name,
last name, and email properties of the contact are, again, bound directly
to text fields. The important property holds a Boolean value and demon-
strates the support for different types. Finally, the last contacted property
introduces the challenge of converting between the internal Date property
and the string content of the text field.

pThe JFace data binding framework lives in several plugins, which must be set as

dependencies in the MANIFEST.MF of any plugin using the framework. In the spirit of
model-view separation, those parts not dealing with the user interface reside in org
.eclipse.core.databinding, org.eclipse.core.databinding.beans, and org.eclipse
.core.property. Those connected to the display directly reside in the plugin org.eclipse
.jface.databinding.

9.3.3.1 Basics of Data Binding

The data binding framework is very general and is meant to cover many
possible applications. Fig. 9.10 gives an overview of the elements involved
in one binding. The endpoints, to the far left and right, are the widget and
bean created by the application. The purpose of a binding is to synchronize
the value of selected properties in the respective beans. Bindings are, in
principle, symmetric: They transfer changes from one bean to the other,
and vice versa. Nevertheless, the terminology distinguishes between a model
and the target of a binding, where the target is usually a widget. The figure
also indicates the role of data binding in the general scheme of model-view
separation.

(' IvalueProperty) (IValueProperty)
—— | creates creates —
widget bean
binding
ropert T ropert
property 7 < < property
\), target model \ y,

IObservableValue UpdateS}rategy
view 1 model

Figure 9.10 Overview of JFace Data Binding

To keep the data binding framework independent of the application
objects, these are adapted to the I0bservablevalue interface in the next
code snippet, as indicated by the half-open objects beside the properties
in Fig. 9.10. The adapters enable getting and setting a value, as well as
observing changes, as would be expected from the basic MVC pattern. The

9.3 The JFace Layer

value type is used for consistency checking within the framework, as well as
for accessing the adaptees efficiently by reflection.

org.eclipse.core.databinding.observable.value.lObservableValue

public interface IObservableValue extends IObservable {

public Object getValueType () ;

public Object getValue();

public void setValue (Object value);

public void addvValueChangeListener (
IValueChangeListener listener);

public void removeValueChangelistener (
IValueChangelListener listener);

The I0bservablevalue in this code captures values of atomic types.
There are analogous interfaces I0bservableList, IObservableSet, and
IObservableMap to bind properties holding compound values.

Creating these adapters often involves some analysis, such as looking
up the getter and setter methods for a named property by reflection. The
adapters are therefore usually created by IvalueProperty objects, which
serve as abstract factories. Again, analogous interfaces IListProperty, “1.4.12
ISetProperty, and IMapProperty capture factories for compound value
properties.

org.eclipse.core.databinding.property.value.|ValueProperty

public interface IValueProperty extends IProperty {
public Object getValueType ();
public IObservableValue observe (Object source);
observing parts of the value

We have now discussed enough of the framework to bind the name prop-
erty of an AddressBook in the field model to a text field in the interface.
Lines 1-2 in the next code snippet create an IvalueProperty for the text
property of an SWT widget and use it immediately to create the adapter for
the bookname text field. The code specifies that the property is considered
changed whenever the user leaves the field (event SWT.FocusOut); setting
the event to SWT.Mod1ify updates the model property after every keystroke.
Lines 3—4 proceed analogously for the name property of the AddressBook.
Finally, lines 5-6 create the actual binding.

databinding.AddressBookDemo.initDataBindings

1 IObservableValue observeTextBooknameObserveWidget =

2 WidgetProperties .text (SWT.FocusOut) .observe (bookname) ;
3 IObservableValue nameModelObserveValue =
! BeanProperties.value ("name") .observe (model) ;

5 bindingContext.bindValue (observeTextBooknameObserveWidget,
6 nameModelObserveValue, null, null);

487

488 Chapter 9 Structuring Applications with Graphical Interfaces

p A binding context manages a set of bindings. The two null values in line 6 indicate
that no update strategies (Fig. 9.10) are required.

pThe framework anticipates the possibility of multithreading in the model, which

requires switching to the event dispatch thread at appropriate moments. Each ob-
servable value is said to live in a specific realm. One realm, accessible by sWTObservables.
getRealm(), is associated with the event thread. A default realm can be set with Realm
.runWithDefault (), so that it is usually not necessary to specify a realm explicitly for
individual values.

«7.10.1

9.3.3.2 Master/Detail Views

Fig. 9.9 includes a typical editing scenario: The list contacts is a master list
showing an overview; below this list, several fields give access to the details
of the currently selected list element. The master list itself involves only
binding a property, as seen in the following code snippet. On the viewer

«9.3.1 side, special content and label providers then accomplish the data access
and updates.

databinding.AddressBookDemo.initDataBindings

IObservablelList contactsModelObservelist = BeanProperties
.list ("contacts") .observe (model) ;

contactsViewer.setInput (contactsModelObservelist);

The actual master/detail view is established by a two-step binding of
properties. Lines 3—4 in the next example create a possibly changing value
that tracks the currently selected Contact element as a value: Whenever
the selection changes, the value of the property changes. Building on this,
lines 5-8 create a two-step access path to the first name property: The
observeDetail () call tracks the current Contact and registers as an ob-
server for that contact, so that it also sees its property changes; the value ()
call then delivers an atomic String value for the property. Through these
double observers, this atomic value will change whenever either the selection
or the first name property of the current selection changes.

databinding.AddressBookDemo.initDataBindings

1 I0bservableValue observeTextTxtFirstObserveWidget =

2 WidgetProperties.text (SWT.Modify) .observe (txtFirst);

3 IObservableValue observeSingleSelectionContactsViewer =

4 ViewerProperties.singleSelection() .observe (contactsViewer);
s IObservableValue contactsViewerFirstnameObserveDetailValue =

6 BeanProperties

7 .value (Contact.class, "firstname", String.class)

8 .observeDetail (observeSingleSelectionContactsViewer) ;

9.3 The JFace Layer

9 bindingContext.bindValue (observeTextTxtFirstObserveWidget,
10 contactsViewerFirstnameObserveDetailValue, null, null);

At this point, the usage of the WindowBuilder is somewhat unintuitive, because the

“model” side of the binding involves the JFace-level selection. The two panels shown
here appear on the right-hand, model side of the WindowBuilder’s bindings page. In the
first, one has to select the widgets tree, instead of the beans, in the upper-right corner.
From the table contactsViewer appearing in the second panel, one then chooses part of
selection. The subsequent dialog requests a choice of the selection’s content type and
desired detail field.

I —+,
Properties: B~ e

Model (widgets): this.table.contactsViewer.part of selection

| type Filter text | L] [E]| ‘% single selection
% part of selection

42 IblContacts - "Contacts” =
¥ [table
R contactsViewer

@ multi selection
& Filters
> ' input -

9.3.3.3 Data Conversion and Validation

We finish this section on data binding by discussing the crucial detail of
validation and conversion. The need arises from the fact that the model’s
data is stored in formats optimized for internal processing, while the user
interface offers only generic widgets, so that the data must often be dis-
played and edited in text fields. One example is the last contacted property
of a Contact, which internally is a Date, but which is edited as a text with
a special format (Fig. 9.9).

The basic property binding follows, of course, the master/detail ap-
proach. The new point is the use of update strategies (Fig. 9.10), as il-
lustrated in the next code snippet. Each binding can be characterized by
separate strategies for the two directions of synchronization. Lines 1-5 spec-
ify that the text entered in the interface should be converted to a Date to
be stored in the model, and that this transfer should take place only if the
text is in an acceptable format. The other direction in lines 6-8 is less prob-
lematic, as any Date can be converted to a string for display. Lines 9-11
then create the binding, with the specified update policies.

databinding.AddressBookDemo.initDataBindings

UpdateValueStrategy targetToModelStrategy =

new UpdateValueStrategy();
targetToModelStrategy.setConverter (new StringToDateConverter());
targetToModelStrategy.setAfterGetValidator (

new StringToDateValidator());
UpdateValueStrategy modelToTargetStrategy =

new UpdateValueStrategy();
modelToTargetStrategy.setConverter (new DateToStringConverter());
bindingContext.bindValue (observeTextTxtLastcontactedObserveWidget,

© @ 9 v s W N R

«9.3.3.2

489

«l.5.7

Chapter 9 Structuring Applications with Graphical Interfaces

10 contactsViewerLastContactedObserveDetailValue,
11 targetToModelStrategy, modelToTargetStrategy);

To demonstrate the mechanism, let us create a custom converter, as
specified by the IConverter interface. The method convert () takes a
string. It returns null for the empty string and otherwise parses the string
into a specific format. It treats a parsing failure as an unexpected
occurrence.

databinding.String ToDateConverter

public class StringToDateConverter implements IConverter {
static SimpleDateFormat formatter =
new SimpleDateFormat ("M/d/yyyy");
source and destination types for consistency checking
public Object convert (Object fromObject) {
String txt = ((String) fromObiject).trim();
if (txt.length() == 0)
return null;
try {
return formatter.parse(txt);
} catch (ParseException e) {
throw new IllegalArgumentException (txt, e);

The validator checks whether a particular string matches the applica-
tion’s expectations. In the present case, it is sufficient that the string can
be converted without error, which is checked by attempting the conversion.
In other cases, further restrictions can be suitable.

databinding.StringToDateValidator

public class StringToDateValidator implements IValidator {
public IStatus validate (Object value) {
try {
StringToDateConverter.formatter.parse((String) value);
return Status.OK_STATUS;
} catch (ParseException e) {
return ValidationStatus.error ("Incorrect format");

}

Conversion and validation are specified separately since they often have
to vary independently. Very often, the converted value has to fulfill further
restrictions beyond being convertible, such as a date being within a specified
range. Also, even data that is not constrained by the internal type, such as
an email address stored as a String, must obey restrictions on its form.

p Very often, it is simpler to validate the converted value rather than the raw format.
Update strategies offer setAfterConvertvalidator and setBeforeSetValidator for
this purpose. Both work on the result of conversion. The only difference is that the latter

9.3 The JFace Layer

may not be called in case the update strategy is configured not to update the model at
all (see ValueBinding.doUpdate () for the details).

p The class Multivalidator provides mechanisms for checking cross-field constraints,
such as the end date of some activity being later than its start date.

Conversion and validation touch upon a central aspect of user interfaces—mnamely,
=l the fact that the interface belongs to the system boundary. The boundary has the
special obligation to check all incoming data to avoid corrupting the system’s internal
structures and to prevent malicious attacks. Furthermore, it must convert all data into
the internal formats, to prepare it for efficient processing. Validators therefore do not
simply check that the data is convertible, but also check that the data is acceptable to
the system as a whole. Conversion and validation therefore create a uniform framework
to handle these aspects, and this explains their presence in many of the major interface
toolkits.

Another observation concerns the relation between validation and conversion. Most

&l converters cannot handle all inputs allowed by their expected input types. In other

words, their convert () method has an implicit pre-condition. The role of the validator

is to check that the pre-condition is fulfilled before the framework attempts the actual

conversion. This relation also explains why the example validator refers back to the

converter: It simply ensures a perfect match of the checked condition and the required
condition.

9.3.4 Menus and Actions

We have seen that JFace viewers connect generic SWT widgets such as
lists or tables to an application model [Fig. 9.6(b) on page 473]: The viewer
queries the data structures and maps the data to text and icons within
the widget. It also listens to model changes and updates the corresponding
entries in the widget.

A similar mechanism is used for adding entries to menus and toolbars.
SWT offers only basic MenuItems, which behave like special Buttons and
notify attached listeners when they have been clicked. SWT menu items,
just like other widgets, are passive: While they can show a text and icon,
and can be enabled or disabled, they wait for the application to set these
properties.

To keep this chapter self-contained, the presentation here refers to the
example application MiniXcel, a minimal spreadsheet editor to be intro-
duced in Section 9.4. For now, it is sufficient to understand that at the
core, a SpreadSheetView displays a SpreadSheet model, as would be ex-
pected from the MODEL-VIEW-CONTROLLER pattern.

«1.5.24946

“4.1

“r7.l

«9.2.1

491

492

«]1.8.6

«9.1

E=100 »9.5.1

Chapter 9 Structuring Applications with Graphical Interfaces

Actions represent application-specific operations.

JFace connects SWT menus to application-specific actions, which imple-
ment IAction (shown next). Actions wrap code that can act directly on
the application’s model (lines 6-7). But actions also describe themselves for
display purposes (lines 3-4), and they identify themselves to avoid show-
ing duplicates (line 2). Finally, it is anticipated that an action’s properties
will change, in much the same way that an application’s model changes
(lines 9-12).

org.eclipse.jface.action.|Action

public interface IAction {
public String getId();
public String getText ();
public ImageDescriptor getImageDescriptor();

public void run();

1
2
3
4
5
7 public void runWithEvent (Event event);
8

9

public void addPropertyChangeListener (

10 IPropertyChangelListener listener);
11 public void removePropertyChangeListener (

12 IPropertyChangelListener listener);
13 setters for the properties and further properties

14 }

The concept of an “action” that acts as a self-contained representation of some oper-
ation is virtually universal. One variant of the CoMMAND pattern captures the idea:
Swing has a very similar interface Action, Qt has a Qaction class, and so on.

Contribution items connect menu items to actions.

To connect SWT’s passive menu items to the application’s available ac-
tions, JFace introduces menu managers and contribution items (Fig. 9.11,
upper part). Each menu is complemented by a menu manager that fills
the menu and updates it dynamically when the contributions change. Each
SWT menu item is complemented by a contribution item that manages its
appearance. Initially, it fills the menu item’s text, icon, and enabled state.
Whenever a property of the action changes, the contribution item updates
the menu item correspondingly. In the reverse direction, the contribution
item listens for clicks on the menu item and then invokes the action’s run ()
method (or more precisely, the runwithEvent () method).

Actions are usually shared between different contribution managers.

One detail not shown in Fig. 9.11 is that action objects are independent
of the concrete menu or toolbar where they get displayed. They are not

9.3 The JFace Layer 493

SWT owns Menultem

A ;
text&icon
selected enabled
owns) .
JFace ActionContributionltem)
 getText | A
isEnabled propertyChanged
run
(lAction)

access ss
icati user
Application changes changes

Figure 9.11 Menus and Actions in JFace

simply an elegant way of filling a menu, but rather represent an operation
and thus have a meaning in themselves. Eclipse editors usually store their
actions in a local table, from where they can be handed on to menus and
toolbars. In the example, we use a simple hash map keyed on the action’s
ids.

minixcel.ui.window.MainWindow

private Map<String, IAction> actions =
new HashMap<String, IAction>();

Create the menu manager, then update the SWT widgets.

Once the table holds all actions, a concrete menu can be assembled quickly:

Just fill a menu manager and tell it to update the menu. For instance, the
MiniXcel spreadsheet application has an edit menu with typical undo and »9.4
redo actions, as well as a “clear current cell” action. Lines 1-8 create the
structure of nested menu managers. Lines 9-11 flush that structure into the

visible SWT menu.

minixcel.ui.window.MainWindow.createContents

MenuManager menu = new MenuManager () ;

set up File menu
MenuManager editMenu = new MenuManager ("Edit");
menu.add (editMenu) ;
editMenu.add (actions.get (UndoAction.ID));
editMenu.add (actions.get (RedoAction.ID));
editMenu.add (new Separator ("cellActions"));
editMenu.add (actions.get (ClearCellAction.ID));
shlMinixcel.setMenuBar (menu.createMenuBar (
10 (Decorations)shlMinixcel));

© @ 9 v s W N

menu.updateAll (true);

i

»9.5

ESl174

494

Chapter 9 Structuring Applications with Graphical Interfaces

p The cast to Decorations in line 10 is necessary only because an overloaded method
taking a Shell argument is now deprecated.

Actions are usually wired to some context.

The lower part of Fig. 9.11 highlights another aspect of action objects:
They are self-contained representations of some operation that the user can
invoke through the user interface. The run () method is the entry point;
everything else is encapsulated in the concrete action. This means, however,
that the action will be linked tightly to a special context. In the example,
the action that clears the currently selected cell must certainly find and
access that cell, so it needs a reference to the spreadsheetview. (The
command processor cmdProc is required for undoable operations, as seen
later on.)

minixcel.ui.window.MainWindow

private void createActions () {

actions.put (ClearCellAction.ID,
new ClearCellAction (spreadSheetView, cmdProc));

The same phenomenon of exporting a selection of possible operations
is also seen in Eclipse’s wiring of actions into the global menu bar. There,
again, the actions are created inside an editor component but get connected
to the global menu and toolbar. This larger perspective also addresses the
question of how global menu items are properly linked up to the currently
open editor.

9.4 The MVC Pattern at the Application Level

So far, we have looked at the basic MODEL-VIEW-CONTROLLER pattern
and its implementation in the JFace framework. The examples have been
rather small and perhaps a little contrived, to enable us to focus on the
mechanisms and crucial design constraints. Now it is time to scale the
gained insights to the application level. The question we will pursue is how
model-view separation influences the architecture of the overall product.
Furthermore, we will look at details that need to be considered for this
scaling, such as incremental repainting of the screen.

The running example will be a minimal spreadsheet application Mini-
Xcel (Fig. 9.12). In this application, the user can select a cell in a special
widget displaying the spreadsheet, and can enter a formula into that cell,
possibly referring to other cells. The application is responsible for updating
all dependent cells automatically, as would be expected.

9.4 The MVC Pattern at the Application Level

¥ — 0 MiniXcel

File Edit
[a1+a2]
A |B |c D E
1 35.00
2 7.00
3 f2.00 |
4
5
- -

Figure 9.12 The MiniXcel Application

The application offers enough complexity to explore the points men-
tioned previously. First, the model contains dependencies between cells in
the form of formulas, and the parsing of and computation with formulas
constitutes a nontrivial functionality in itself. At the interface level, we need
a custom-painted widget for the spreadsheet, which must also offer view-
level visual feedback and a selection mechanism to link the spreadsheet to
the input line on top.

9.4.1 Setting up the Application

The overall structure of the application is shown in Fig. 9.13. The Spread
Sheet encapsulates the functional core. It manages cells, which can be ad-
dressed from the outside by usual coordinates such as a2 or B3, as well
as their interdependencies given by the stored formulas. A formula is a
tree-structured COMPOSITE that performs the actual computations. A sim-
ple (shift-reduce) parser transforms the input strings given by the user
into structured formulas. The core point of model-view separation is im-
plemented by making all functionality that is not directly connected to the
user interface completely independent of considerations about the display.

The main window (Fig. 9.12) consists of two parts: the Spreadsheet
View at the bottom and the cel1Editor at the top. These two are coupled
loosely: The spreadsheetView does not assume that there is a single ce11
Editor. Instead, it publishes a generic ISt ructuredSelection containing
the currently selected cel1l model element. When the user presses “enter,”
the cell editor can simply call setFormula on that cell. This has two
effects. First, the dependent cells within the spreadsheet are updated by
reevaluating their formulas. Second, all updated cells will notify the view,
through their surrounding Spreadsheet model.

“«9.1

«23.1

“«9.1

»12.1

«9.3.2

«2.24

495

Chapter 9 Structuring Applications with Graphical Interfaces

496

View

SpreadSheetView] selection (cell)

(ColumnHeader
(RowHeader
(_ MainArea

changes setFormula

Model

SpreadSheet

Parser

Cell

(Formula)

(cCell) -

Figure 9.13 Structure of the MiniXcel Application

9.4 The MVC Pattern at the Application Level

pDespite the visual similarity between Fig. 9.13 and Fig. 9.3, the cellEditor is not

the controller for the spreadsheetview. The CellEditor is a stand-alone widget that,
as we will see, contains a view and a controller, where the controller invokes the set
Formula operation noted in Fig. 9.13.

9.4.2 Defining the Model

We can give here only a very brief overview of the model code and high-
light those aspects that shape the collaboration between user interface and
model. The central element of the model is the SpreadsSheet class. It keeps
a sparse mapping from coordinates to Cells (line 2) and creates cells on
demand as they are requested from the outside (lines 5-12). The model
implements the OBSERVER pattern as usual to enable the view to remain
up-to-date (lines 4, 14-16, 18-20). The class Coordinates merely stores a
row and column of a cell.

minixcel.model.spreadsheet.SpreadSheet

1 public class SpreadSheet {

2 private final HashMap<Coordinates, Cell> cells =

3 new HashMap<Coordinates, Cell>();
4 private final ListenerList listeners = new ListenerList ();
5 public Cell getCell (Coordinates coord) {

6 Cell res = cells.get (coord);

7 if (res == null) {

8 res = new Cell (this, coord);

9 cells.put (coord, res);

10 }

11 return res;

12 }

14 public void addSpreadSheetListener (SpreadSheetListener 1) {
15 listeners.add(l);
16 }

18 void fireCellChanged (Cell cell) {

20 }

p A real-world implementation that scales to hundreds and thousands of rows full of

data would probably create a matrix of cells, rather than a hash map. However, it
must be noted that each cell in the spreadsheet will have to carry additional information,
such as the dependencies due to formulas, so it might be useful to make cells into objects
in any case. Only their organization into the overall spreadsheet would differ.

Application models usually have internal dependencies.

497

498

€221

EZl10
Ezl2

€234

«1.3.3

«9.2.3

Chapter 9 Structuring Applications with Graphical Interfaces

Each cell in the spreadsheet must store the user’s input (line 4 in the
next code snippet) and must be prepared to evaluate that formula quickly
(line 5). Since the view will query the current value rather frequently and
other cells will require it for evaluating their own formulas, it is sensible
to cache that value rather than repeatedly recomputing it (line 6). As fur-
ther basic data, the cell keeps its owner and the position in that owner
(lines 2-3).

pWe have decided to keep the original formula string, because the parsed formula

loses information about parentheses and whitespace. Real-world spreadsheets keep
an intermediate form of tokens (called “parse thing,” or PTG in this context) resulting
from lexing, rather than full parsing. If whitespace is kept, the original representation
can be restored. If the tokens are stored post-order, formula evaluation is quick as well.
A further advantage of this representation is that references can be updated when cell
contents are moved.

The example of spreadsheets also shows that an application model is
rarely as simple as, for instance, a list of Java beans. Usually, the objects
within the model require complex interdependencies and collaborations to
implement the desired functionality. In cells, we store the (few) cross
references introduced by the formula in two lists: dependsOn lists those
cells whose values are required in the formula; dependentOnThis is the
inverse relationship, which is required for propagating updates through the
spreadsheet.

minixcel.model.spreadsheet.Cell

1 public class Cell {

2 final SpreadSheet spreadSheet;

3 private final Coordinates coord;

4 private String formulaString = "";

5 private Formula formula = null;

6 private Value cachedValue = new Value();

7 private final List<Cell> dependsOn = new ArrayList<Cell>();
8 private final List<Cell> dependentOnThis =

9 new ArrayList<Cell>();

10

11

12 }

Clients cannot adequately anticipate the effects of an operation.

One result of the dependencies within the model is that clients, such as
the controllers in the user interface, cannot foresee all the changes that are
effected by an operation they call. As a result, the controller of the MVC
could not reliably notify the view about necessary repainting even without
interference from other controllers. This fact reinforces the crucial design
decision of updating the view by observing the model.

9.4 The MVC Pattern at the Application Level

In the current example, the prototypical modification is setting a new
formula on a cell. The overall approach is straightforward: Clear the old
dependency information, and then set and parse the new input. Afterward,
we can update the new dependencies by asking the formula for its references
and recomputing the current cached value.

minixcel.model.spreadsheet.Cell

1 public void setFormulaString(String formulaString) {

2 clearDependsOn () ;

3 this.formulaString = formulaString;

4 ... special cases such as an empty Iinput string

5 formula = new Formula (spreadSheet.getFormulaFactory (),
6 formulaString);

7 fillDependsOn () ;

check for cycles
9 recomputeValue () ;

The update process of a single cell now triggers updating the dependen-
cies as well: The formula is evaluated and the result is stored.

minixcel.model.spreadsheet.Cell.recomputeValue

private void recomputeValue () {

setCachedValue (new Value (formula.eval (
new SpreadSheetEnv (spreadSheet))));
error handling on evaluation error

The cache value is therefore the “current” value of the cell. Whenever
that changes, two stakeholders must be notified: the dependent cells within
the spreadsheet and the observers outside of the spreadsheet. Both goals
are accomplished in the method setCachedvalue ():

minixcel.model.spreadsheet.Cell

protected void setCachedValue (Value val) {
if (val.equals (cachedValue))
return;
cachedvalue = val;
for (Cell c : dependentOnThis)
c.recomputeValue () ;
spreadSheet.fireCellChanged (this) ;

This brief exposition is sufficient to highlight the most important points
with respect to model-view separation. Check out the online supplement for
further details—for instance, on error handling for syntax errors in formulas
and cyclic dependencies between cells.

499

“a7.8

500

Chapter 9 Structuring Applications with Graphical Interfaces

9.4.3 Incremental Screen Updates

Many applications of model-view separation are essentially simple, with
small models being displayed in small views. Yet, one often comes across
the other extreme. Even a simple text viewer without any formatting must
be careful to repaint only the portion of text determined by the scrollbars,
and from that only the actually changing lines. Otherwise, the scrolling
and editing process will become unbearably slow. The MiniXcel example is
sufficiently complex to include a demonstration of the necessary processes.

Before we delve into the details, Fig. 9.14 gives an overview of the chal-
lenge. Put very briefly, it consists of the fact that even painting on the
screen is event-driven: When a change notification arrives from the model,
one never paints the corresponding screen section immediately. Instead, one
asks to be called back for the job later on. In some more detail, the model
on the left in Fig. 9.14 sends out some change notification to its observers.
The view must then determine where it has painted the modified data.
That area of the screen is then considered “damaged” and is reported to
the window system. The window system gathers such damaged areas, sub-
tracts any parts that are not visible anyway, coalesces adjacent areas, and
maybe performs some other optimizations. In the end, it comes back to
the view requesting a certain area to be repainted. At this point, the view
determines the model elements overlapping this area and displays them on
the screen.

change area : area paint
T

detect map model optimize map area
change element paint area to model
to screen element

Figure 9.14 Process of Incremental Screen Updates

A further reason for this rather complex procedure, besides the possibil-
ity of optimizations, is that other events, such as the moving and resizing
of windows, can also require repainting, so that the right half of Fig. 9.14
would be necessary in any case. The extra effort of mapping model elements
to screen areas in the left half is repaid by liberating the applications of
optimizing the painting itself.

Let us track the process in Fig. 9.14 from left to right, using the concrete
example of the MiniXcel SpreadSheetview. At the beginning, the view
receives a change notification from the model. If the change concerns a
single cell, that cell has to be repainted.

minixcel.ui.spreadsheet.SpreadSheetView.spreadSheetChanged

public void spreadSheetChanged (SpreadSheetChangeEvent evt) {
switch (evt.type) {
case CELL:
redraw (evt.cell.getCoordinates());
break;

9.4 The MVC Pattern at the Application Level

It will turn out later that cells need to be repainted on different oc-
casions, such as to indicate selection or mouse hovering. We therefore im-
plement the logic in a helper method, shown next. The method redraw ()
called on the mainArea of the view is provided by SWT and reports the
area as damaged.

minixcel.ui.spreadsheet.SpreadSheetView

public void redraw(Coordinates coords) {
Rectangle r = getCellBounds (coords);
mainArea.redraw(r.x, r.y, r.width, r.height, false);

In a real implementation, the method getCellBounds () would determine
the coordinates by the sizes of the preceding columns and rows. To keep
the example simple, all columns have the same width and all rows have the
same height in MiniXcel. This finishes the left half of Fig. 9.14. Now it is
the window system’s turn to do some work.

minixcel.ui.spreadsheet.SpreadSheetView

protected Rectangle getCellBounds (Coordinates coords) {
int x = (coords.col - viewPortColumn) * COL_WIDTH;
int y = (coords.row - viewPortRow) = ROW_HEIGHT;
return new Rectangle(x, y, COL_WIDTH, ROW_HEIGHT) ;

In the right half of Fig. 9.14, the MainArea is handed a paint request
for a given rectangular area on the screen, in the form of a PaintEvent
passed to the method shown next. This method determines the range of
cells touched by the area (line 3). Then, it paints all cells in the area in the
nested loops in lines 7 and 11. As an optimization, it does not recompute
the area covered by each cell, as done for the first cell in line 5. Instead,
it moves that area incrementally, using cells that are adjacent in the view
(lines 9, 14, 16).

minixcel.ui.spreadsheet.MainArea.paintControl

1 public void paintControl (PaintEvent e) {

2 ... prepare colors

3 Rectangle cells = view.computeCellsForArea(e.x, e.y, e.width,
! e.height);

5 Rectangle topLeft = view.computeAreaForCell (cells.x, cells.y);
6 Rectangle cellArea = Geometry.copy (toplLeft);

7 for (int row = cells.y; row < cells.y + cells.height; row++) {
8 cellArea.height = SpreadSheetView.ROW_HEIGHT;

9 cellArea.x = toplLeft.x;

10 cellArea.width = SpreadSheetView.COL_WIDTH;

11 for (int col = cells.x;

12 col < cells.x + cells.width; col++) {

13 paintCell (col, row, cellArea, gcC);

14 cellArea.x += cellArea.width;

501

»9.4.4
«1.484145

502

N11.1M11.2

«2.1.3

€9.2.5

«9.3.2

Chapter 9 Structuring Applications with Graphical Interfaces

15 }
16 cellArea.y += cellArea.height;
17 }

p Note that the MainArea delegates the actual computation of cell areas in lines 3-5 to

its owner, the spreadsheetview. Since that object was responsible for mapping cells
to areas, it should also be responsible for the inverse computations, to ensure that any
necessary adaptations will be performed consistently to both.

The actual painting code in paintCell () is then straightforward, if
somewhat tedious. It has to take into account not only the cell content,
but also the possible selection of the cell and a mouse cursor being inside,
both of which concern view-level logic treated in the next section. Leaving
all of that aside, the core of the method determines the current cell value,
formats it as a string, and paints that string onto the screen (avoiding the
creation of yet more empty cells):

minixcel.ui.spreadsheet.MainArea

private void paintCell (int col, int row,
Rectangle cellArea, GC gc) {
if (view.model.hasCell (new Coordinates (col, row))) {
cell = view.model.getCell (new Coordinates (col, row));
Value val = cell.getValue();
String displayText;
displayText = String.format ("%$.2f", val.asDouble());
gc.drawString(displayText, cellArea.x, cellArea.y, true);

This final painting step finishes the update process shown in Fig. 9.14.
In summary, incremental repainting achieves efficiency in user interface pro-
gramming: The view receives detailed change notifications, via the “push”
variant of the OBSERVER pattern, which it translates to minimal damaged
areas on the screen, which get optimized by the window system, before the
view repaints just the model elements actually touched by those areas.

9.4.4 View-Level Logic

We have seen in the discussion of the MVC pattern that widgets usually
include behavior such as visual feedback that is independent of the model
itself. MiniXcel provides two examples: selection of cells and feedback about
the cell under the mouse. We include them in the discussion since this kind
of behavior must be treated with the same rigor as the model: Users consider
only applications that react consistently and immediately as trustworthy.

Treat selection as view-level state.

Most widgets encompass some form of selection. For instance, tables, lists,
and trees allow users to select rows, which JFace maps to the underlying

9.4 The MVC Pattern at the Application Level

model element rendered in these rows. The interesting point about selection
is that it introduces view-level state, which is orthogonal to the application’s
core model-level state.

We will make our SpreadSheetView a good citizen of the community by
implementing ISelectionProvider. That interface specifies that clients
can query the current selection, set the current selection (with appropri-
ate elements), and listen for changes in the selection. The last capability
will also enable us to connect the entry field for a cell’s content to the
spreadsheet (Fig. 9.13). For simplicity, we support only single selection and
introduce a corresponding field into the SpreadSheetView.

minixcel.ui.spreadsheet.SpreadSheetView

Cell curSelection;

The result of querying the current selection is a generic ISelection. View-
ers that map model elements to screen elements, such as tables and trees,
usually return a more specific IStructuredSelection containing these
elements. We do the same here with the single selected cell.

minixcel.ui.spreadsheet.SpreadSheetView.getSelection

public ISelection getSelection() {
if (curSelection != null)
return new StructuredSelection (curSelection);
else
return StructuredSelection.EMPTY;

Since the selection must be broadcast to observers and must be mirrored
on the screen, we introduce a private setter for the field.

minixcel.ui.spreadsheet.SpreadSheetView

private void setSelectedCell (Cell cell) {
if (curSelection != cell) {
Cell oldSelection = curSelection;
curSelection = cell;
fireSelectionChanged() ;
update screen from oldSelection to curSelection

The remainder of the implementation of the OBSERVER pattern for se- 2.1
lection is straightforward. However, its presence reemphasizes the role of
selection as proper view-level state.

Visual feedback introduces internal state.

The fact that painting is event-driven, so that a widget cannot paint visual «7.8
feedback immediately, means that the widget must store the desired feed-

back as private state, determine the affected screen regions, and render the
feedback in the callback (Fig. 9.14).

503

«9.4.2

504

Chapter 9 Structuring Applications with Graphical Interfaces

For MiniXcel, we wish to highlight the cell under the mouse cursor, so
that users know which cell they are targeting in case they click to select it.
The required state is a simple reference. However, since the state is purely
view-level, we are content with storing its coordinates; otherwise, moving
over a yet unused cell would force the model to insert an empty Cel1 object.

minixcel.ui.spreadsheet.SpreadSheetView

Coordinates curCellUnderMouse;

Setting a new highlight is then similar to setting a new selected cell:

minixcel.ui.spreadsheet.SpreadSheetView

protected void setCellUnderMouse (Coordinates newCell) {

if (!newCell.equals (curCellUnderMouse)) {
Coordinates o0ldCellUnderMouse = curCellUnderMouse;
curCellUnderMouse = newCell;

update screen from old to new

The desired reactions to mouse movements and clicks are implemented
by the following simple listener. The computeCellAt () method returns
the cell’s coordinates, also taking into account the current scrolling posi-
tion. While selection then requires a real cel1l object from the model, the
targeting feedback remains at the view level.

minixcel.ui.spreadsheet.SpreadSheetView.mouseMove

public void mouseMove (MouseEvent e) {
setCellUnderMouse (computeCellAt (e.x, e.y));
}
public void mouseDown (MouseEvent e) {
setSelectedCell (model.getCell (computeCellAt (e.x, e.Vy)));

The painting event handler merges the visual and model states.

The technical core of visual feedback and view-level state, as shown pre-
viously, is not very different from the model-level state. When painting
the widget, we have to merge the model- and view-level states into one
consistent overall appearance. The following method achieves this by first
painting the cell’s content (lines 4-5) and overlaying this with a frame,
which is either a selection indication (lines 9-12), the targeting highlight
(lines 13-17), or the usual cell frame (lines 19-23).

minixcel.ui.spreadsheet.MainArea

private void paintCell (int col, int row,
Rectangle cellArea, GC gc) {

displayText = String.format ("%$.2f", val.asDouble());

1
2
3
4
5 gc.drawString (displayText, cellArea.x, cellArea.y, true);

9.5 Undo/Redo 505

6 Rectangle frame = Geometry.copy (cellArea);

7 frame.width-;

8 frame.height—;

9 if (view.curSelection != null && view.curSelection == cell) {
10 gc.setForeground (display.getSystemColor (

11 SWT.COLOR_DARK_BLUE)) ;

12 gc.drawRectangle (frame) ;

13 } else if (view.curCellUnderMouse != null

14 && view.curCellUnderMouse.col == col

15 && view.curCellUnderMouse.row == row) {

16 gc.setForeground (display.getSystemColor (SWT.COLOR_BLACK)) ;
17 gc.drawRectangle (frame) ;

18 } else {

19 gc.setForeground (display.getSystemColor (SWT.COLOR_GRAY)) ;
20 int bot = frame.y + frame.height;

21 int right = frame.x + frame.width;

22 gc.drawline (right, frame.y, right, bot);

23 gc.drawlLine (frame.x, bot, right, bot);

According to this painting routine, the view-level state is always con-
tained within the cells to which it refers. It is therefore sufficient to repaint
these affected cells when the state changes. For the currently selected cell,
the code is shown here. For the current cell under the mouse, it is analogous.

minixcel.ui.spreadsheet.SpreadSheetView

private void setSelectedCell (Cell cell) {

if (curSelection != cell) {
if (oldSelection != null)
redraw (oldSelection.getCoordinates());
if (curSelection != null)
redraw (curSelection.getCoordinates());

}

This code is made efficient through the incremental painting pipeline shown
in Fig. 9.14 on page 500 and implemented in the code fragments shown
earlier. Because the pipeline is geared toward painting the minimal neces-
sary number of cells, it can also be used to paint single cells reliably and
efficiently.

9.5 Undo/Redo

Users make mistakes all the time, especially with highly developed and
optimized user interfaces, where small graphical gestures have powerful
effects. Most of the time, they realize their mistakes immediately after-
ward, because the screen gets updated with the new application state and «453
the result does not match their expectations. A fundamental requirement
for any modern application is the ability to cancel operations immediately
through an “undo” action and to “redo” them if it turns out that the effect

“ll

«9.4.2

E=100

506

Chapter 9 Structuring Applications with Graphical Interfaces

was desired after all. This section discusses the established technique for
solving this challenge: The application maintains a list of incremental and
undoable changes to the model. We first consider a minimal version to high-
light the technique, then we briefly examine various implementations within
the Eclipse platform to get an overview of practical issues involved.

9.5.1 The Command Pattern

The fundamental obstacle for undoing editing operations is, of course, the
stateful nature of objects: Once existing data has been overwritten, it can-
not be restored. For instance, the Cel1Editor in the spreadsheet applica-
tion (at the top of Fig. 9.12 on page 495) enables the user to enter the new
formula or value for the selected cell. When the user presses “enter,” the
new formula gets set on the model, as shown in the next code snippet. The
model automatically updates the dependent cells. After executing this code,
the previous formula is irretrievably lost and it is not possible to “undo”
the operation.

minixcel.ui.celledit.CellEditor

protected void putFormula() {
if (curCell != null) {
curCell.setFormulaString (txtFormula.getText ());

}

To implement undo/redo, the overall goal is to create a conceptual his-
tory of operations, as shown in Fig. 9.15. At each point in time, the current
model state is the result of executing a sequence of operations. These oper-
ations can be undone, with the effect that the model reverts to a previous
state. Operations that have been undone become redoable, so that later
model states can be reached again if necessary.

current model state

DOODEOD

undoable redoable
operations operations

Figure 9.15 History for Undo/Redo

Controllers delegate the invocation of operations to Command objects.

To implement undo/redo, one modifies the MODEL-VIEW-CONTROLLER
pattern from Fig. 9.3 (page 454) in one tiny detail into the version shown
in Fig. 9.16: The controller no longer invokes model operations directly, but
creates Command objects that invoke the operations.

This central insight is captured by the COMMAND pattern.

9.5 Undo/Redo

[0
[&]
€ [window] events events
%, system controller
o change create
2 notifications command
@ invoke
o o operations
a —
o
39

Figure 9.16 MVC with Undoable Operations

PATTERN: COMMAND

If you need undoable operations, or need to log or store operations, en-
capsulate them as objects with execute () and undo () methods.

1.

Define an interface Command with methods execute (), undo (),
and redo ().
. Provide an abstract base class defining redo() as a call to

execute ().

Define a command class, implementing the Command interface, for
each operation on the model. Store all necessary parameters as
fields in the Command object. This includes in particular references
to the target objects that the operation works with.

. Let each command’s execute () method invoke methods on the

model to perform the operation. Before that, let it store the state
it destroys in fields inside the command.

Let each command’s undo () method revert the change to the model
using the stored previous state.

We will now explore the details of this concept and the implementa-
tion at the example of the spreadsheet editor. Steps 1 and 2, and their
motivation, are deferred to Section 9.5.2.

Let the commands capture incremental state changes.

The central point of the pattern is that commands must capture enough of
the previous model state to be able to restore it. In the example of setting
the formula in a spreadsheet cell, we just have to keep the cell’s previous
formula. In the code snippet that follows, line 4 sets the new formula, but
only after saving the old value in line 3. In this way, the operation can be
undone in line 7.

507

«4.1

508

Chapter 9 Structuring Applications with Graphical Interfaces

minixcel.commands.SetCellFormulaCommand

1 public void execute() {

2 Cell ¢ = model.getCell (coordinates);

3 oldFormulaString = c.getFormulaString();
4 c.setFormulaString (formulaString) ;

5}
s public void undo () {
7 model.getCell (coordinates) .setFormulaString (oldFormulaString);

s }

Making each operation into a separate command object then has the
advantage of creating a space for that additional data. In the current ex-
ample, it consists of a single field oldFormulaString, but more may be
required for more complex operations.

It is important for efficiency to keep an incremental record of the changed data—that

is, to store only those data items that are actually necessary for restoring the model
to the previous state. For instance, when deleting a (small) part of a text document in
a DeleteTextCommand, you should keep only the deleted text, not the entire document.

Do not fetch the old state already in the command’s constructor. At first glance, the

difference seems negligible, because one usually creates a command and executes it
immediately afterward (by passing it to the command processor, as seen in Section 9.5.2).
However, when composing commands, as seen later in this section, other commands may
actually intervene between the construction and the execution of a command, so that
the data stored for the later undo is actually wrong. The only reliable technique is to
fetch the old state in the execute () method, just before actually changing the state.

Thinking in terms of assertions is the crucial trick at this point: If you want to

5 establish, in the example, that “oldFormulastring holds the content seen before

setting the new formula,” the only reliable way of achieving this is to actually look up
that string right before setting the new one.

Introduce a CompoundCommand to make the approach scalable.

Very often, one operation from the user’s perspective requires a series of
method invocations on the model. To achieve this effectively, it is useful
to introduce a CompoundCommand, which maintains a list of commands and
executes and undoes them as suggested by the concept of a history.

minixcel.commands.CompoundCommand

public class CompoundCommand implements Command {
private List<Command> commands;

public void execute() {
for (int i = 0; i != commands.size(); i++) {

9.5 Undo/Redo

commands.get (i) .execute () ;
}
}
public void undo () {
for (int i = commands.size() - 1; 1 >= 0; 1i--) {
commands.get (1) .undo () ;

}

The overall effort of implementing undo/redo then becomes manage-
able: One has to go through writing a command class for every elementary
operation offered by the model once, but afterward the operations required
by the user interface can be composed almost as effectively as writing a
sequence of method calls.

The method redo () must leave exactly the same state as execute ().

Commands usually come with a separate method redo () that is invoked
after undo () and must reexecute the command’s target operation. More
precisely, this method must leave the model in exactly the same state as
the original execute () did, because the later operations in the history
(Fig. 9.15) may depend on the details of that state.

In the current case of setting a spreadsheet cell, the execute () method
is so simple that redo () can behave exactly the same way:

minixcel.commands.SetCellFormulaCommand.redo

public void redo() {
execute () ;

}

In some situations, however, redo () may differ from execute () and
will then require a separate implementation:

e If execute () creates new objects and stores them in the model, then
redo () must store exactly the same objects, rather than creating
new ones, because later operations may contain references to the new
objects so as to access or modify them.

e If execute () accesses some external state, such as the clipboard, a
file, or some data from another editor, which may not be governed
by the same history of commands, then that state must be stored,
because it might change between execute () and redo ().

e Similarly, if execute () makes decisions based on some external state,
that state—or better still the decision—must be stored and used in
the redo operation.

o If execute() asks the user, through dialogs, for more input or a
decision, then that input or decision must be stored as well.

509

«2.2.1

«41

510

Chapter 9 Structuring Applications with Graphical Interfaces

Again, the COMMAND offers just the space where such additional informa-
tion is stored easily.

Make a command a self-contained description of an operation.

To be effective, commands must store internally all data necessary for ex-
ecuting the intended operation. Obviously, this includes the parameters
passed to the invoked method. It also includes any target objects that the
operation works on. In the example, we have to store the spreadsheet it-
self, the cell to be modified, and the formula to be stored in the cell. For
simplicity, we keep the coordinates of the cell, not the Cell object itself.

minixcel.commands.SetCellFormulaCommand

public class SetCellFormulaCommand implements Command {

private SpreadSheet model;

private Coordinates coordinates;

private String formulaString;

private String oldFormulaString;

public SetCellFormulaCommand (SpreadSheet model,
Coordinates coordinates,
String formulaString) {

9 Alternatively, one could have said that the command is not about Spreadsheets at
At all, but about single cells, which may happen to be contained in a SpreadSheet.
Then, the first two fields would be replaced by a single field cell cell, with a change
to the constructor to match.

Be sure to make undo () revert the model state exactly.

One challenge in defining the commands’ methods is that they must match
up exactly: Invoking execute () and then undo () must leave the model in
exactly the same state as it was at the beginning. The reason is seen in
Fig. 9.15 on page 506: Each operation in the sequence in principle depends
on the model state that it has found when it was first executed. Calling
undo () must then reconstruct that model state, because the later redo ()
will depend on the details. A DeleteTextCommand, for instance, may con-
tain the offset and length of the deletion, and it would be disastrous if
undoing and redoing a few operations were to invalidate that text range.

The necessary precision can be obtained by thinking in terms of assertions: The con-
&l tracts of the invoked operations specify their effects precisely, so that the command
can gauge which parts of the state need to be stored for the undo.

9.5 Undo/Redo

Do not neglect possible internal dependencies of the model.

Let us reconsider the example code from the perspective of a precise undo ()
method. The execute () method sets a given cell. Ostensibly, it just changes
a single property in line 3 in the next code snippet. The undo () method
reverts that property to oldFormulaString, so that everything should be
fine.

minixcel.commands.SetCellFormulaCommand.execute

1 Cell ¢ = model.getCell (coordinates);
2 oldFormulaString = c.getFormulaString();

3 c.setFormulaString (formulaString);

Two effects may cause the internal model state to deviate from the original. «9.4.2
First, the call to getCell () in line 1 might actually create the cell object

in the data structure. Second, and perhaps more importantly, the call in

line 3 implicitly updates all dependent cells.

However, both points are irrelevant in regard to the overall goal of keep-
ing the undo/redo history intact. Clients cannot distinguish whether a ce11
they receive from getCell () has just been created or had already existed.
The model treats the sparse representation of the spreadsheet content as a
strictly internal issue. The dependencies between cells do not cause prob-
lems either, because the reevaluation of formulae is strictly deterministic, so
that setting the old formula also resets all dependent cells to their previous
values.

This explanation rests on the idea of the externally visible state, which is captured €4.1 €4.2.2

B in an object’s model fields: The command stores all relevant public state before
the modification and restores that state to undo the operations. Since clients cannot
actually observe any internal difference between two states that are indistinguishable
from an external perspective, their behavior cannot depend on the difference either.

pOne snag in the example concerns the external format of the spreadsheet written

to disk: The model may choose to write out the cell created in line 1 of the pre-
viously given execute () method, even if that cell has been emptied out by undo () in
the meantime. In the present case, one can argue that any programmatic access, after
reloading the spreadsheet document, can still not observe the difference. In other cases,
where the external format is the really important thing, such differences may not be

511

acceptable. As an example, Eclipse’s editor for OSGi bundles is really just a front-end 112.3.3 WA.1.2

for the underlying configuration files such as plugin.xml and MANIFEST.MF. Adding some
extension and then undoing that addition should leave the file structure untouched.

Java’s Swing framework introduces an interesting alternative perspective on un-
do/redo, which already integrates the possible necessity of tracking changes to the
model’s internals. Rather than requiring commands to store the previous state, the model

E=100

E=100

512

Chapter 9 Structuring Applications with Graphical Interfaces

itself sends out UndoableEdit notifications upon any change. These notifications contain
sufficient internal information to undo the change and offer public undo () and redo ()
methods. For a typical example, see Swing’s HTMLDocument. Clients, such as editors, have
to track only these notifications, using the provided UndoManager.

Use mementos to encapsulate internal state, but only if really necessary.

In some rare cases, the internal state is so complex that you would rather
not rely on all effects being reliably undone when resetting the public state
to the previous value. In particular, if the internal dependencies are non-
deterministic, or may become nondeterministic in the future, some further
measures have to be taken. We mention the idea only very briefly and refer
you to the literature for the details.

PATTERN: MEMENTO

If clients must store snapshots of the internal state for later reference,
package those snapshots into impenetrable Memento objects.

Define a public Memento class with only private fields and no public
accessors as a nested class inside the model. The private fields hold copies
of particular state elements from the model. Although clients can han-
dle such objects—the pattern says they are Caretakers—they can never
inspect the internal state wrapped up in the memento objects. For the
Caretakers, introduce a method createMemento () that captures the cur-
rent state and a method setMemento () to revert to that state.

Fig. 9.17 illustrates the idea: The application model has some complex
internal state. It also offers public methods for copying out some of the state,
but that state remains hidden inside the memento object, as indicated by
the double lines. Further public methods enable the clients to restore old
states by passing the memento back to the model. As suggested in the
COMMAND pattern, it is usually sensible to keep only incremental updates
inside the mementos.

memento model

Figure 9.17 Idea of the Memento Pattern

Do not introduce MEMENTO without good reasons. The pattern is rather disruptive
to the model’s implementation, because any operation must track all changes it

9.5 Undo/Redo

makes in a memento, which is both complex and possibly inefficient. For an example
of such overhead, you might want to look at Swing’s HTMLDocument class. Conceptually,
one can also argue that the pattern partially violates model-view separation, because
view-level requirements infiltrate the model’s definition. As a benefit, the availability of
the extra information might make undo/redo much more efficient.

9.5.2 The Command Processor Pattern

We have now finished examining the core of undo/redo: Any operation on
the model is represented as a Command object, and that object is respon-
sible for keeping enough of the previous model state for restoring that state
later on. It remains, however, to manage the overall sequence of commands
executed on the model. As Fig. 9.15 (on page 506) has clarified, each com-
mand in the overall history implicitly assumes that all previous commands
have executed properly so that it can perform its own operation. The CoMm-
MAND PROCESSOR pattern handles exactly this new aspect.

PATTERN: COMMAND PROCESSOR

If you introduce COMMAND for undo/redo, also centralize the execution
and reversal of the operations that they represent. The Controllers, or
other parts wanting to interact with the model, create Commands and
pass them to a CommandProcessor. The CommandProcessor alone de-
cides about and keeps track of the proper order of calls to the Commands’
methods.

1. Maintain the command history in fields (Fig. 9.15).
2. Offer public execute (Command), undo (), and redo () methods.

3. Implement the OBSERVER pattern for history changes.

As a preliminary prerequisite to introducing such a command proces-
sor, all commands must have a uniform structure. As already envisaged in
the COMMAND pattern, we introduce an interface to capture the available
methods. Since redo () in the majority of cases is the same as execute (), it
is useful to have an abstract base class where redo () just calls execute ().

minixcel.commands.Command

public interface Command {
void execute();
void undo () ;
void redo();

The command processor can then implement the history from Fig. 9.15
in the form of two stacks of commands. We also lay the foundation for the
OBSERVER pattern.

«9.5.1

Esls59

«95.1

«3.14

513

«9.15

»9.54

«2.1

514

Chapter 9 Structuring Applications with Graphical Interfaces

minixcel.commands.CommandProcessor

public class CommandProcessor {
private Stack<Command> undoList;
private Stack<Command> redoList;
private ListenerList listeners = new ListenerList ();

Associate each model with a unique command processor.

The nature of a command history implies that no modifications must ever
circumvent the mechanism: If the current model state changes by a di-
rect invocation of model methods, the undoable commands as well as the
redoable commands may fail because they originally executed in different
situations. For instance, when one deletes some text in a text document di-
rectly, then any command storing the start and length of a character range
may suddenly find that it is using illegal positions.

It is therefore necessary to create a (or to choose an existing) unique
command processor that manages all changes to a given model. One com-
mand processor may, of course, manage several models at once to enable
operations that work across model boundaries.

Channel all operations on the model through its command processor.

Whenever the user, or some part of the system, wishes to work with the
model, it will create a command object and pass it to the command pro-
cessor. In the MiniXcel example, the Cel1Editor enables the user to in-
put a new formula for the selected cell by creating a SetCellFormula
Command.

minixcel.ui.celledit. CellEditor

protected void putFormula () {
if (curCell != null) {
cmdProc.execute (new SetCellFormulaCommand (getCurSheet (),
curCell.getCoordinates (), txtFormula.getText()));

The command processor’s execute () method executes the given com-
mand (line 3 in the next code snippet). However, because it is responsible
for managing all command executions, it does some more bookkeeping.
Since the new command changes the model state, all previously redoable
commands become invalid (line 2), and the new command becomes un-
doable (line 4). Finally, the command processor is observable and sends out
commandHistoryChanged messages (line 5), for reasons shown in a minute.

minixcel.commands.CommandProcessor

1 public void execute (Command cmd) {
2 redoList.clear();

9.5 Undo/Redo 515

cmd.execute () ;
undoList.add (cmd) ;
fireCommandHistoryChanged() ;

o osow

o

Undo and redo are services offered by the command processor.

Of course, the overall undo/redo functionality is not itself implemented
in the form of commands, but rather resides in the command processor.
Its undo () method must be called only if there is, indeed, an undoable
command. The method then moves that command to the redoable stack
and calls its undo () method. Finally, it notifies the observers.

minixcel.commands.CommandProcessor

public void undo () {
Assert.isTrue (!undolList.isEmpty());
Command cmd = undoList.pop();
cmd.undo () ;
redoList.push (cmd) ;
fireCommandHistoryChanged () ;

The user triggers undo usually through a toolbar button or menu item.
These should be disabled if no command can currently be undone. The
JFace method of achieving this is to create an Action that listens for «9.3.4
state changes. In the current example, the base class CommandProcessor
Action already implements this mechanism in a template method and calls «1.4.9
checkEnabled () whenever the command history has changed. The action’s
run () method does the obvious thing.

minixcel.commands.UndoAction

public class UndoAction extends CommandProcessorAction {
public static final String ID = "undo";
public UndoAction (CommandProcessor cmdProc) {
super ("Undo", cmdProc);
setId(ID);
}
public void run() {
cmdProc.undo () ;
}
protected boolean checkEnabled() {
return cmdProc.canUndo () ;
}
}

The implementation of a corresponding RedoAction is analogous.

9.5.3 The Effort of Undo/Redo

After finishing the standard mechanisms for implementing undo/redo, it is
useful to pause briefly and consider the overall effort involved. Although in

»9.5.4

«32.1
E=235

EZl214

«9.5.1

«9.1

»9.5.2

516

Chapter 9 Structuring Applications with Graphical Interfaces

the end there will be no alternative to going through with it to satisfy the
users, it is best to maintain a good overview so as not to underestimate the
effort, but also to look actively for supporting infrastructure.

All serious UI frameworks come with undo/redo infrastructure.

The first observation is that the overall mechanisms are fairly rigid and
will reoccur whenever undo/redo is required: Commands capture and re-
vert changes, and some CommandProcessor keeps track of all executed
Commands. The interaction between the two is limited to generic execute (),
undo (), and redo () methods, probably together with some similarly stan-
dard extensions.

Many frameworks and libraries provide variants of this scheme, and
one then simply has to create new types of commands for the application-
specific models. For instance, the Eclipse Modeling Framework defines a
Command interface and a BasicCommandStack command processor; the
Graphical Editing Framework defines an abstract class Command and a
CommandStack command processor; and Eclipse’s core runtime defines an
interface IUndoableOperation for commands and a class Default
OperationHistory as a command processor.

Create commands for atomic operations, then build CompoundCommands.

When using command processors, any operation on the model must be
wrapped in a command at some point. However, writing a new command
class for every single task that the user performs in the user interface simply
does not scale. It is better to create a set of basic commands for the single
operations offered by the model and to combine these as necessary using a
CompoundCommand, which will also be available in any framework.

Write Commands at the model level.

A second concern is to keep the command definitions as independent of
the concrete user interface as possible. When modifying or porting the
user interface, as enabled by model-view separation, the effort spent on
more specific commands may be lost. At the same time, commands and the
command processor are solely concerned with the model, and not with the
user interface, so that they can be implemented at the model level.

-7 In contrast, undo/redo is an interface-level concern, so one might argue that com-
¢ mands should be defined in the interface-level components. Both alternatives can be
found in the Eclipse platform: EMF provides generic commands on the models and in the
model-level package org.eclipse.emf.common.command, while the IDE places workspace
operations in org.eclipse.ui.ide.undo.

Many model-level frameworks provide atomic operations as commands.

9.5 Undo/Redo

Many libraries and frameworks are, of course, aware that professional appli-
cations require undo/redo. For instance, Eclipse’s resources come equipped
with commands to create, copy, move, and delete resources. The Eclipse
Modeling Framework provides modifications of bean properties of general
EObjects, such as those created from a specific EMF model.

9.5.4 Undo/Redo in the Real World

So far, everything has been rather straightforward and to the point: While
executing a command, keep enough data to enable reverting the change; to
undo a command, play back that data. In real-world applications, things
become somewhat more complex because side-conditions and special cases
must be observed. These intricacies also explain why one cannot give a
single implementation that covers all applications. We will look at three
examples from the Eclipse platform: GEF, EMF, and the core platform. In
each case, it is sufficient to analyze the various definitions of the command,
since the command processors follow.

The Graphical Editing Framework provides powerful abstractions and
mechanisms for creating general drawing editors, in the form of editors that
are not limited to standard widgets for displaying the model but create truly
graphical representations. Its Command class defines the three basic methods
execute (), undo (), and redo () . The first practical extension is the 1abel
property, which is used for indicating the nature of the change in undo and
redo menu items. The remaining methods are discussed subsequently.

org.eclipse.gef.commands.Command

1 public abstract class Command {
2 public void execute()

3 public void undo ()

4 public void redo ()

5 public String getLabel ()

6 public void setLabel (String label)
;

8 }

Test the applicability of commands before execute () and undo ().

One detail about commands not yet discussed is that the execute(),
undo (), and redo () methods do not declare any thrown exceptions. This
is not a careless omission, but a conceptually necessary restriction following
from the overall approach: Commands are executed and undone as atomic
steps in a history and they must execute either completely or not at all—any
model left in a state “in between” can never be repaired, in particular not
by calling undo () . In short, commands are best understood as transactions
on the model.

Practical frameworks therefore add methods canExecute () and can
Undo () that are called before the respective methods are invoked. The

E=l235

E=l214

“r.l

“«l1.3.3

E=ls6

517

«4.1
“€6.4.1

«4.2

518

Chapter 9 Structuring Applications with Graphical Interfaces

command must return t rue only if these methods can run through without
faults immediately afterwards.

org.eclipse.gef.commands.Command

public boolean canExecute ()
public boolean canUndo ()

pYou may rightly ask whether there should not be a canrRedo() as well. However,
since execute () and redo () must essentially perform the same operation, the latter
is covered by canExecute () as well. An exception is seen and explained later.

GEF’s implementation of the command processor will silently ignore
any commands that are not executable, to avoid corrupting the model.

org.eclipse.gef.commands.CommandStack

public void execute (Command command) {
if (command == null || !command.canExecute())
return;

A deeper reason for having the checking methods is that the model operations in-
Q voked by execute () and undo () will in general have pre-conditions. However, these
special pre-conditions cannot be declared for execute () and undo (), because both inherit
their pre-conditions from the command interface (or abstract base class). The only solution
is to make canExecute () the pre-condition of the interface’s execute () method, so that
clients are responsible for calling cankExecute () before calling execute (). This reasoning
also explains the implementation of execute () in the CommandStack shown here. For a
similar example, you can go back to the class ThresholdarrayIterator, where next ()
has pre-condition hasNext ().

Be aware of the interaction between canExecute() and CompoundCommands. The

method canExecute() in a CompoundCommand usually asks each of the commands
in turn whether it can execute. This means, however, that each one checks this condition
on the initial model state. During the actual execution, the contained commands are
executed in order, so that they see a different state—the earlier commands in the se-
quence may invalidate the condition of being executable for the later commands. In most
situations, this is not problematic, as long as the developer is aware of the limitation. A
more faithful rendering would have to execute the commands in sequence and undo them
later on—an overhead that is usually not justified. In case this becomes relevant to your
application, look at StrictCompoundCommand from the Eclipse Modeling Framework.

Chaining enables the framework to accumulate commands easily.

In many situations, the overall operation on a group of objects can be con-
structed by performing the operation on each object in turn. For instance,

9.5 Undo/Redo

when the user selects several elements in a drawing and presses the “delete”
key, then each element can be deleted by itself to achieve the effect. The
chain () method of a command supports the framework in assembling this
operation.

org.eclipse.gef.commands.Command

public Command chain (Command command)

Expect commands to have proper life cycles.

Commands may in general need to allocate resources, such as to store some
image copied from the clipboard, or they may need to listen to the model.
When the command is no longer held in the history, it must free those re-
sources, or de-register as an observer. Like other objects, commands there-
fore need a well-defined life cycle. The command processor is responsible for
calling their dispose () method when they are removed from the history
and are no longer required.

org.eclipse.gef.commands.Command

public void dispose()

EMF adds the ability to define results and highlight target objects.

The Command interface defined by EMF offers the same methods as that of
GEF shown earlier, and adds two more. First, the method getRrResult ()
allows commands to provide some abstract “result” of their execution. The
CutToClipboardCommand, for instance, decorates a RemoveCommand. The
RemoveCommand deletes a given set of objects from the model and defines
those as its result; the decorator sets them as the current content of EMF’s
clipboard. Second, the method getAffectedObjects () is meant to iden-
tify objects that should be highlighted in the view, for instance by selecting
them in a JFace viewer displaying the model. Both methods represent spe-
cial scenarios that arise in EMF’s application domain of building structured
models for editors.

org.eclipse.emf.common.command.Command

public interface Command {

Collection<?> getResult();
Collection<?> getAffectedObjects();

Possibly external operations require further measures.

Eclipse’s resources framework defines the structure of the overall workspace,
with projects, folders, and files. The framework also includes IUndoable

«7.4.1

“ll

«2.4.2

«9.3.1

519

«7.10.2

«l1.5.6
€6.3

520

Chapter 9 Structuring Applications with Graphical Interfaces

Operations that represent changes to the workspace and that allow users
to revert actions on those external entities.

These undoable operations by their nature act on an external model,
which explains two deviations in the execute () method: First, a progress
monitor parameter anticipates a possibly long runtime; second, the presence
of an Istatus return value and a declared exception indicates that these
commands can actually fail, perhaps due to external circumstances such as
missing files. Of course, the concrete implementations should still ensure
that the model they work with is not corrupted—that they are exception-
safe and preserve at least the model’s invariants. Because the external state
may have changed after the last undo (), commands are also given the
chance to check that state in canRedo () before redo () gets called.

org.eclipse.core.commands.operations.|UndoableOperation

public interface IUndoableOperation {
IStatus execute (IProgressMonitor monitor, IAdaptable info)
throws ExecutionException;

boolean canRedo () ;

Eclipse anticipates cross-model changes and a global history.

Many operations in Eclipse, such as refactorings on Java sources, in princi-
ple affect many files. Eclipse therefore tags each command which a context
to which it applies. The context is then used to filter the available history.

org.eclipse.core.commands.operations.|UndoableOperation

boolean hasContext (IUndoContext context);
IUndoContext [] getContexts();
void addContext (IUndoContext context);

void removeContext (IUndoContext context);

For instance, suppose we create three classes A, B, and C, where B calls
a method £ () from a, but ¢ does not. Then we use Refactor/Rename to
rename the method £ () to a method g (). Then the Edit menu for editors
of A and B will show the entry “Undo rename method,” while ¢ shows the
previous local modification to the source code there—the context of the
renaming command includes the source files of A and B, but not of c.

9.6 Worapping Up

This chapter touches on the core of professional software engineering. Any
gifted layman can use the WindowBuilder to create a nice small application
for a specific purpose, but it takes much more foresight to create a software

9.6 Wrapping Up

product that can grow and change with the demands of its users, that can
be maintained for years and decades, and that delivers its functionality
reliably throughout.

Nevertheless, the chapter may appear surprisingly long when we reduce
its content to the two fundamental concepts: Model-view separation enables
testing to make the functionality reliable, and it liberates that functionality
from concerns about the ever-changing user interface. Undoable operations
are simply encapsulated as command objects, which are managed by a
command processor.

The challenge in this chapter is not the concepts, but their faithful
rendering in concrete software: It is just too simple to destroy the principles
and all their benefits by seemingly minor glitches in the implementation.
After all, cannot a single reference to a view be tolerated in the model if it
saves days of coding? Does it really matter if an observer interface is tailored
to the user interface that we have to deliver in three days’ time? Cannot
repainting of changed data be much more efficient if the view remembers
the changed data elements?

Professional developers know two things that will prevent them from
falling into such traps. First, the extra effort of introducing model-view
separation is rather extensive, but it is also predictable. Going through a
series of well-known and well-rehearsed steps is psychologically less taxing
than grappling with an endless list of poorly understood details. Second,
they know the motivation behind all of those steps and see the necessity and
implications of each. As a result, they perceive a proper overall structure
as a necessary investment in achieving their future goals more easily. Both
points together—the following of known steps and the understanding of
implications—also enable professionals to be sure of their details, such as
when recreating the previous and subsequent states in a command’s undo ()
and redo () methods very precisely, if necessary by reasoning in detail about
the contracts of invoked model operations. This chapter has introduced the
landmarks for proceeding with forethought in this way.

«9.149.2.2

“«9.5

«9.2.3

«9.4.3

«9.44953

«9.5.1
“4.1494.22

521

This page intentionally left blank

Index

A
Abstract factories, 53—54
Abstract states. See also State
defined by assertions about object field, 549—
550
factoring state changes into separate meth-
ods, 553
object behavior and, 525
object fields and, 25
Abstract syntax
of computer languages, 128
transforming concrete syntax to, 131-132
Abstract window toolkit (AWT), 54, 659-661
Abstraction
behavioral abstraction, 169-171
BRIDGE pattern shielding clients, 659-660
clients extending abstraction hierarchy, 661
client-specific classification and, 171-174
combining boundary objects with roles for,
664
inheritance capturing, 150-152
in LAYERS pattern, 672-673

model fields capturing class abstraction, 204—

205
roles capturing behavioral abstraction, 618—
619
Single Responsibility Principle and, 590-591
of state over object content, 526
Abstraction hierarchies, 150-152, 174-175
Acceptance tests. See also Unit tests
aligning test cases with functional require-
ments, 275
overview of, 244
Actions
JFace connecting SWT menus to, 491-494
sequences in use cases, 274
Active OBJECT pattern, 433
Active states, 547
Activities
do activity is long-running and interrupt-
able, 542-544
ongoing, 541-542
Actors
asynchronous messages and, 433
in use cases, 274
ADAPTER pattern
overview of, 137-139
SWT as an adapter, 364

Adapters
avoiding cluttered design, 609
content providers traversing model structure,
477-478
JFace viewers accessing application data, 474
label providers deciding on concrete visual
representation, 479
Aggregation, class relationships, 109-110
Agile software development
acceptance tests. See unit tests
“do the simplest thing that could possibly
work,” 44
LAYERS pattern in, 678
refactoring for incremental improvements, 13
self-documenting code in, 270
Algorithms
bundling with data structure, 86-87
encapsulation as objects, 25
Aliasing, between object references in treatment
of heap in contracts, 238-241
Amdahl’s law
code optimization and, 8
storage optimization and, 644
Animations, using SWT timers, 391-393
Anonymous classes, 92-93, 107
APIs
boundary objects confining, 662—663
building a reusable parser, 717-718
for compound widgets, 369-370
contracts facilitating documentation of, 214
creating reusable, 720-721
designing for reuse, 712
documenting side effects, 213
EXTENSION INTERFACE pattern, 176-178
not modifying for tests, 256
tests documenting, 268, 280
tests exploring subtleties of, 280-281
tests forcing exploration of technical details,
278-279
tests helping with understanding, 277-282
tests specifying ideal API, 272
widgets impacting, 364-366
Application domain
hierarchies, 150-152
modeling, 597-600
Application modal, SWT levels of dialog modal-
ity, 376

769

770

Applications
accessing application data through adapters,
474
consist of collaborating objects, 4, 569
creating and launching SWT applications,
354-355
frameworks providing ready-made structures
for, 356
gearing toward user requirements, 443
launching using widgets, 366-367
models maintaining application data, 454—
455
notifying about user actions, 347-348
OSGi as application platform, 739
overriding methods in framework classes, 360
template methods for tracking single jobs,
402
testing functionality, 460
using Eclipse platform to create, 746
Architecture, JFace Layer, 473
Arguments, choosing neutral structures for argu-
ment types, 624
Arrays
example of testing bugs, 266-268
iterator over. See ThresholdArrayIterator
(iterator over arrays) contract example
loops for summing, 228-232
Assertions
associating with methods, 194-197
checking at runtime, 218-219
class invariants and determining when they
hold, 199, 207-210, 210-213
as conceptual breakpoints, 194
defined, 193
describing snapshots of program state dur-
ing execution, 193-194
equivalence of, 287

example application applying to break, continue,

and return in loop execution, 238-239
formulating about current state only, 204
locking objects in, 422-423
loop invariants, 229
ownership making safe from side effects, 301
states-as-assertions, 548-555
weaker and stronger, 286—288

Assignment
capturing precisely, 224-225
computing backwards from post-condition

to pre-condition, 225-227

for heap-allocated objects, 239
Assignment axiom, 225
Association, class relationships, 109-110
asyncExec

accessing Ul from threads, 395-398

using when user feedback required, 400
AsyNcHRONOUS COMPLETION TOKEN pattern, 432
Asynchronous messages, 431-433

Index

Auto-Complete (Ctrl-space)
functionality of, 12
applications of, 22, 33, 71, 159, 169
Automating testing, 245-246
Availability, controllers observing and deciding on,
467-468
AWT (Abstract window toolkit), 54, 659-661

B
Background jobs
keeping track of code running in background,
398-399
long-running tasks, 401-406
observing, 99-101
overview of, 393-394
periodic jobs, 407
threads and user interface, 394-401
Base classes
for capturing abstraction, 150-152
CoMPOSITE pattern including necessary op-
erations in, 118-119
defined, 143
factoring out common behavior, 147-148
fragile base class problem, 163—-167
interfaces between base class and subclasses,
145-147
managing extension in separate object and
base classes, 693-697
for reusable infrastructure, 148-150
Behavioral abstraction, 144-145, 153, 169-171
Behavioral subtyping, 145
Binary operations
applying conditionals and loops to binary
search, 232-237
implementing with double dispatch, 125-126
Black-box frameworks, 361
Black-box items, 5
Black-box tests, 254—255
Blocking queues, for synchronization of notifica-
tions, 428-429
Bottlenecks, profiler use in finding, 8
Boundary objects
contracts and, 219-223
design strategies, 661-665
function plotter example, 600-603
uses of, 87-88
break command, reasoning about, 238-239
Breakpoints
assertions as, 194
pre- and post-conditions as, 195
BRriDGE pattern, 659-661
Bugs. See also Exceptions
testing, 266268
writing regression test for, 248-249
Bundles, OSGi
compared with plugins, 730

Index

moving public facade classes to non-public
subpackages, 78
native libraries in, 366
structure of, 731-734
testing, 262-263
working with, 734-739
Burstall’s memory model, 239-240
Business logic, separating from user interface. See
Model-view separation
Business value, documenting, 273
Buttons, 366
By reference, handling objects, 55-56

C
C++, implementation inheritance in, 163
Cache
object fields, 26-27
class invariants and, 296
Call sequences, tests documenting, 269
Callbacks
class invariants and, 215-218
information and services offered to, 715-716
interfaces for, 178, 713-714
OBSERVER pattern introducing, 666
for transitions in framework state, 683-684
uses of callback methods, 42-43
CamelCase, naming conventions and, 16
Canvas, deriving custom widgets from, 384
Case
inheritance capturing as objects, 152-154
inheritance for case distinction, 183
Catamorphism, data types and, 127
CDI (Context Dependency Injection), 261-262
Chaining, command, 519
Change, tests enabling, 276-277, 283
Change notification
class invariants applied to change notifica-
tions of OBSERVER pattern, 188
in collaboration from model to view, 452
forwarding in adapters, 137, 139
forwarding to JFace viewer, 480-481
observers registering for, 448
Change Signature, Refactoring menu (Alt-shift-T),
33
Changeability
BRripGE pattern and, 660
coupling and, 638-643
encapsulation as step toward, 626
factoring out tasks and, 606
in function plotter example, 612613
information hiding keeping implementation
changeable, 623
Single Responsibility Principle and, 591-593
unit tests for, 374
Channels, asynchronous messages and, 433
Checked exceptions
contract inheritance and, 334

771

types of exceptions, 68—70
uses of, 327-328
Child /parent relationship. See Parent/child rela-
tionship
Class, responsibilities, and collaborators (CRC)
cards
applying to function plotter example, 595—
596
changeability and, 591-593
help in starting design, 583-584
Class invariants. See also Invariants
applied to change notifications of OBSERVER
pattern, 188
callbacks and, 215218
capturing object consistency, 198-201
constructors initializing, 210-211
defined, 198
in event-driven software, 409-410
explicit states requiring, 557-558
inheritance and, 334-338
intuition of, 199
model fields and public invariants, 201
proof obligations, 216-217
public methods and, 217-218
private methods and, 207-210
safety conditions in, 205
state assertions and, 550
in ThresholdArrayIterator example, 203—
204
when do they hold, 199-201
Class loaders
JVM class loader objects, 730
OSGi, 732
Class names
CRC cards applied to, 595
importance of, 15
object responsibility expressed in, 590
Class-based languages, compared with object-based,
4
Classes
anonymous classes, 92-93
applications overriding methods in frame-
work classes, 360
base classes. See Base classes
building class hierarchy, 120
code reuse within a class, 43-44
contracts and, 195, 330
converting anonymous to nested, 107
depicting class relationships in UML, 109—
110
derived classes, 144
explicit states making class structure more
uniform, 557-558
extracting common infrastructure, 119-120
factoring out design decisions into separate
classes, 653
inheritance and, 32

772

Classes (continued)

inner classes, 89-91

instantiating multiple times, 85

invariants. See Class invariants

invariants and inheritance and, 334-338

managing extensions in separate object and
base classes, 693—-697

model fields showing class purpose and cap-
turing class abstraction, 204-205

nested classes. See Nested classes

object-oriented view of methods, 30-33

objects matter, not classes, 4

planning reusable, 85, 710-725

responsibilities of, 618

Single Responsibility Principle applied to class

hierarchies, 591
static fields, 28
static member classes, 91-92
static methods, 47
subclasses. See Subclasses
superclasses. See Superclasses
user interface classes kept separate from busi-
ness logic, 447
Classification
client-specific classification and abstraction,
171-174
downcasts and instanceof, 156-161
hierarchies, 151
interfaces preferred for, 183
multiple classification, 175-176
Clients
client-specific classification and abstraction,
171
preferences for weak or strong pre-conditions
and post-conditions, 287-288
test first principle for focusing on perspec-
tive of, 252
CLOS (Common Lisp Object System), 140
Code
benefits of contracts, 215
continuous improvement of code, 10
correctness and clean structure in state ma-
chines, 530-531
correctness of. See Contracts
state machines helping with understanding,
534-535
state machines impact on, 535-540
states-as-assertions keeping code stand-alone,
555
Code reuse
within a class, 43-44
methods and, 43
through inheritance, 44-46
through separate objects, 46—47
through static methods, 47-48
strategies for, 710-725

Index

Cohesion
design strategies, 647-649
maximizing cohesiveness of layers, 673—674
reuse strategies, 723
Collaboration
CRC cards applied to, 595
designing collaborators as roles, 718-719
making sense locally, 582-583
mechanisms structuring sequences of, 581—
582
neighborhoods and, 614
nested classes and, 8889
objects as team players, 6
observers enabling flexible collaboration and
flexible behavior, 665—666
P1peEs-aAND-FILTERS pattern prescribing, 710
planning as means of keeping responsibili-
ties small, 581
Collaborators
Law of Demeter and, 650
object fields, 21-22
Combo boxes, example of ownership, 110-114
ComboViewer, 473-474
COMMAND pattern
capturing incremental state changes, 507—
508
commands as self-contained description of
an operation, 510
compound commands for scalability, 508—
509
controllers delegating invocation of opera-
tions to Command objects, 506-507
encapsulating internal state using memen-
tos, 512-513
internal dependencies and, 511-512
overview of, 506-507
redo () and execute () and, 509-510
undo () reverting to model state, 510
CoMMAND PROCESSOR pattern, 513-515
Communication
contracts facilitating, 214
Separation of Concerns creating need for,
627
Single Responsibility Principle facilitating,
591
Compatibility, extension interfaces for backward
compatibility, 703
Completion
auto-. See Auto-Complete
proposals, implementation of, 700-704
transitions, 540-541
Components
isolating crucial functionality into dedicated
components, 275-276
loosely coupled components, 319
packages as, 77-78
reuse and, 85

Index

CoOMPOSITE pattern
building class hierarchy based on common-
alities and, 120
delegating to subclasses and, 50
deriving reusable widgets from, 367
determining placement of child management,
120-121
extensibility and, 118, 121, 679
including necessary operations in base class,
118-119
overview of, 116-118
structure sharing and, 121
superclasses for extracting common infras-
tructure, 119-120
top-level containers simplifying use of, 121—
122
Composite states, 544
Composition
class relationships, 109-110
factoring out decisions into separate classes,
653-656
Compositionality, goals of responsibility-driven de-
sign, 628-630
Compound objects
contracts and, 297-298
concurrency and, 416-418
copy-on-write for invariants of shared ob-
jects, 310-313
cross-object invariants can be broken tem-
porarily, 410-411
dynamic checking of cross-object invariants,
323-325
encapsulation and, 113-114
immutable objects and, 310
invariants for owned objects, 300-308
invariants for shared objects, 308—-310
invariants of, 308
maintaining cross-object invariants implic-
itly, 316-317
maintaining cross-object invariants loosely,
318-323

making compound widgets take on self-contained

responsibilities, 601-602

observers and, 115-116

overview of, 108-109

ownership, 109-112

part relationship to whole object and, 298—
300

reconstruct cross-object invariants rather than

synchronizing, 325-327

structure sharing, 112-113

thread challenges related to cross-object in-
variants, 421-422

using compound widgets for elements that
are likely to change, 602-603

versioning of shared objects, 314-316

Compound widgets, 367-374

773

CompoundCommands
building, 516
for scalability, 508509
Concurrency
correctness, contracts and, 416-418
introduction to, 413-416
non-deterministic execution and, 414-415
optimistic concurrency in JPA, 280
sharing objects and, 311-312, 416-423
Condition variables, signaling changes of state,
425-428
Conditionals, for binary search, 232-237
Configuration
configuration properties (flags), 23-25
states mapping to object fields, 528
Confinement, thread, 415
Connections, Graphical Editing Framework, 160
Constants
final static fields as, 29
managing, 182
Constraints
in design and implementation of MODEL-
ViEw-CONTROLLER pattern, 460-462
in design and implementation of OBSERVER
pattern, 101-104
invariants as, 323
Constructors
copying objects, 75
field initialization and, 19
inheritance and, 73-75
initializing by life-cycle methods, 73
initializing invariants, 210-211
initializing objects, 71-73
overview of, 71
static methods, 75-76
Containers, simplifying use of CoOMPOSITE pat-
tern, 121-122
Content providers in JFace

connecting viewer to model via content provider,

476-477
traversing model structure, 477-478
viewer accessing data with, 158, 474
Context Dependency Injection (CDI), 261-262
Context objects

enabling interceptors to query /influence frame-

work, 682-683
required by INTERPRETER pattern, 129-130
continue, contracts and, 238-239
Continuous improvement, of code, 9-10
Continuous integration, benefits of testing, 283
Contracts
arguments about correctness and, 223-224
assertions as conceptual breakpoints, 194
assertions describing snapshots of program
state during execution, 193-194
associating assertions (pre-condition and post-
condition) with methods, 194-197

774

Contracts (continued)

balancing use of weaker and stronger asser-
tions, 286—288

balancing use of weaker and stronger invari-
ants, 293-297

benefits of framework for, 214-215

capturing assignment precisely, 224-228

checking assertions at runtime, 218-219

class invariants and callbacks, 215-218

class invariants for capturing consistency of
objects, 198-201

class invariants including safety conditions,
205

compositionality requires clear and general,
629-630

compound objects and, 297-298

constructor role in initialization of invari-
ants, 210-211

copy-on-write for invariants of shared ob-
jects, 310-313

demanding style methods and, 290-293

design-by-contract, 285

dynamic checking of cross-object invariants,
323-325

establishing consistent eternal view on ob-
ject behavior, 191-192

example application applying conditionals
and loops to binary search, 232-237

example application applying to aliasing be-
tween object references in treatment of
heap, 238-241

example application applying to break, continue,

and return in loop execution, 238-239

example application using loops for sum-
ming array elements, 228-232

exceptions and, 327-329

formulating assertions about current state
only, 204

frame conditions for capturing side effects,
212-213

GapTextStore example, 188-191

immutable objects and, 310

implementing (processing steps) contracts of
methods, 207-210

inheritance and subtyping and, 329-330

invariants and inheritance and, 334-338

invariants and model fields and, 203—204

invariants for owned objects, 300-308

invariants for shared objects, 308-310

justifying methods based on purpose not im-
plementation, 206—207

maintaining cross-object invariants implic-
itly, 316-317

maintaining cross-object invariants loosely,
318-323

model fields presenting external view onto
object’s state, 192-193

Index

model fields showing class purpose and cap-
turing class abstraction, 204-205
between modules shaped by shared assump-
tions, 645
not sufficient on own for detailed reasoning,
197-198
of overridden methods, 330-334
overview of, 187-188, 285
part relationship to whole object and, 298—
300
phrasing in terms of public knowledge and
model fields, 205
pure method for specification, 211-212
reconstruct cross-object invariants rather than
synchronizing, 325-327
reviewing events and contracts, 407-412
system boundaries and trust, 219-223
tests capturing, 268-270
ThresholdArrayIterator (iterator over ar-
rays) example, 201-203
tolerant style methods and, 288-290
versioning of shared objects, 314-316
writing contracts before methods, 285—286
writing separate tests for each aspect, 255
Contract inheritance, 330-332
Contribution items, JFace, 492
Controllers. See also MODEL-VIEW-CONTROLLER
pattern
delegating decision about visual appearance
to view, 461-462
delegating invocation of operations to Com-
mand objects, 506-507
feedback triggered by, 464
interpreting events as operations on model,
457-458
JFace enabling for work on application level,
482-483
not exchangeable or reusable, 463
not notifying view about triggered opera-
tions, 461
observing model with, 467-468
overview of, 453
pluggable controllers, 468-470
receiving user input, 457
role stereotypes, 80
shielding model from user input, 462
tasks performed by, 454
Convenience methods, when to use, 36-37
Conversion, data binding and, 489-491
Convert Anonymous to Nested Class, Refactoring
menu (Alt-shift-T), 107
Convert Local Variable to Field, Refactoring menu
(Alt-shift-T), 28
Coordinators, role stereotypes, 80
Copying objects, constructors for, 75
Copy-on-Write
for invariants of shared objects, 310-313

Index

reference counting used with, 313
Core functionality
in model (business logic), 447
testing core instead of user interface, 264
Correctness argument
contracts and, 223-224
open calls endangering, 436—437
threads challenging, 416-423
Coupling
change and, 638
cohesion and, 648
decoupling. See Decoupling
loose coupling. See Loose coupling
necessity of induced changes, 638-639
observer relationships as means of decou-
pling, 640-641
occurring via shared third, 639-640
shared assumptions and, 643-646
tight coupling. See Tight coupling
Coupling-as-assumptions, 644-646
CRC (class, responsibilities, and collaborators)
cards
applying to function plotter example, 595—
596
changeability and, 591-593
help in starting design, 583-584
Critical components, isolating crucial functional-
ity, 275-276
Cross-object invariants. See Invariants, of com-
pound objects

D
Daemon threads, in JVM, 431
DAGs (directed acyclic graphs), 113
Data binding, with JFace
data conversion and validation, 489-491
master /detail views, 488-489
overview of, 484—488
Data conversion, data binding and, 489—491
Data structures
choosing neutral structures for argument and
return types, 624
encapsulation of internal, 370
encourages object use over (Law of Deme-
ter), 651
keeping declared extensions in, 688
object fields for, 19-21
protecting by wrapping, 322-323
Data types
assertions and, 193
catamorphism and, 127
choosing neutral structures for argument and
return types, 624
viewers managing untyped objects, 479-480
DatePicker example widget, 368-374
Deadlocks
avoiding by resource ordering, 438-440

775

causes of, 437438
challenge of knowing all objects in advance,
440-441
conservative use of, 441
Debugging. See also Exception handling
conceptual framework for, 189
JUnit Plug-in Test, 262-263
with loosely coupled invariants, 321-322
using assertions for, 218
Decision making
becoming aware of decisions, 585
categories of object responsibilities, 578-579
deferring through roles, 613
inversion of control localizing, 669
in responsibility-driven design, 577-578
tests supporting, 283
Declared exceptions, 328—-329
DEcoRrATOR pattern, 139-140
Decoupling. See also Coupling
effort involved in, 641
enabling extensions via, 693
hiding assumptions, 646
reuse strategies, 723
speculative generality and, 642
subsystems, 178-182
techniques, 652—-653
Delays, using SWT timers, 390-393
Delegation
hiding/implementing inheritance via, 163
vs. inheritance, 140, 155
Delta pack plugin, 367
Demanding style
methods, 290-291
reasons for deviating from, 292-293
Dependencies
between bundles, 731, 735
COMMAND pattern and, 511-512
internal in application models, 497499
not always leading to strong coupling, 640
Dependency injection, helps in creating fixtures,
260-262
Dependency Inversion Principle (DIP)
design strategies, 658—659
designing roles and, 613
SOLID principles, 634—636
Derived classes, Liskov Substitution Principle, 144
Design
basing modular design on tests, 249
constraints, 460-462
iterative, 585
mock objects improving quality of, 260
must be traceable to implementation, 569

responsibility-driven. See Responsibility-driven

design
starting from idea of a solution, 584
tests driving design process, 274
tests helping with interface design, 270-272

776

Design strategies. See also Responsibility-driven

design

boundary objects and facades and, 661-665

BRIDGE pattern, 659-661

case views in Eclipse, 697-700

cohesion, 647-649

completion proposals, 700-704

coupling and change, 638-643

coupling and shared assumptions, 643-646

decoupling techniques, 652—653

Dependency Inversion Principle (DIP), 658—
659

extensibility and, 678—-680, 704-705

extension mechanism and, 685-686, 704-705

extension points enabling lazy loading, 686—
687

extension points examples, 687692, 693—-697

factories, 665

factoring out decisions into separate classes,
653-656

flexibility, 652

INTERCEPTOR pattern, 680-685

inversion of control, 666—669

Law of Demeter, 649-651

LAYERS pattern, 669-678

objects use instead of primitives, 653

observers, 665-666

overview of, 637

PipEs-AND-FILTERS pattern and, 705-710

reusability, 710-712

reuse example (building a reusable parser),
717-722

reuse example (Wizard dialog in JFace), 712
716

reuse strategies, 722-725

roles for grouping objects by behavior, 656—
658

SOLID principles, 634-636

Design-by-contract, 285. See also Contracts

Design-by-contract (Meyer), 187. See also Contracts

Design-code traceability, 630-631
Developers
expertise in framework domain, 362-363
tests indicating when project is complete,
283
Dialogs
advantages of standard, 380
maintaining interdependencies between dia-
log fields, 318
modal vs. modeless, 376
purposes of dialog windows, 374-375
shell functionality and, 378-380
simplifying code structure, 376-377
DIP. See Dependency Inversion Principle (DIP)
Directed acyclic graphs (DAGs), 113
Directed graphs, laying out, 323-324

Index

Dispatcher objects, managing interceptors and re-
lay events, 683—684. See also Event dis-
patch threads

Display, 351, 388

Displays

creating timers and, 388

data on screen, 455-456

having predefined widgets access API directly,
471-472

incremental screen updates, 500-502

keeping updated, 460

loosely coupling code for, 471

screen updates following MVC pattern, 483—
484

SWT element for accessing window system,
351

Do activity, long-running and interruptable, 542—
544

Documentation

contracts facilitating, 214

keeping tests in sync with production code,
270

names as, 15

of problems and bugs, 254

test first principle for effectiveness of, 253

test helping with documentation of APIs,
277-278

DocuMENT-VIEW pattern, 470-472

Domain objects, modeling application domain, 597—
600

Domain-specific languages (DSLs), 128-129

“Don’t repeat yourself” (DRY)

creating reusable API, 722
goals of responsibility-driven design, 631-
634

Double dispatch, visitor pattern as instance of,
125-126

Downcasts

architectural, 159
classification and, 156-161
DRY (“Don’t repeat yourself”)
creating reusable API, 722
goals of responsibility-driven design, 631—
634

DSLs (domain-specific languages), 128-129

Dynamic checking, of cross-object invariants, 323—
325

E
Eclipse Modeling Framework (EMF)
abstract factories that hide implementation,
54
BRIDGE pattern and, 661
opposite references in, 317
persistence mechanism, 127
undo/redo and, 517, 519
ECMA Script, 4

Index

Editors, collaboration and, 22. See also Java editor
Effects
capturing reactions and running to comple-
tion, 527
enter and exit, 535
internal transitions triggering without leav-
ing current state, 535
Efficiency of code
benefit of not overemphasizing, 7-8
as secondary goal, 624—626
EJB (Enterprise Java Beans), 141
EL. See Unified Expression Language (EL)
EMF. See Eclipse Modeling Framework (EMF')
Encapsulate Field, Refactoring menu (Alt-shift-T),
22
Encapsulation
of algorithms as objects, 25
assigning responsibilities to match goal of,
623-624
caches as example of, 27
code optimization and, 8
compound objects and, 113-114
of downcasts, 161
enforcing neighborhood boundaries, 615
goals of responsibility-driven design, 621-
625
information hiding and, 621
of internal data structures, 370
of internal state using mementos, 512-513
Law of Demeter and, 650-651
mediators encapsulating complex logic, 382
model fields providing, 193
precision by use of contracts and model fields,
188
protecting against thread interference, 420—
421
as step toward changeability, 626
Encapsulation wrappers, in SWT widget library,
141-142
Enter effects
inlining, 552
state machines, 535
Enterprise Java Beans (EJB), 141
Entities, application logic and, 82
Equality
between assertions, 226
checking by equals method, 56-57
equals, 5657
Error handling. See Exception handling
Errors. See Exceptions
Event dispatch thread
accessing widgets from background threads,
395
overview of, 394
treating as scarce resource, 439-400
Event handlers
changing state implicitly, 551-552

7

in the user interface, 347-348
STATE pattern introduces event-handling in-
frastructure, 559-561
Event-driven software, 341-342, 409-410
Event-listeners. See also event handlers
contracts crucial to, 408
invoking operations defined in model, 450
treating as public methods with respect to
contracts, 410
Events
call back methods and, 42-43
choosing correct, 349
event-driven approach keeps objects loosely
coupled, 666—667
event-driven approach to painting widgets,
385-386
listening to, 347-348
mapping to methods, 529-530
MEDIATOR pattern organizes reaction to, 380—
383
notifying application about user actions, 347—
348
observers and, 105
events and contracts, 407-412
selection events, 348, 502—-503
SWTBot simulating events fired by widgets,
264-266
threads, 400-401
triggering reactions, 524-525
WindowBuilder handling via context menu,
352-353
Exception handling
LAYERSs pattern and, 676677
overview of, 59
Quick-Fixes (ctr1-1), 11-12
types of exceptions, 68
Exceptions
checked vs. unchecked, 68-70
for checking expectations, 63—66
for clarifying program logic, 62—63
contract inheritance and checked exceptions,
334
contracts and, 327-329
limiting damage, 66—68
overview of, 5861
signaling incompleteness, 66
system boundary as source of, 6162
Exception safety
invariants and, 329
overview of, 66—68
execute, COMMAND pattern and, 509-510
Exit effects
inlining, 552
state machines, 535
Expectations
exceptions for checking, 63-66
tests for checking, 262-263

778

Explanatory methods, use of expressive names,
41-42
Explicit states
making class structure more uniform, 557—
558
overview of, 555-556
reasoning and, 556-557
requiring more class invariants, 557-558
Expression Language. See Unified Expression Lan-
guage (EL)
Expressions, side effects in, 237-238
Extensibility
benefits of lean interfaces for interaction be-
tween framework and interceptors, 683
case distinctions and, 153
case views and, 697-700
completion proposals, 700704
of CoMPOSITE pattern, 118, 121
enabling several or many alternatives leads
to, 658
extension mechanism and, 685—686
extension point examples, 687692, 693—697
extension points and, 704-705
extension points enabling lazy loading, 686—
687
INTERCEPTOR pattern and, 681-685
overview of, 678
PipEs-AND-FILTERS pattern and, 705-710
techniques and considerations, 678—680
EXTENSION INTERFACE pattern
client-specific classification and abstraction,
173
overview of, 176-178
ExTENSION OBJECTS pattern
adapters and, 139
as alternative to EXTENSION INTERFACE pat-
tern, 177
for extended views on an object, 172—-173
extensibility and, 679
Extension points
basic example, 687-692
declaring in plugin.xml, 738
enabling lazy loading, 686687
extensibility and, 704-705
extension mechanism and, 685-686
for Java completions, 701
New Wizard example, 693—697
External view, of object
contracts establishing consistent external view
of behavior, 191-192
model fields presenting of object’s state, 192—
193
Extract, Refactoring menu (alt-shift-T), 39
Extract Class, Refactoring menu (Alt-shift-T),
46
Extract Constant, Refactoring menu (Alt-shift-T),
29

Index

Extract Interface, Refactoring menu (aAlt-shift-T)
decoupling subsystems and, 180
working with interfaces, 170-171
Extract Superclass, Refactoring menu (Alt-shift-T),
45
Extract Variable, Refactoring menu (alt-shift-T),
39

F
F2, navigation features, 10
F3, navigation features, 10
F4, navigation features, 10
FacaDE pattern
design strategies, 661-665
package support, 78
Factories
combining with roles, 665
linking abstraction and implementation, 660
uses of factory methods, 51-55
Feasibility studies, 273-274
Feedback
behavior at user interface level, 464-466
visual feedback introducing internal state,
503-504
Fields, object
abstract state, 25
caches, 26-27
collaborators, 21-22
constructors for, 72-73
data shared between methods and, 28
data structures, 19-21
flags and configuration, 23-25
consistency and invariants, 198
linking temporary field to state assertions,
551
overview of, 18-19
properties, 22-23
static, 28—-30
Filters. See also P1PEs-AND-FILTERS pattern
for elementary processing steps, 709
instances of model-view separation, 482
pipes synchronizing processing between, 708—
709
sharing format for input and output, 707
using incremental processing for low latency,
707-708
Final state, state machine processing and, 540
finally, in exception handling, 61, 68
Finite state machines. See State Machines
Fixtures
creating for examination of objects, 246248
creating mock objects, 258-260
dependency injection helps in creating, 260—
262
tests exploring subtleties of an API, 280-281
Flags
configuration properties (flags), 23—-25

Index

widget, 343-344
Flexibility, designing for
boundary objects and facades and, 661-665
BRIDGE pattern, 659-661
decoupling techniques, 652-653
Dependency Inversion Principle (DIP), 658—
659
factories, 665
factoring out decisions into separate classes,
653-656
inversion of control, 666—669
LAYERS pattern, 669-678
objects use instead of primitives, 653
observer role in, 665-666
overview of, 652
roles for grouping objects by behavior, 656—
658
Flexibility property, fragile base class problem and,
164
Forward-style assignment axiom (Hoare), 227
Fragile base class problem, 145, 163-167
Fragments, merging into host bundles at runtime,
734
Frame conditions
for capturing side effects, 212-213
defined, 213
Frameworks
assigning responsibilities to framework-enforced
objects, 603-604
context objects enabling interceptors to query/in-
fluence framework, 682—683
data binding in, 484
goals of, 355-356
hybrid white-box and black box, 361-362
INTERCEPTOR pattern and, 681
knowing mechanism of, 358-359
liabilities of, 362—-363
relying on inversion of control, 356-358
Swing and JavaFX, 363-364
task execution, 402
undo/redo infrastructure in UI frameworks,
516
use in development, 355
white-box vs. black-box, 360-362
Function plotter example
boundary objects, 600-603
CRC cards applied to, 595-596
creating objects for organizing work of oth-
ers, 610-612
delegating subtasks, 604—606
identifying and assigning responsibilities to
objects, 596-597
linking to libraries, 606-610
modeling application domain, 597-600
neighborhoods of objects, 613-615
objects by technical necessity, 603-604
overview of, 593-595

779

roles and changeability, 612613
summary, 615-616

Functional tests. See also Unit tests
documenting business value, 273
overview of, 244

G
GapTextStore contracts example
assertions as conceptual breakpoints, 194
assertions describing snapshots of program
state during execution, 193-194
associating assertions with methods, 194
197
class invariants for capturing consistency of
objects, 198-201
establishing consistent eternal view on ob-
ject behavior, 191-192
model fields presenting external view onto
object’s state, 192-193
overview of, 188-191
GapTextStore data structure, text management
and, 19-20
Garbage collection, life cycle of objects and, 9
GEF. See Graphical Editing Framework (GEF)
Generic mechanisms, frameworks providing, 357
Getters, for specification of properties, 22—23
Ghost state
for reasoning about class invariants, 216—

217
for reasoning about invariants with inheri-
tance, 335

for reasoning about ownership, 305-306
Global invariants, 309
Goals
design decisions based on concrete, 577-578
responsibility-driven design, 620-621
Graphical Editing Framework (GEF)
base classes for reusable infrastructure, 150
connections, 160
convenience methods and, 37
graph-drawing library, 86
naming conventions and, 16
undo/redo and, 517
Zest component, 325-326
Graphical user interface, 443
Guards
capturing reaction side-conditions in state
machines, 531-532
if tests, 552
Guidelines, for test development, 253-257

H

Handles, for resource access, 269

Happy path, testing, 257

hashCode, checking method equality, 56-57

780

HashMap
caching results of computations in, 26
runtime checks for harmful modifications,
314-316
Heap, aliasing between object references in treat-
ment of, 238-241
Hibernate, 278
Hierarchical structures. See also Inheritance
abstraction hierarchies, 174-175
ADAPTER pattern, 137-139
class hierarchy of SWT and, 343-344
clients extending abstraction hierarchy, 661
CoOMPOSITE pattern, 116—122
DECORATOR pattern, 139-140
dynamic checking of cross-object invariants
in, 324-325
encapsulation wrappers, 141-142
INTERPRETER pattern, 128-132
Proxy pattern, 140-141
responsibility-driven design and, 616-620
Single Responsibility Principle applying to
class hierarchies, 591
stack machines and, 132-136
VisITOR pattern, 122-127
wrappers, 136-137
Hoare rules
assignment axiom, 225
for break, continue, and return loops, 238
for if statements, 234
loop invariants applied to binary search, 234—
237
for loops, 231
making reasoning mechanical, 225
overview of, 225
reducing program to set of implications, 231
separation logic and, 240
side effects in expressions, 237-238
weakest pre-condition and, 228
working backwards from result, 227

|
Identity
checking by reference, 55-56
object, 6
IDEs (integrated development environments)
plugin contributions to Eclipse IDE, 745—
746
views as windows in Eclipse IDE, 697-700
if tests, guards using, 552
if-then-else chains, in exception handling, 65—
66
Immutable objects, contracts and, 310
Implementation
abstract factories hiding, 54
aligning state machine with, 528
anticipating while designing, 630-631

Index

constraints related to MoDEL-VIEW-CONTROLLER

pattern, 460-462
constraints related to OBSERVER pattern, 101—
104
design must be traceable to, 569
information hiding keeping implementation
changeable, 623
inheritance, 155, 162-163
linking to abstraction, 660
Implicit states, enabling shortcuts, 554-555
Imports, removing unused and adding for unre-
solved names, 10
Incompleteness, exceptions signaling, 66
Incremental updates, 325-326
Information hiding
compositionality entailing, 629
encapsulation and, 621
goals of responsibility-driven design, 621—
625
Information holders
object uses, 82-83
role stereotypes, 80
Infrastructure
base classes for reusable infrastructure, 148—
150
STATE pattern introduces event-handling in-
frastructure, 559-561
template methods for extracting common
infrastructure of CoMPOSITE pattern,
119-120
Inheritance
adapting behavior, 154-155
base classes for abstraction, 150-152
base classes for reusable infrastructure, 148—
150
checked exceptions as part of contract in-
heritance, 334
code reuse through, 44-46
constructors and, 73-75
of contract of overridden method, 330-332
contracts and, 329-330
vs. delegation, 140
downcasts and instanceof, 156-161
extending inherited behavior, 51
factoring out common behavior, 147-148
factoring out decisions into separate classes,
653-655
fragile base class problem, 163-167
implementation inheritance, 162-163
interface between base class and subclasses,
145-147
vs. interfaces, 182-183
invariants and, 334-338
Liskov Substitution Principle, 144-145
optimizing public interface of objects, 655—
656
overview of, 143-144

Index

preference of delegation over, 155—-156
reifying case distinctions, 152—-154
responsibilities and hierarchy and, 619-620
Single Responsibility Principle applying to
class hierarchies, 591
superclasses inheriting class methods, 32
Initial state, state machine processing and, 540
Initialization
constructors role in, 74
of invariants, 210-211
by life-cycle methods, 73
of objects, 71-73
Inline, Refactoring menu (Alt-shift-T), 42
Inline comments, 42
Inline Variable, Refactoring menu (Alt-shift-T),
40
Inner classes, 89-91
instanceof expressions, in classification, 156-161
Integration tests, 244. See also Unit tests
Interception groups, 682
INTERCEPTOR pattern, 680—-685
Interface Segregation Principle (ISP), 172, 634
Interfaces. See also User interfaces (Uls)
abstraction hierarchies, 174-175
between base class and subclasses, 145-147
behavioral abstraction in, 169-171
capturing minimal expected behavior in, 656—
658
client-specific classification and abstraction,
171-174
contracts and, 330
decoupling subsystems, 178-182
designing layer interfaces, 674
ExTENSION INTERFACE pattern, 176-178
vs. inheritance, 182-183
managing constants, 182
multiple classification, 175-176
overview of, 167-169
providing default implementation of, 658
responsibilities of, 618
roles implemented as, 575
specifying callbacks, 178
tagging to objects, 182
tests helping with design of, 270-272
Interference
protecting against, 420-421
thread-related problems, 417-418
INTERPRETER pattern
assigning meaning to operator objects, 130—
131
context objects required by, 129-130
guiding way to DSLs, 128-129
overview of, 128-129
transforming concrete syntax to abstract syn-
tax, 131-132
interrupt, for stopping threads, 429-430

781

Invariants
balancing weaker and stronger, 293
caches strengthening, 296
class invariants and callbacks, 215-218
class invariants applied to change notifica-
tions, 188
class invariants for capturing consistency of
objects, 198-201
constructors initializing, 210-211
cross-object invariants can be broken tem-
porarily, 410-411
in event-driven software, 409
finding with hindsight and documenting, 208—
209
guideline for invariant strength, 297
loop invariants, 223-224
loop invariants applied to binary search, 233—
237
loop invariants holding just before loop test
execution, 230-231
maintaining despite exceptions, 329
pervasive impact of strengthening, 296-297
practical value of loop invariants, 229-230
public invariants, 201
public methods and, 217-218
public methods assuming at start and es-
tablishing at end, 200-201
safety conditions in, 205
storing away work with, 294-295
stronger invariants improving performance,
295-296
thread challenges related to cross-object in-
variants, 421-422
in ThresholdArrayIterator example, 203—
204
Invariants, of compound objects
avoiding spanning multiple objects when pos-
sible, 310
copy-on-write for shared objects, 310-313
dynamic checking shared objects, 323-325
inheritance and, 334-338
maintaining implicitly, 316-317
maintaining loosely, 318-323
for owned objects, 300-308
part relationship to whole object, 298-300
reconstructing rather than synchronizing, 325—
327
for shared objects, 308-310
versioning for shared objects, 314-316
Inversion of control
flexibility from, 666—669
frameworks relying on, 356-360
integrating extensions via, 680
reuse inducing, 712
Is-a relationships, 144. See also Inheritance
ISP (Interface Segregation Principle), 172, 634

782

Iterative approaches
design, evaluate, improve, 585
refactoring for incremental improvements in
development process, 13
Iterators
over array. See ThresholdArrayIterator (it-
erator over arrays) contract example
runtime checks for harmful modifications,

314-316

J

Java Architecture for XML Binding (JAXB), 82—
83

Java Development Tools (JDT), 26-27
Java editor
accessing views, 11
assembled via inheritance, 654
auto-complete pop-up, 171, 680, 700
completion pop-up implementation, 700
converting local variable to field, 28
Extract method refactoring, 39, 45
formatting source file, 9
Pull up method refactoring, 45
Show in view option, 81
Java I/0 library, decorators in, 140
Java Modeling Language (JML)
design-by-contract, 187
identifying keywords, 193
writing pre- and post-conditions for trans-
lation to executable code, 218
Java Native Interface (JNI), accessing native li-
braries, 366
Java Persistence API (JPA)
access relational databases with, 82
optimistic concurrency in, 280
test helping with understanding, 277-282
Java Virtual Machines (JVMs)
class loaders, 181, 730
enabling assertions, 65
Java running anywhere on top of local, 363
method dispatch table by class, 32
overriding access permission enforced by, 256
as stack machine, 133-134
termination and daemon threads, 431
JavaFX framework, 363—-364
JavaScript, object-based languages, 4
JAXB (Java Architecture for XML Binding), 82—
83
JDT (Java Development Tools), 26-27
JFace layer. See also Model-view separation
architecture of, 473
connecting viewer to model, 476-479
creating widget and its viewer together, 476
data binding, 484-488
data conversion and validation, 489-491
enabling controllers to work on application
level, 482-483

Index

forwarding change notifications to viewer,
480-481
mapping data to widgets, 670
master/detail views, 488-489
menus and actions, 491-494
model independence and, 474-476
overview of, 472
screen updates following MVC pattern, 483—
484
viewers, 473-474
viewers managing untyped objects, 479-480
viewers providing high-level services at ap-
plication level, 481-482
Wizard object, 572
JML. See Java Modeling Language (JML)
JNI (Java Native Interface), accessing native li-
braries, 366
JobManager
example of collaboration, 21-22
observers registering for change notifications,
448
observing background jobs, 99-101
observing managers, 108
Jobs, progressview class, 448
JPA. See Java Persistence API (JPA)
JUnit tests. See also Unit tests
finding object does not meet expectations,
189-190
running tests on top of OSGi platform, 262—
263
starting tests in Eclipse, 244
testing plugins, 744-745
JVMs. See Java Virtual Machines (JVMs)

K
Keyboards
focus, 468
navigation shortcuts, 10
pluggable controllers, 468-470
L

Label providers in JFace
deciding on concrete visual representation,
479
viewers accessing application data through
adapters, 474
Labels, setting images for, 366
Law of Demeter, 649-651
LAYERS pattern
in agile development, 678
designing intralayer structure and layer in-
terfaces, 674
error handling and, 676677
implementing abstraction criterion carefully,
672-673
maximizing cohesiveness of layers, 673-674
overview of, 669-672

Index

relationships between layers, 674-676
rippling changes and, 677
splitting functionality into layers, 673
Layouts, SWT
not specifying pixel-based positions or sizes
of widgets, 345-347
positioning widgets within parents, 344-345
triggering, 373
widget layout is recursive, top-down process,
346-347
Lazy loading, extension points enabling, 686-687
Learning, role of test in, 279-280
Least recently used (LRU), 141
Libraries
accessing native, 366
bundles containing and enclosing, 736-738
design and linking to, 606-610
graph-drawing library (Zest), 86
Java I/0 library, 140
SWT widget library, 141-142
Life cycle
of commands, 519
of interceptors, 684-685
of objects, 7
of views in Eclipse, 699
Lightweight executable frameworks, task execu-
tion and, 402
Line editor example, finite state machines, 547—
548
Linearization algorithm, 140
Liskov Substitution Principle (LSP)
abstraction hierarchies, 151
contract inheritance, 188
drawbacks of implementation inheritance, 162—
163
extensibility, 678
fragile base class problem, 164
inheritance vs. delegation, 155
overview of, 144-145
responsibilities and hierarchy, 616
SOLID principles, 634
subtyping, 329-330
Listeners, 104
Long-running tasks
canceling, 406
keeping track of, 403-404
overview of, 401-407
progress monitors, 404-405
progress reports, 405-406
task execution framework, 402
timers preferred to threads, 401-402
updating the user interface from, 395
Loop invariants. See also Invariants
binary search example, 233-237
debugging loops, 223-224
holding just before loop test execution, 230
231

783

practical value of, 229-230
testing bugs, 266268
verification condition generation and, 231—
232
Loops
for binary search, 232-237
break, continue, and return in execution
of, 238-239
for summing array elements, 228-232
testing bugs, 266268
Loose coupling. See also Coupling
applied to code for display and reaction, 471
architectural patterns for achieving, 641
event-driven approach applied to objects, 666—
667
insulates from change, 640
loosely coupled components, 319-322
LRU (least recently used), 141
LSP. See Liskov Substitution Principle (LSP)

M
Maintainability, of objects, 588
Managerial duties, of some objects, 575
Manifests, OSGi, 78, 731-732
Markers, client-specific classification and abstrac-
tion, 171
Master/detail views, in data binding, 488-489
MEDIATOR pattern
delegating events to host objects introduces
implicit mediator, 382-383
mediators adding complexity to code by ex-
tra indirection, 383
mediators encapsulating complex logic, 382
organizing reaction to events, 380-382
Member classes, static, 91-92
MEMENTO pattern, 512-513
Menu managers, 492-493
Menultems, SWT, 491
Menus, connecting SWT menus to actions, 491—
494
Meta level, object level compared with, 226
MEeTHOD OBJECT pattern, 87
Methodology, programming rules and, 303
Methods
associating assertions with, 194-197
checking equality, 5657
checking identity by reference, 55-56
code reuse, 43
contracts capturing object behaviors, 194
contracts for capturing purpose of, 286
contracts of overridden methods, 330-334
convenience methods, 36-37
delegating to subclasses, 50
demanding style, 290-291
events and callbacks, 42—-43
explanatory methods, 41-42
extending inherited behavior, 51

Methods (continued)

factoring state changes into separate meth-
ods, 553

factory methods, 51-55

implementing (processing steps) contracts of,
207-209

justifying based on purpose not implemen-
tation, 205-207

Law of Demeter and, 650

mapping events to, 529-530

method calls are cheap, 8-9

method’s contract, 195

not checking pre-conditions of, 219-220

object-oriented view of, 30—-33

overloading, 33-34

overriding. See Overriding methods

overview of, 30

processing steps and, 37-41

providing meaningful contracts to internal,
209-210

public methods and invariants, 200-201

pure method for specification, 211-212

reflecting conceptual operations, 624

refused bequests, 57-58

representing services as, 82

reuse through inheritance, 44-46

reuse through separate objects, 46-47

reuse through static methods, 47-48

reuse within a class, 43-44

service provider methods, 34-36

sharing data between, 28

for state assertions, 553-554

SWT service methods have contracts, 408

template methods, 48-50

tolerant style, 288-290

writing contracts before, 285-286

MiniXcel example

defining the model, 497-499
incremental screen updates, 500-502
overview of, 494-495

setting up the application, 495497
view-level logic, 502-505

Mock objects

creating, 258-260
testing for temporal safety conditions, 276

Model. See also Model-view separation; MoODEL-

ViEw-CONTROLLER pattern

accessing views through interfaces, 449-450

associating with unique CommandProcessor,
514

connecting viewer to, 476-479

content providers traversing structure of, 477—
478

controllers interpreting events as operations
on, 457-458

controllers observing, 467-468

defining, 497-499

Index

designing model first, 451-452

envisioning interface when creating, 452

event-listeners invoking operations defined
in, 450-451

fixed, not exchangeable, 463

keeping independent, 474-476

maintaining application data and support-
ing observers, 454-455

overview of, 447-449

representing business logic, 446

starting with application domain, 598

tasks performed by, 454

user feedback implemented without partici-
pation in, 464

writing commands at model level, 516

Model fields

encapsulation and, 188

frame conditions for capturing side effects,
212-213

justifying methods based on purpose not im-
plementation, 205-207

phrasing contracts in terms of public knowl-
edge and, 206

presenting external view onto object’s state,
192-193

public invariants relating model fields from
client perspective, 201

showing class purpose and capturing class
abstraction, 204—205

in ThresholdArrayIterator example, 203—
204

Modeling application domain, 597-600
Model-view separation. See also JFace layer; MODEL-

VIEw-CONTROLLER pattern

applying to boundary objects, 600

designing model first, 451-452

event-listeners invoking operations defined
in model, 450

extra complexity paying off over time, 452—
453

filtering and sorting and, 482

keeping user interface and business logic in
different modules, 446

LAYERS pattern and, 669

liabilities, 463

model (business logic) side, 447-449

separating characteristics or concerns of busi-
ness logic from user interface, 444-445

view (interface) side, 449-450

MobDEL- VIEW-CONTROLLER pattern

at application level. See MiniXcel example

basic pattern, 454—457

behavior at user interface level, 464-467

benefits of, 458—460

controllers observing model, 467-468

design and implementation constraints, 460—
462

Index

DocuMENT-VIEW pattern as variant on, 470—
472
misconceptions regarding, 462—-463
model in. See Model
overview of, 453
pluggable controllers, 468-470
processing inputs through view, controller,
and model, 458
view in. See View
watching out for duplicated or complicated
functionality, 627
modifies clause, frame conditions consisting of,
213
Modular design
basing on tests, 249
enforcing neighborhood boundaries, 615
loose coupling and high cohesion in, 647
Modules
costs of creating separate model and view
modules, 452
implementing via plugins, 446
information hiding and, 621
keeping user interface and business logic in
different, 446
layers enabling reuse of lower-level modules,
676
logically connected (cohesive), 647
OSGi module system for Java, 730
shared assumptions and, 645
Motivation, test first principle creating, 283
Mouse, pluggable controllers, 468-470
Move method, Refactoring menu (Alt-shift-T),
47
Move Type to New File, Refactoring menu (alt-
shift-T), 107
Multithreading, thread challenges to correctness
argument, 417
Mutual exclusion
elusive bugs resulting from, 422-423
thread challenges to correctness argument,
418-420
MVC. See MobpEL-VIEW-CONTROLLER pattern

N
Naming conventions, 15-18
Native interface (Java), 363-364
Navigation menu options, 10-11
Neighborhoods of objects, 613-615
Nested classes
extracting, 107
inner classes and, 89-91
uses of, 88-89
Nested state machines
capturing behaviors within states, 544-546
capturing parallel and independent behav-
ior, 546-547
overview of, 544

785

New Wizard example, of responsibility-driven de-
sign, 570-574
Nodes, of CoMPOSITE pattern, 118
Non-redundancy principle (Meyer), 219-220
Notifications
blocking queues for synchronization, 428—
429
class invariants applied to change notifica-
tions, 188
condition variables for inter-thread signals,
425428
constraints of OBSERVER pattern and, 102—
104
forwarding change notifications to viewer,
480-481
interrupt for stopping threads, 429-431
locks providing strong guarantees, 435-436
open calls for, 433-437
sending safely, 105
between threads, 423-425
null object, 93-95

(0]
Object-oriented programming, 4
applying to customization of widgets, 385
fields as private property of objects, 19
inheritance and, 143
motivation for, 44
polymorphism in, 31
programming by difference, 154
programming paradigms, 580
subtyping, 145
what objects do, 79
Objects
algorithms and temporary data and, 86—87
anonymous classes and, 92-93
application objects for linking to use cases,
599-600
applications consist of collaborating objects,
4
boundary objects, 87-88, 600—603
brief description of behavior of, 5-6
categories of responsibilities, 578-579
class loader objects, 730
comparing object level with meta level, 226
compound objects. See Compound objects
contracts establishing consistent external view
of behavior, 191-192
creating by technical necessity, 603604
domain objects, 597-600
event-driven approach for loose coupling, 666—
667
extensions in separate object and base classes,
693-697
hierarchical structures. See Hierarchical struc-
tures

786 Index

Objects (continued) Source menu for code generation patterns,

identifying and assigning responsibilities to, 13

579-581, 596-597 Surround With tool (a1t-shift-z), 12-13
identity of, 6 OBSERVER pattern
importance of objects not classes, 4 background jobs example, 99-101
as information holder, 82-83 compound objects and, 115-116
inner classes and, 89-91 connecting user interface to business logic,
life cycle of, 7 447-449
as lightweight, active, black-box entities, 4— decoupling and, 640-641

5 design and implementation constraints in use
making compound widgets into, 369 of, 101-104
managerial duties of, 575 in editing, 169-170
managing untyped objects with viewers, 479— extensibility and, 679

480 flexibility of, 104-107
mapping states to object fields, 528-529 invariants and callbacks and, 215-218
neighborhoods of objects, 613-615 judging need for observers, 107-108
nested classes and, 88—89

maintaining cross-object invariants loosely,
network of collaborating, 568-569 318-323

not overemphasizing efficiency in use of, 7-8
null object, 93-95

organizing work of others, 610-612
overview of, 3—4

part relationship to whole, 298-300

placing library objects in design explicitly,

not tailoring to specific view, 461

propagating changes of state, 97-98

testing for temporal safety conditions, 276
Open calls

decreasing lock contention, 436

endangering correctness, 436-437

607608 for notifications, 433—435
preferred over data structures (Law of Deme- o Servi G TR 0SGi
ter), 651 pen Services Gateway initiative (i)

accessing native libraries, 366
as application platform, 739
role stereotypes, 80-81 bottom layer of plugin mechanism, 729

g . bundle structure, 731-734
roles aiding focus on expected behavior of,
259-960 module system and, 730

roles for grouping by behavior, 656—658 paclfage support, 78
roles of, 574577 testing bundles, 262-263

working with bundles, 734-739
Open/Closed Principle, SOLID principles, 634

in responsibility design, 569
reuse, 85—86, 711-712

as service providers, 81-82
small size and cheapness of method calls, 8—

9 Opposite references, in Eclipse Modeling Frame-
SRP and, 586-590 work, 317
state and reactions, 524 Optimistic concurrency, in JPA, 280
state of, 6-7 Organize Imports tool, 77
static rr;ember classes and, 91-92 Orthogonal regions, capturing parallel and inde-
tagging with current owners, 305, 307 pendent behavior, 546-547
as team players, 6 OSGi. See Open Services Gateway initiative (OSGi)
using instead of primitives, 653 Overloading methods, 33-34
value objects, 83-85 Overriding methods
what they do, 79 in adapting behaviors, 154
Objects, developing with. See Tools code reuse and, 143
Auto-Complete (Ctrl-space), 12 contracts and, 330-334
continuous improvement of code, 9-10 extending inherited behavior and, 51
editing code, 9 in framework classes, 360
naming and, 15-18 methods belong to objects not classes, 32—
navigation features, 10-11 33
overview of, 9 overloading and, 34
Quick-Fixes (ctr1i-1), 11-12 refused bequests and, 57-58
refactoring for incremental improvements, 13— weakening pre-condition and strengthening

15 post-condition, 332-333

Index

Ownership

collaboration and, 22

compound objects and, 109-112

as dynamic property, 303-305

encapsulation and, 113

invariants for owned objects, 300-308

Law of Demeter and, 649-651

limitations/restrictions resulting in simpli-
fied reasoning and less bugs, 302-303

of object parts, 298-299

proof obligation in establishing owner’s in-
variant, 304-305

tagging objects with current owners in ghost
state, 305, 307

P
Package Explorer view, 73
Packages
as components, 77-78
FAcADE pattern, 78
overview of, 77
Parallel code execution, threads and, 413-416
Parent/child relationship. See also Hierarchical
structures
determining placement of child management
in CoMPOSITE pattern, 120-121
determining z-order and minimization of par-
ent shells, 378
enforcing consistency of parent references,
111-112
Parsers
building reusable, 717-722
transforming concrete syntax to abstract syn-
tax, 131-132
Part, relationship to whole object, 298-300
Patterns, format of presentation, xxii—xxiii
PDE (plugin development environment), 729
Periodic behaviors/jobs
running in background, 407
timers for, 391
Persistence mechanism, Eclipse Modeling Frame-
work, 127
P1pEs-aAND-FILTERS pattern
describing responsibilities and collaborations,
710
elementary processing steps, 709
incremental processing for low latency, 707—
708
overview of, 705-707
pipes synchronizing processing between fil-
ters, 708-709
prototyping and stateless computing, 709—
710
sharing format for input and output, 707
Plugin development environment (PDE), 729
Plugin Manifest Editor, 689-691, 730

787

Plugins
auto-complete and, 12
bundle structure, 731-734
bundles synonymous with, 262
contributing to Eclipse IDE, 745-746
defining target platforms, 739-743
delivering and maintaining, 749-750
delta pack plugin, 367
Eclipse applications and, 746
implementing modules via, 446
installing in workspace, 746-748
Java programs and, 749
JUnit tests, 262-263, 744-745
launching, 744
learning how to use Eclipse tool support,
687
OSGi as application platform, 739
OSGi module system for Java, 730
SWT used for plugin projects, 354-355
working with bundles, 734-739
working with plugins, 729-730
plugin.xml, 738
Polymorphism, in object-oriented programming,
31
Post-conditions
for break, continue, and return, 238-239
associating assertions with methods, 194—
197
constructors and, 211
event-listeners not suited for, 408-409
exceptions and, 327-328
overriding and strengthening, 332-333
preferences for weak or strong, 287-288
subtyping modifying contracts, 333-334
Pre-condition availability principle (Meyer), 206
Pre-conditions
associating assertions with methods, 194—
197
enabling constructor to establish invariant,
211
event-listeners not suited for, 408-409
justifying methods based on purpose not im-
plementation, 205-207
not checking method pre-conditions, 219—
220
overriding and weakening, 332-333
preferences for weak or strong, 287—288
subtyping modifying contracts, 333-334
tolerant methods have weaker pre-conditions,
289
trust and, 221-223
verification and, 228, 231-232
weakest pre-condition, 228
Previews, tests for preview notification, 272
Primary modal, SWT levels of dialog modality,
376
Primitives, object use instead of, 653

788

private
invariants and, 208
invariants and inheritance and, 337
visibility levels in inheritance, 145-147
Production code, tests remaining in sync with,
270
Production objects, simulating behavior of, 258
Productivity, testing boosts, 245
Profilers, finding bottlenecks and, 8
Program logic, exceptions for clarifying, 62-63
Programming, simplified reasoning and fewer bugs
in, 302-303
Programming by difference, 154
Programming languages
class-based vs. object-based, 4
domain-specific, 128-129
Progress
documenting progress of a project, 274-275
progress monitors, 404—405
progress reports, 405-406
ProgressManager class, 448
ProgressView class, 448
Properties
configuration properties (flags), 24
object fields, 22-23
Properties views, client-specific classification and
abstraction, 171
Proposals, Java editor, 700-703

protected abstract methods, TEMPLATE METHOD

pattern, 146
protected fields, comparing with public fields,
19
protected methods
availability through inheritance, 44
introducing hidden responsibilities, 619
invariants and inheritance and, 337
public methods compared with, 36
visibility levels in inheritance, 145-147
Protection proxies, PrRoxy pattern, 141
Proxy pattern
overview of, 140-141
SWT widgets as proxy for native counter-
parts, 364
Public (type) invariants, 201
public fields
comparing with protected fields, 19
properties and, 23
public methods
invariants and, 217-218
protected methods compared with, 36
visibility levels in inheritance, 145-147
Pull model, vs. push model in observer interface,
105
Pull up
for method/field extraction, 45
Refactoring menu (Alt-shift-T), 45, 49
for templates, 49

Index

Pure method, for specification, 211-212

Push down, Refactoring menu (Alt-shift-T), 50

Push model, vs. pull model in observer interface,
105

Q

Quick-Fixes (ctr1i-1)
creating and initializing fields, 72
creating method from call, 38
functionality of, 11-12

R
Reactions, in state machines
effects capturing, 527
events triggering, 524-525
guards capturing side-conditions, 531-532
object state and, 524
Reasonable pre-condition principle (Meyer), 206
redo, COMMAND pattern and, 509-510
Refactoring
bundles, 735
for change, 276277
changing names and, 16
“Don’t repeat yourself” (DRY) principle and,
633
for incremental improvements, 13—15
widgets into compound widgets, 374
Refactoring menu (Alt-Shift-T)
Change Signature, 33
Convert Anonymous to Nested Class, 107
Convert Local Variable to Field, 28
Encapsule Field, 22
Extract Class, 46
Extract Constant, 29
Extract Interface, 180
Extract Superclass, 45
Extract/Extract Variable, 39
Inline, 42
Inline Variable, 40
Move Method to Helper, 47
Move Type to New File, 107
Pull up, 45, 49
Push down, 50
Rename, 16
Reference counting, for managing memory objects,
312-313
Reference semantics, in handling objects, 55
Refused bequests, methods, 57-58
Regression tests, 248-249
RELAXED LAYERS pattern, 677
Remote method invocation (RMI), 141
Remote proxies, 141
Rename, Refactoring menu (alt-shift-T), 16
Requirements
aligning test cases with functional require-
ments, 275
finding and documenting, 272-274

Index

Resources
avoiding deadlocks by resource ordering, 438—
440
sharing, 416-417
use by DatePicker widget, 373
workspace structure and, 115
Responsibility-driven design
categories of object responsibilities, 578-579
collaboration and, 581-583
compositionality, 628-630
CRC cards for, 583-584
decision making and, 585
design must be traceable to implementation,
569
design principles, 574
design-code traceability, 630-631

“Don’t repeat yourself” (DRY) principle, 631—

634
function plotter example. See Function plot-
ter example
fundamental goals and strategies, 620-621
goal-oriented decision making, 577-578
hierarchy and, 616-620
identifying and assigning responsibilities to
objects, 579-581
information hiding and encapsulation, 621—
625
iterative process (design, evaluate, improve),
585
managerial duties of some objects, 575
neighborhoods of objects, 613-615
network of collaborating objects in, 568—-569
New Wizard example, 570-574
object roles. See Roles
object use, 569
overview of, 567
Separation of Concerns, 625-628
Single Responsibility Principle, 586-590
Single Responsibility Principle and abstrac-
tion, 590-591
Single Responsibility Principle and change-
ability, 591-593
SOLID principles, 634-636
starting design from idea of a solution, 584
return, reasoning about, 238
Return types, choosing neutral structures for, 624
Reuse/reusability
base classes for reusable infrastructure, 148—
150
building a reusable parser, 717-722
challenge of, 711-712
compositionality fosters, 630
“Don’t repeat yourself” (DRY) principle and,
633-634
extension interfaces complicating, 703-704
factoring out tasks and, 606

789

layers enabling reuse of lower-level modules,
676
objects, 85—-86
overview of, 710
strategies for, 722-725
widgets in, 374
Wizard dialog example (JFace), 712-716
RMI (remote method invocation), 141
Robustness, tolerance as variant on, 289-290
Role stereotypes, in object use, 80-81
Roles
aiding focus on expected behavior of ob-
jects, 259-260
capturing behavioral abstraction, 618-619
changeability and, 612-613
combining with boundary objects for ab-
straction, 664
combining with factories, 665
designing collaborators as, 718-719
grouping objects by behavior, 656-658
of objects, 574-575
as sets of responsibilities, 575-577
Rule of Three, 86, 578
Runnables, starting code fragments in parallel,
413
Runtime, checking assertions at, 218-219
Run-to-completion, effects, 527

S
Safety, testing for, 275276
Scheduler
Active OBJECT pattern, 433
nondetermistic decisions, 414-415
Screen updates. See also Displays
following MVC pattern, 483-484
incremental, 500—-502
Selections
in editing, 169
treating as view-level state, 502-503
widgets using selection events, 348
Sentinel node, in object initialization, 71
Separation logic, 240
Separation of Concerns. See also Model-view sep-
aration
cohesion as opposite of, 648-649
LAYERS pattern and, 669
in responsibility-driven design, 625-628
Servant, AcTivE OBJECT pattern, 433
Service methods, 34-36, 408
Service providers
methods as, 34-36
object uses, 81-82
passive, 605
role stereotypes, 80
Services
interception points as hooks for adding, 681—
682

790

Services (continued)
JFace viewers providing high-level services
at application level, 481-482
offered to callbacks, 715-716
representing methods as, 82
Servlets, 73
Setters, for specification of properties, 22—23
Sharing
coupling arising from shared assumptions,
643-646
data between methods, 28
invariants for shared objects, 308-310
structure sharing, 112-113, 121
thread challenges to correctness argument,
416-417
Shells
interaction with window manager, 378-379
modality determining whether it blocks other
windows, 376-377
parent element determining z-order and min-
imization, 378
placement using global, absolute coordinates,
379
top-level window in SWT, 343-344
windows as, 375
Short-terms plans, validation of, 631
Show View dialog, 697
Side effects
documenting in API, 213
in expressions, 237-238
frame conditions for capturing, 212—-213
Signature, of method
overview of, 32
tool for changing, 33
The Single Responsibility Principle
abstraction and, 590-591
assigning responsibilities to match goal of,
624
compositionality requires, 629
isolating crucial functionality into dedicated
components, 275-276
overview of, 586-590
Separation of Concerns encouraging, 626
SOLID principles, 634
SINGLETON pattern
abstract factories that hide implementation,
54
implementing, 29
Sites, collaboration and, 22
Smalltalk
class-based language, 4
fields as private property of objects, 19
methods belong to objects not classes, 31—
32
Smart references, 141

Index

Software
development starts by writing tests, 250—
251
modeling application domain and, 598-599
as network of collaborating objects, 569
Separation of Concerns, 626
testing happy path, 257
tests indicating when development project
is complete, 283
Software verification (Hoare), 193
SOLID principles, in responsibility-driven design,
634-636
SortedIntArray, bug testing example, 266-268
Sorting, instances of model-view separation, 482
Source menu, for code generation patterns, 13
Source/Create Constructor from Superclass (Alt-s
c), 74
Source/Format (Ctrl-shift-r), 9-10
Source/Generate (21t-s R)
Delegate Methods, 163
Getters and Setters, 22—-23
hashCode and equals, 5657
Source/Override or Implement Methods (alt-s
v), 33
SourceViewer
example of lightweight, active, black-box na-
ture of objects, 4
factory methods and, 53
preference of delegation over inheritance, 155—
156
Specification, pure method for, 211-212
Spurious wakeups, 427
SQL injection attacks, 220
Stack machines
complex visitors containing conceptual stack
machines, 135-136
for efficient execution of languages, 135
obtaining code by post-order traversal of syn-
tax tree, 133-135
overview of, 132-133
stack-based processing in visitors, 136
Stamp coupling, 640
Standard Widget Toolkit (SWT)
adaption points in frameworks, 360-362
animations, 391-393
background jobs, 393-394
building professional applications, 364
choosing events, 349
compound widgets, 367-374
creating and launching SWT applications,
354-355
custom painting for widgets, 383—-387
dialogs, 374-380
Encapsulation wrappers in SWT widget li-
brary, 141-142
framework use in development, 355

Index

frameworks relying on inversion of control,
356-360

goals of frameworks, 355-356

impact of widgets on API, 364-366

impact of widgets on application launch, 366—
367

JFace facilitation of higher-level functional-
ity, 472

laying out widgets, 344-347

liabilities of frameworks, 362—-363

long-running tasks, 401-407

MEDIATOR pattern and, 380-383

MenuItems, 491

native interface and, 363-364

notifying application about user actions, 347—
348

overview of, 341-342

periodic jobs, 407

representing user interface as tree of wid-
gets, 343-344

reviewing events and contracts, 407-412

SWTBot simulating events fired by widgets,
264-266

threads and user interface, 394-401

timeouts and delays, 388-391

timers, 387-388

user interfaces providing access paths to func-
tionalities, 349-351

WindowBuilder, 351-354

abstract state of objects, 25

abstraction of state over object content, 526

capturing incremental changes, 507-508

capturing state-dependent behavior, 525-526

configuration, 547

encapsulating internal, 512-513

explicit encoding of abstract, 555-558

factoring state changes into separate meth-
ods, 553

formulating assertions about current, 204

implicit, 554-555

inherent meaning, 526-527

initial and final, 540

internal transitions triggering effects with-
out leaving current state, 535

mapping to object fields, 528-529

object state and reactions, 524

of objects, 6-7

observers updating, 115

preconstructed states for rapid switching,
562

propagating changes by OBSERVER pattern,
97-98

reverting to model state (undo ()), 510

self-transitions leaving and reentering, 540

states-as-assertions, 548-555

791

substates capturing behaviors within states,
544
when to use static state objects, 562
State machines
abstraction of state over object content, 526
aligning with implementation, 528
capturing state-dependent behavior precisely,
525-526
completion transitions, 540-541
correctness and clean structure of code, 530—
531
effects, 527
enter and exit effects, 535
events triggering reactions, 524-525
explicit states, 555-558
guards capturing reaction side-conditions, 531—
532
help in understanding existing code, 534—
535
impact on code structure, 535-540
initial and final states, 540
internal transitions triggering effects with-
out leaving current state, 535
line editor example, 547—548
mapping events to methods, 529-530
mapping states to object fields, 528-529
nested, 544-547
object state and reactions, 524
ongoing activities, 541-544
overview of, 523
precise but real applications requiring more
elements, 532—-533
self-transitions leaving and reentering state,
540
states-as-assertions, 548-555
states having inherent meaning, 526-527
STATE pattern
careful use of, 562—-563
extensibility and, 679
introduces event-handling infrastructure, 559—
561
overview of, 558—559
preconstructed states for rapid switching,
562
Static fields, reserving for special situations only,
28-30
Static member classes, 91-92
Static methods
avoiding, 48
code reuse through, 47
constructors and, 75-76
Stories, objects telling, 589
Strategies, design. See Design strategies
STRATEGY pattern
designing roles and, 613
encapsulation of algorithms as objects, 25

792

STRATEGY pattern (continued)
parameterization of objects, 24-25
sharing data between methods, 28
Strong assertions. See Assertions
Structural subtyping, 145
Structure sharing
CoMPOSITE pattern and, 121
compound objects and, 112-113
Structures
protecting by wrapping, 322—-323
role stereotypes, 80
Subclasses
adapting behavior, 154
base classes providing infrastructure for in-
teracting with, 148
contract inheritance for, 330-332
coupled tightly to superclass, 156
delegating methods to, 50
interfaces between base class and, 145-147
invariants and inheritance and, 334-338
widgets must not be subclassed, 364
Substates
capturing behaviors within states, 544-546
capturing parallel and independent behav-
ior, 546547
Subsystems
decoupling, 178-182, 642
isolating using boundary objects, 662, 664—
665
Subtasks, delegating, 604-606
Subtyping
contract modification and, 333-334
contracts and, 329-330

defined, 145
inheritance and, 148
Superclasses
classes taking on responsibilities of, 618
defined, 143

for extracting common infrastructure of Com-
POSITE pattern, 119-120
inheriting class methods, 32
invariants and inheritance and, 334-338
Liskov Substitution Principle, 144
tight coupling of subclasses, 156
tool for generating constructor from, 74
Surround With tool (alt-shift-z)
algorithms and temporary data and, 87
functionality of, 12-13
Swing framework, 363-364, 661
SWT. See Standard Widget Toolkit (SWT)
Synchronization
of notifications, 428-429
preferred over incremental updates, 325-326
Syntax, parsers transforming concrete syntax to
abstract syntax, 131-132
System boundaries
boundary objects, 87-88, 600-603, 661-665

Index

interface belonging to, 491
as source of exceptions, 61-62
trust and, 219-223
System core, protected by model-view separation,
460
System modal, SWT levels of dialog modality, 376

T
TableViewer
forwarding change notifications to viewer,
480-481
JFace targeting specific widget types, 473—
474
Tags

as special case of ghost state, 216-217
tagging interface to objects, 182
Target platform, defining for plugins, 739-743
Task execution framework, 402
Task performance, categories of object responsi-
bilities, 578-579
Tasks
categories of object responsibilities, 578-579
changeability and, 612-613
delegating subtasks, 604—606
long-running. See Long-running tasks
MVC pattern and, 454
neighborhoods of objects working on, 614
Team members, tests documenting usage, 280
TEMPLATE METHOD pattern
adapting generic mechanism of base classes,
148-149
allowing applications to track single jobs,
402
extensibility and, 678
extracting common infrastructure of Com-
POSITE pattern, 119-120
maintaining invariants loosely, 318
protected abstract methods, 146
subclassing and, 329-330
uses of, 48-50
Temporary data, METHOD OBJECT pattern and,
87
Test first principle
applying to intended project, 272273
creating motivating feedback, 283
for effective documentation, 253
ensuring testability, 252-253
focusing on client perspective, 252

starting software development by writing tests,

250-251
using tests to create focus, 251-252
Test-driven development, 250
Testing
application functionality, 460
basing modular design on, 249
boosting productivity, 245
bundles, 262-263

Index

capturing contracts, 268270
confirming test by seeing it fail, 248
creating better work-life balance, 282-283
creating fixtures for examination of objects,
246-248
creating mock objects for, 258—-260
dependency injection helps in creating fix-
tures, 260—262
documenting project progress, 274275
driving design process, 274
enabling change, 276277
finding and documenting requirements, 272—
274
fixing bugs, 266-268
guidelines for test development, 253-257
independence and reproducibility of, 255—
256
in interface design, 270-272
overview of, 243244
running frequently and automating, 245-246
for safety, 275-276
starting unit tests, 244-245
test first principle, 250-253
understanding APIs, 277-282
user interface, 263—-266
writing regression tests, 248-249
Text, managing in Eclipse source editors, 19-20
Thread confinement, object ownership and, 301
Threads
accessing Ul using asyncExec, 395-398
asynchronous messages, 431-433
challenges related to cross-object invariants,
421-422
challenging correctness argument, 416-417
deadlocks, 437-441
determining which runs, 414-415
ensuring starting and stopping, 431
event thread, 400-401
interference and, 417-418
interrupt for stopping, 429-430
keeping track of code running in background,
398-399
mutual exclusion and, 418-420, 422-423
notifications between, 423—431
open calls for notification, 433-437
parallel code execution and, 413-414
programming challenges of, 415-416
protecting against interference as part of en-
capsulation, 420-421
task execution framework, 402
timers preferred for long-running tasks, 401—
402
user interface and, 394-401
Thread-safe objects, 420-421

793

ThresholdArrayIterator (iterator over arrays) con-
tract example
class invariants including safety conditions,
205
constructors initializing invariants, 210-211
formulating assertions about current state,
204
frame conditions for capturing side effects,
212-213
implementing (processing steps) contracts of
methods, 207-210
invariants and model fields and, 203—-204
justifying methods based on purpose not im-
plementation, 206-207
model fields showing class purpose and cap-
turing class abstraction, 204-205
overview of, 201-203
phrasing contracts in terms of public knowl-
edge and model fields, 206
pure method for specification, 211-212
Throwing exceptions
contract inheritance and checked exceptions,
334
maintaining invariants despite, 329
throw keyword, 58
when post-condition cannot be established,
327
Tight coupling
high cohesion potential in, 649
Law of Demeter and, 649-651
subclass to superclass, 156
Timeouts, using SWT timers, 388—391
Timers
animations, 391-393
overview of, 387—-388
preferred to threads for long-running tasks,
401-402
timeouts and delays, 388-391
Tolerant style, methods, 288—-290
Toolbars, JFace adding entries to, 491-494
Tools, learning how to use Eclipse support, 687
Transitions, state
capturing state-dependent behavior precisely,
525-526
completion transitions, 540-541
guards enabling or preventing, 531-532
internal transitions triggering effects with-
out leaving current state, 535
self-transitions leaving and reentering state,
540
Traversal options, tree structures
of syntax tree, 133
top-down (pre-order) or bottom-up (post or-
der), 126
Trees. See Hierarchical structures
Trust, boundary objects and, 88

794

try/catch blocks, in exception handling, 59-61
Tutorials, learning frameworks, 363

U
Uls. See User interfaces (Uls)
UML class relationships, 109-110
Unchecked exceptions
types of exceptions, 68—70
uses of, 329
Undo/redo actions
CoMMAND pattern and, 506-513
CoMMAND PROCESSOR pattern and, 513—
515
effort involved, 515-517
overview of, 505-506
real world examples, 517-520
reverting to model state (undo ()), 510
Unified Expression Language (EL)
example of DSL, 129
interpretation method assigning meaning to
operator objects, 130-131
interpretation requiring context object, 129—
130
Unit tests. See also Testing
applying to plugins, 744-745
basing modular design on, 249
boosting productivity, 245
confirming test by seeing it fail, 248
creating fixtures for examination of objects,
246248
creating mock objects, 258-260
dependency injection helps in creating fix-
tures, 260-262
guidelines for test development, 253-257
overview of, 244
running frequently and automating, 245-246
starting, 244-245
testing bundles, 262-263
testing user interface, 263—-266
writing regression test for every bug, 248
249
Updates
data binding and update strategies, 489
disallowing for shared objects, 311
keeping tests up to date, 254
synchronization preferred vs. incremental up-
dates, 325-326
Usability, adapting user interface to user expec-
tations, 349-350
Use cases
aligning test cases with functional require-
ments, 275
application objects for linking to, 599-600
checking frameworks for coverage, 364
collection of comprising software project, 274
User interfaces (Uls). See also Interfaces
accessing from background threads, 395-398

Index

behavior at user interface level, 464—467

building with SWT, 351

factoring out common behavior, 147-148

graphical editor for. See WindowBuilder

MVC pattern and, 453

providing access paths to functionalities, 349—
351

separating from business logic. See Model-
view separation

SWT represented as tree of widgets, 342—
343

system boundaries and, 411-412, 491

testing, 263266

toolkit, 402—403

undo/redo infrastructure, 516

writing code for, 354

Users, gearing applications towards user require-

ments, 443

\"}
Validation
data binding and, 489—491
of short-term plans, 631
Value objects, 83-85
Variables
Extract variable method, 39
Inline variable, 40
Verification condition generation
correctness proof starting with, 228
loop invariants and, 231-232
Versioning, for invariants of shared objects, 314—
316
View. See also Model-view separation; MODEL-
VIEw-CONTROLLER pattern
behavior at user interface level, 464—-467
collaboration and, 22
constructing view-related information, 449
creating by reflection, 73
displaying data on screen, 455-456
in DocUMENT-VIEW pattern, 470-472
incremental screen updates, 500-502
envisioning user interface when creating model,
452
forwarding user input to controller, 457
keeping display up-to-date by observing model,
456
in MiniXcel example, 502-505
model accessing through interfaces, 449-450
multiple, synchronized views supporting user
workflows, 459
in MVC pattern, 453
navigation features, 10-11
not reusable, 463
Progress view, 448
representing user interface, 446
tasks performed by, 454

Index

user interface must be flexible, 459
as windows in Eclipse IDE, 697-700
Viewers, JFace

accessing application data, 474

connecting to model via content provider,
476-479

creating widget and its viewer together, 476

forwarding change notifications to, 480481

managing untyped objects, 479-480

providing high-level services at application
level, 481-482

targeting specific widget types, 473

Virtual machines. See Java Virtual Machines (JVMs);

Stack machines
Virtual proxies, PrRoxy pattern, 141
VISITOR pattern
downcasts and instanceof, 159
extensibility and, 679
inability to obtain results computed on child
nodes, 127
as instance of double dispatch, 125-126
node types fixed in, 127
overview of, 122-124
stack-based processing in, 136
top-down or bottom-up traversal options,

126

w

Weak assertions, balancing with stronger, 286—
288

Weakest pre-condition, 228
White-box frameworks, 360
White-box tests, 254—255
Widget tree, encapsulation and, 113
Widgets
accessing in event dispatch thread, 395
avoiding or restricting customization, 383—
384
class hierarchy of SWT and, 343-344
compound widgets, 367-374
data binding, 484
deriving from canvas, 384
impact on API, 364-366
launching applications, 366-367
layout is recursive top-down process, 346—
347

795

making compound widgets take on self-
contained responsibilities, 601-602
mapping data to, 351, 670
not specifying pixel-based positions or sizes
of, 345-347
painting, 384-387
predefined widgets accessing API directly,
471-472
refactoring into compound, 374
reuse, 374
SWT user interface as tree of, 342—-343
SWTBot simulating events fired by, 264-266
treating selection as view-level state, 502—
503
Window manager, shell interaction with, 378-379
Window system, Display element for accessing,
351
‘WindowBuilder
creating and launching SWT applications,
354-355
data binding tool, 484
overview of, 351-354
referencing custom widgets, 367
setting images of label and buttons, 366
Wizard object
JFace layer, 572
reuse example, 712-716
Workbench parts, collaboration and, 22
Work-life balance, 282-283
Workspace, installing plugins, 746-748
Wrappers
ADAPTER pattern, 137-139
DEcorATOR pattern, 139-140
encapsulation wrappers, 141-142
overview of, 136-137
Proxy pattern, 140-141

Y
YAGNI (you aren’t gonna need it), 715

z
Zest

graph-drawing library, 86

laying out directed graph, 325-326
z-order, shells, 378

	Cover
	Contents
	Preface
	Acknowledgments
	About the Author
	Introduction
	Chapter 9 Structuring Applications with Graphical Interfaces
	9.1 The Core: Model-View Separation
	9.2 The Model-View-Controller Pattern
	9.2.1 The Basic Pattern
	9.2.2 Benefits of the Model-View-Controller Pattern
	9.2.3 Crucial Design and Implementation Constraints
	9.2.4 Common Misconceptions
	9.2.5 Behavior at the User Interface Level
	9.2.6 Controllers Observing the Model
	9.2.7 Pluggable Controllers
	9.2.8 The Document-View Variant

	9.3 The JFace Layer
	9.3.1 Viewers
	9.3.2 Finishing Model-View-Controller with JFace
	9.3.3 Data Binding
	9.3.4 Menus and Actions

	9.4 The MVC Pattern at the Application Level
	9.4.1 Setting up the Application
	9.4.2 Defining the Model
	9.4.3 Incremental Screen Updates
	9.4.4 View-Level Logic

	9.5 Undo/Redo
	9.5.1 The Command Pattern
	9.5.2 The Command Processor Pattern
	9.5.3 The Effort of Undo/Redo
	9.5.4 Undo/Redo in the Real World

	9.6 Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

