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Preface

This is an unusual book. This is not a technical book. It is a book of strategies
and frameworks and anecdotes and tacit knowledge accumulated from decades
of experience as system administrators.

Junior SAs focus on learning which commands to type and which buttons to
click. As you get more advanced, you realize that the bigger challenge is under-
standing why we do these things and how to organize our work. That’s where
strategy comes in.

This book gives you a framework—a way of thinking about system admin-
istration problems—rather than narrow how-to solutions to particular problems.
Given a solid framework, you can solve problems every time they appear, regard-
less of the operating system (OS), brand of computer, or type of environment. This
book is unique because it looks at system administration from this holistic point of
view, whereas most other books for SAs focus on how to maintain one particular
product.With experience, however, all SAs learn that the big-picture problems and
solutions are largely independent of the platform. This book will change the way
you approach your work as an SA.

This book is Volume 1 of a series. Volume 1 focuses on enterprise infra-
structure, customer support, and management issues. Volume 2, The Practice of
Cloud SystemAdministration (ISBN: 9780321943187), focuses onweb operations and
distributed computing.

These books were born from our experiences as SAs in a variety of organi-
zations. We have started new companies. We have helped sites to grow. We have
worked at small start-ups and universities, where lack of funding was an issue.
We have worked at midsize and large multinationals, where mergers and spin-
offs gave rise to strange challenges. We have worked at fast-paced companies
that do business on the Internet and where high-availability, high-performance,
and scaling issues were the norm. We have worked at slow-paced companies at
which “high tech” meant cordless phones. On the surface, these are very different
environments with diverse challenges; underneath, they have the same building
blocks, and the same fundamental principles apply.

xxxix
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Who Should Read This Book
This book is written for system administrators at all levels who seek a deeper
insight into the best practices and strategies available today. It is also useful
for managers of system administrators who are trying to understand IT and
operations.

Junior SAs will gain insight into the bigger picture of how sites work,
what their roles are in the organizations, and how their careers can progress.
Intermediate-level SAswill learn how to approachmore complex problems, how to
improve their sites, and how tomake their jobs easier and their customers happier.

Whatever level you are at, this book will help you understand what is behind
your day-to-day work, learn the things that you can do now to save time in the
future, decide policy, be architects and designers, plan far into the future, negotiate
with vendors, and interface with management.

These are the things that senior SAs know and your OS’s manual leaves out.

Basic Principles
In this book you will see a number of principles repeated throughout:

• Automation: Using software to replace human effort. Automation is critical.
We should not be doing tasks; we should be maintaining the system that does
tasks for us. Automation improves repeatability and scalability, is key to eas-
ing the system administration burden, and eliminates tedious repetitive tasks,
giving SAs more time to improve services. Automation starts with getting the
process well defined and repeatable, whichmeans documenting it. Then it can
be optimized by turning it into code.

• Small batches:Doingwork in small increments rather than large hunks. Small
batches permit us to deliver results faster, with higher quality, and with less
stress.

• End-to-end integration: Working across teams to achieve the best total result
rather than performing local optimizations that may not benefit the greater
good. The opposite is to work within your own silo of control, ignoring the
larger organization.

• Self-service systems: Tools that empower others to work independently,
rather than centralizing control to yourself. Shared services should be an
enablement platform, not a control structure.

• Communication: The right people can solve more problems than hardware
or software can. You need to communicate well with other SAs and with
your customers. It is your responsibility to initiate communication. Commu-
nication ensures that everyone is working toward the same goals. Lack of
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communication leaves people concerned and annoyed. Communication also
includes documentation. Documentation makes systems easier to support,
maintain, and upgrade. Good communication and proper documentation also
make it easier to hand off projects and maintenance when you leave or take
on a new role.

These principles are universal. They apply at all levels of the system. They apply
to physical networks and to computer hardware. They apply to all operating sys-
tems running at a site, all protocols used, all software, and all services provided.
They apply at universities, nonprofit institutions, government sites, businesses,
and Internet service sites.

What Is an SA?
If you asked six system administrators to define their jobs, you would get seven
different answers. The job is difficult to define because system administrators do
so many things. An SA looks after computers, networks, and the people who use
them. An SA may look after hardware, operating systems, software, configura-
tions, applications, or security. An SA influences how effectively other people can
or do use their computers and networks.

A system administrator sometimes needs to be a business-process consul-
tant, corporate visionary, janitor, software engineer, electrical engineer, economist,
psychiatrist, mindreader, and, occasionally, bartender.

As a result, companies give SAs different titles. Sometimes, they are called net-
work administrators, system architects, system engineers, system programmers,
operators, and so on.

This book is for “all of the above.”
We have a very general definition of system administrator: one who manages

computer and network systems on behalf of another, such as an employer or a
client. SAs are the people who make things work and keep it all running.

System Administration Matters
System administration matters because computers and networks matter. Comput-
ers are a lot more important than they were years ago.

Software is eating the world. Industry after industry is being taken over
by software. Our ability to make, transport, and sell real goods is more dependent
on software than on any other single element. Companies that are good at software
are beating competitors that aren’t.

All this software requires operational expertise to deploy and keep it running.
In turn, this expertise is what makes SAs special.
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For example, not long ago, manual processes were batch oriented. Expense
reports on paper forms were processed once a week. If the clerk who processed
themwas out for a day, nobody noticed. This arrangement has since been replaced
by a computerized system, and employees file their expense reports online, 24/7.

Management now has amore realistic view of computers. Before they had PCs
on their desktops, most people’s impressions of computers were based on how
they were portrayed in films: big, all-knowing, self-sufficient, miracle machines.
The more people had direct contact with computers, the more realistic people’s
expectations became. Now even system administration itself is portrayed in films.
The 1993 classic Jurassic Park was the first mainstream movie to portray the key
role that system administrators play in large systems. The movie also showed how
depending on one person is a disaster waiting to happen. IT is a team sport. If only
Dennis Nedry had read this book.

In business, nothing is important unless the CEO feels that it is important.
The CEO controls funding and sets priorities. CEOs now consider IT to be impor-
tant. Email was previously for nerds; now CEOs depend on email and notice even
brief outages. The massive preparations for Y2K also brought home to CEOs how
dependent their organizations have become on computers, how expensive it can
be to maintain them, and how quickly a purely technical issue can become a seri-
ous threat. Most people do not think that they simply “missed the bullet” during
the Y2K change, but rather recognize that problemswere avoided thanks to tireless
efforts by many people. A CBS Poll shows 63 percent of Americans believe that the
time and effort spent fixing potential problems was worth it. A look at the news
lineups of all three major network news broadcasts fromMonday, January 3, 2000,
reflects the same feeling.

Previously, people did not grow up with computers and had to cautiously
learn about them and their uses. Now people grow up using computers. They con-
sume social media from their phones (constantly). As a result they have higher
expectations of computers when they reach positions of power. The CEOs who
were impressed by automatic payroll processing are being replaced by people who
grew up sending instant messages all day long. This new wave of management
expects to do all business from their phones.

Computers matter more than ever. If computers are to work, and work well,
system administration matters. We matter.

Organization of This Book
This book is divided into the following parts:

• Part I, “Game-ChangingStrategies.”This part describes how tomake the next
big step, for both those who are struggling to keep up with a deluge of work,
and those who have everything running smoothly.
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• Part II, “Workstation Fleet Management.” This part covers all aspects of lap-
tops and desktops. It focuses on how to optimize workstation support by
treating these machines as mass-produced commodity items.

• Part III, “Servers.” This part covers server hardware management—from the
server strategies you can choose, to what makes a machine a server and what
to consider when selecting server hardware.

• Part IV, “Services.” This part covers designing, building, and launching ser-
vices, converting users from one service to another, building resilient services,
and planning for disaster recovery.

• Part V, “Infrastructure.” This part focuses on the underlying infrastructure.
It covers network architectures and operations, an overview of datacenter
strategies, and datacenter operations.

• Part VI, “Helpdesks and Support.”This part covers everything related to pro-
viding excellent customer service, including documentation, how to handle an
incident report, and how to approach debugging.

• Part VII, “Change Processes.” This part covers change management pro-
cesses and describes how best to manage big and small changes. It also covers
optimizing support by centralizing services.

• Part VIII, “Service Recommendations.” This part takes an in-depth look at
what you should consider when setting up some common services. It cov-
ers monitoring, nameservices, email, web, printing, storage, backups, and
software depositories.

• Part IX, “Management Practices.” This part is for managers and non-
managers. It includes such topics as ethics, organizational structures, percep-
tion, visibility, time management, communication, happiness, and hiring and
firing SAs.

• Part X, “Being More Awesome.” This part is essential reading for all man-
agers. It covers how to assess an SA team’s performance in a constructive
manner, using the Capability Maturity Model to chart the way forward.

• Part XI, “Appendices.” This part contains two appendices. The first is a check-
list of solutions to common situations, and the second is an overview of the
positive and negative team roles.

What’s New in the Third Edition
The first two editions garnered a lot of positive reviews and buzz.Wewere honored
by the response. However, the passing of time made certain chapters look passé.
Most of our bold new ideas are now considered common-sense practices in the
industry.
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The first edition, which reached bookstores in August 2001, was written
mostly in 2000 before Google was a household name and modern computing
meant a big Sun multiuser system. Many people did not have Internet access, and
the cloud was only in the sky. The second edition was released in July 2007. It
smoothed the rough edges and filled some of the major holes, but it was written
when DevOps was still in its embryonic form.

The third edition introduces two dozen entirely new chapters and many
highly revised chapters; the rest of the chapters were cleaned up and modernized.
Longer chapters were split into smaller chapters. All newmaterial has been rewrit-
ten to be organized around choosing strategies, and DevOps and SRE practices
were introduced where they seem to be the most useful.

If you’ve read the previous editions and want to focus on what is new or
updated, here’s where you should look:

• Part I, “Game-Changing Strategies” (Chapters 1–4)
• Part II, “Workstation Fleet Management” (Chapters 5–12)
• Part III, “Servers” (Chapters 13–15)
• Part IV, “Services” (Chapters 16–20 and 22)
• Chapter 23, “Network Architecture,” and Chapter 24, “Network Operations”
• Chapter 32, “Change Management”
• Chapter 35, “Centralization Overview,” Chapter 36, “Centralization Recom-

mendations,” and Chapter 37, “Centralizing a Service”
• Chapter 43, “Data Storage”
• Chapter 45, “Software Repositories,” and Chapter 46, “Web Services”
• Chapter 55, “Operational Excellence,” and Chapter 56, “Operational

Assessments”

Books, like software, always have bugs. For a list of updates, along with news and
notes, and even a mailing list you can join, visit our web site:

www.EverythingSysAdmin.com

http://www.EverythingSysAdmin.com
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What’s Next
Each chapter is self-contained. Feel free to jump around. However, we have care-
fully ordered the chapters so that they make the most sense if you read the book
from start to finish. Either way, we hope that you enjoy the book. We have learned
a lot and had a lot of fun writing it. Let’s begin.

Thomas A. Limoncelli
Stack Overflow, Inc.
tom@limoncelli.com

Christina J. Hogan
chogan@chogan.com

Strata R. Chalup
Virtual.Net, Inc.

strata@virtual.net

Register your copy of The Practice of System and Network Administration, Vol-
ume 1, Third Edition, at informit.com for convenient access to downloads,
updates, and corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780321919168) and click Submit. Once the process is complete,
you will find any available bonus content under “Registered Products.”
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Chapter 3

Pets and Cattle

This chapter is about improving our efficiency by minimizing variation. We mass-
produce our work by unifying like things so that they can be treated the same. As
a result we have fewer variations to test, easier customer support, and less infra-
structure to maintain. We scale ourselves. We can’t eliminate all variation, but the
more we can unify, themore efficient we can be. Managing the remaining variation
is the topic of the next chapter. For now, let’s focus on unification itself.

We can’t spend hours custom-building every machine we install. Instead, we
make our machines generic so that they can all be treated as similarly as possi-
ble. Likewise, we are more efficient when we treat related tasks the same way.
For example, the process of onboarding new employees usually involves creating
accounts and supplying hardware to the new hires. If we invent the process anew
with each employee, it not only takes longer but also looks unprofessional as we
stumble through improvising each step as the new hires wait. People appreciate a
process that is fast, efficient, and well executed.

It is difficult to get better at a process when we never do the same thing
more than once. Improvement comes from repetition; practice makes perfect.
The more we can consolidate similar things so they can be treated the same, the
more practice we get and the better we get at it.

3.1 The Pets and Cattle Analogy
The machines that we administer range from highly customized to entirely
generic. The analogy commonly used is “pets and cattle.” Pets are the highly
customized machines and cattle are the generic machines.

This analogy is generally attributed to Yale computer scientist David Gelern-
ter, who used it in reference to filesystems. Gelernter wrote, “If you have three pet
dogs, give them names. If you have 10,000 head of cattle, don’t bother.”

37
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The analogy gained in popularity when JoshuaMcKenty, co-founder of Piston
Cloud, explained it this way in a press release (McKenty 2013):

The servers in today’s datacenter are like puppies—they’ve got names andwhen they
get sick, everything grinds to a halt while you nurse them back to health. . . . Piston
Enterprise OpenStack is a system for managing your servers like cattle—you number
them, and when they get sick and you have to shoot them in the head, the herd can
keep moving. It takes a family of three to care for a single puppy, but a few cowboys
can drive tens of thousands of cows over great distances, all while drinking whiskey.

A pet is a unique creature. It is an animal that we love and take care of. We take
responsibility for its health and well-being. There is a certain level of emotional
attachment to it. We learn which food it likes and prepare special meals for it. We
celebrate its birthdays and dress it up in cute outfits. If it gets injured, we are sad.
When it is ill, we take it to the veterinarian and give it our full attention until it is
healed. This individualized care can be expensive. However, since we have only
one or two pets, the expense is justified.

Likewise, a machine can be a pet if it is highly customized and requires special
procedures for maintaining it.

A herd of cattle is a group of many similar animals. If you have a herd of cows
each one is treated the same. This permits us the benefits of mass-production. All
cattle receive the same living conditions, the same food, the same medical treat-
ment, the same everything. They all have the same personality, or at least are
treated as if they do. There are no cute outfits. The use of mass-production tech-
niques keeps maintenance costs low and improves profits at scale: Saving a dollar
per cow can multiply to hundreds of thousands in total savings.

Likewise, machines can be considered cattle when they are similar enough
that they can all be managed the same way. This can be done at different levels
of abstraction. For example, perhaps the OS is treated generically even though the
hardwaremay comprise any number of virtual or physicalmachine configurations.
Or perhaps the machine hardware, OS, and applications are all the same, but the
data they access is different. This is typical in a large web hosting farm, where
the only difference is which specific web site is being served by each machine.

Preferably the systems we deal with are fungible resources: Any one unit can
substitute for any other.

A related metaphor is the snowflake. A snowflake is even more unique than a
pet. It is one of a kind. A system may have started out similar to others, but it was
customized, modified, and eventually becomes unlike any other system. Ormaybe
it started out unique and had very little chance of being properly brought into line
with the others. A snowflake requires special operational procedures. Rebooting
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it requires extra care. Upgrades require special testing. As Martin Fowler (2012)
wrote, a snowflake is “good for a ski resort, bad for a datacenter.”

A snowflake server is a business risk because it is difficult to reproduce. If the
hardware fails or the software becomes corrupted, it would be difficult to build a
new machine that provides the same services. It also makes testing more difficult
because you cannot guarantee that you have replicated the host in your testing
environment. When a bug is found in production that can’t be reproduced in the
test environment, fixing it becomes much more difficult.

Alternative Analogies

There are other analogies that people use, especially in countries where cattle
ranching is less common. One is the analogy of fine porcelain plates and paper
plates. You take good care of fine porcelain plates because they are expensive
and difficult to replace. In contrast, if a paper plate starts to lose structural
integrity, you simply bolster it by putting another paper plate underneath it.
If it becomes completely unusable, you replace it.

Another analogy is that modern system administration treats machines
like blood cells, not limbs. Blood cells are constantly dying off and being
replaced. Limbs, however, are difficult to replace and are protected.

3.2 Scaling
Cattle-like systems give us the ability to grow and shrink our system’s scale.
In cloud computing a typical architecture pattern has many web server replicas
behind a load balancer. Suppose each machine can handle 500 simultaneous users.
More replicas are added as more capacity is needed.

Cloud providers such as Amazon Elastic Compute Cloud (Amazon EC2),
Google Cloud Platform, and Microsoft Azure have autoscale features where they
will spin up and tear down additional replicas as demand requires. This kind of
scaling is possible only when machines are cattle. If setting up each new machine
required individual attention, the autoscale feature would not be possible.

In such systems we no longer are concerned with the uptime of a particular
machine. If onemachine fails, the autoscaler will build a new one. If amachine gets
sick, we delete it and let the autoscaler do its job. Per-machine uptime was cool in
the 1990s but now we measure total system health and availability.

Scale-out architectures are discussed further in Section 16.6.3 and in Volume 2
of this book series.
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3.3 Desktops as Cattle
The concept of generic, replaceable machines was first used in desktop environ-
ments, long before the cattle and pets analogy was coined. We already discussed
the importance of unifying workstation configurations in Chapter 1, “Climbing
Out of theHole,” andwe’ll discuss it in greater detail in Chapter 8, “OS Installation
Strategies.”

The benefits of generic desktops are manifold. Users benefit from improved
customer support, as SAs are no longer struggling to learn and adapt to an infinite
number of variations. Repairs happen faster because the IT staff has a single vendor
repair procedure to navigate.

Contrast this to an environment where each PC is fully customized. Fixing
a software problem is difficult because any change may break something else. It
is difficult to know what “working” means when there is no understanding of
what is on the machine. Support for older operating systems depends on finding
someone on the IT team who remembers that OS.

Creating an environment where cattle are the norm is the primary focus of
chapters in Part II, “Workstation FleetManagement,” and Part III, “Servers.” Chap-
ter 11, “Workstation Standardization,” focuses on taking a fleet ofworkstations that
are pets and bringing about unification.

Resetting to a More Uniform State

One of the things that made Apple iPads such a success is that they reset the
clock on variation.

PCs had become so customizable that variations had gotten out of control.
One of the downsides of competition is that companies compete by differ-
entiating their products, which means making them unique and different.
Hardware vendors had many variations and choices, each trying to appeal
to different customer segments. Each new market that Microsoft addressed
resulted in adding customizability features to attract those users. As a result,
by 2005 the complexity of supporting a fleet of Windows machines required a
fleet of IT professionals.

Apple iPads took us back to having one particular configuration with
curated applications. The uniformity made them more stable and consistent,
which then permitted us to focus on the applications, not the infrastruc-
ture. Apple retains tight control over the iPad environment so that when the
company repeats Microsoft’s mistake, it will play out much more slowly.
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3.4 Server Hardware as Cattle
Server hardware and software in a datacenter is another situation where we have
pets and cattle. At some companies each machine in the datacenter is specified
to meet the exact needs of the applications it will run. It has the right amount
of RAM and disk, and possibly even additional external storage peripherals or
other hardware. Each machine may run a different operating system or OS release.
This ensures that each application is maximally optimized to the best of the system
administration team’s ability.

However, these local optimizations cause inefficiencies at the macro scale.
Each machine requires special maintenance procedures. Each operating system in
use, and possibly each version of each operating system, requires individual atten-
tion. A security patch thatmust be tested on tenOS versions is a lotmorework than
one that has to be tested on only one or two versions. This kind of cost eventually
outweighs the optimizations one can do for individual applications.

As a result, in large companies it often takes six months or more to deploy a
new server in a datacenter. A consultant working at a U.S. bank said it takes 18
months from the initial request to having a working server in their datacenter. If
you aren’t sure why banks have such lousy interest rates and service, imagine if a
phone app you wanted didn’t start to run until a year after you bought it.

Contrast this to an environment that has a cattle strategy for its datacenter.
Some companies standardize on two or three hardware variations and one or two
OS releases. You might not receive the exact hardware you want, but you receive
it quickly. Perfect is the enemy of good: Would you rather be up and running
this week with hardware that is good enough, or wait a year and have the exact
hardware you dreamed of, which is now obsolete?

Case Study: Google’s Two Hardware Types

For many years Google standardized on two types of machines. Diskful
machines maximized the amount of hard disk storage that could be packed
into a singlemachine. Indexmachines (so called because they stored the search
index) maximized the amount of RAM that could fit in a 1U configuration.
Teams that requested machines in the datacenter could choose between one
or the other and receive them within minutes because they were preloaded
and ready for use.

This setup made handling future orders easier. The purchase department
collected orders from all teams and tallied the number of diskful and index
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machines requested. This was considerably easier than if each month depart-
ment members had to manage requests for thousands of different bespoke
configurations.

Software was designed to fit best with one model or the other. Most ser-
vices were big enough that they required many (often thousands) machines,
some of each type. For example, an applicationwould be split to run the appli-
cation’s web frontend on index machines while storing application data on
diskful machines. If the hardware being offered was 10 percent slower than
the ideal machine, employees would simply request additional machines to
compensate for the lagging performance.

This evolved into a pattern that was, actually, the opposite. Engineers
didn’t think in terms of spec’ing out the perfect machine. Instead, they
designed applications such that scaling was done by adding a certain num-
ber of machines per unit of workload. They performed tests to see how many
machines (of the type currently offered)would be required to process the num-
ber of users or the workload expected. Employees then could request that
number ofmachines. They no longer thought of applications in terms ofwhich
machinewould be best suited to a particular application, but rather howmuch
generic capacitywas required. As fastermodelswere introduced into the data-
center, benchmarks would be run to develop new capacity planning models
and the process would repeat.

Not every environment can standardize down to onemachine type, butwe can
provide a few standard configurations (small, medium, and large) and guide peo-
ple to them.We canminimize the number of vendors, so that there is one firmware
upgrade process, one repair workflow, and so on.

Offering fixed sizes of virtual machines (VMs) results in less isolated or
stranded capacity. For example, we can make the default VM size such that eight
fit on a physical machine with nowaste.We can offer larger sizes that are multiples
of the default size. This means we are never left with a physical machine that has
unused capacity that is too small for a new machine. It also makes it easier to plan
future capacity and reorganize placement of existing VMs within a cluster.

By offering standardized sizes we enable an environment where we no longer
look at machines individually, but rather treat them as scaling units to be used
when sizing our deployments. This is a better fit for how distributed computing
applications are designed and how most applications will be built in the future.

We can also standardize at the software level. Each machine is delivered
to the user with a standard OS installation and configuration. The defaults
embody the best practices we wish all users would follow. Modifications made
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after that are the application administrator’s responsibility. We’ll discuss better
ways to handle this responsibility in the next chapter.

The Power of Defaults

Defaults are powerful. If you announce an OS configuration change that all
IT subteams are required to make, you’ll get angry push-back from your
loudest and most vocal co-workers. You will get very little participation. In
fact, there may be enough push-back that you withdraw the request. Often
a tyranny of a few loud complainers prevents the majority from receiving a
beneficial change.

In contrast, if you make that change or setting part of the default con-
figuration that is delivered with each new server (thanks to your automated
OS install), you may be surprised at how little noise it generates. Most peo-
ple will live with the change. The people who previously would have made
noise will still complain, but now you can work with them to address their
concerns. See the anecdote in Section 7.3.1.

3.5 Pets Store State
Another way of describing pets is to note that they contain a lot of irreproducible
state. Cattle are stateless, or contain only reproducible state.

State is, essentially, data or information. That information may be data files,
configuration, or status. For example, when running MS Excel, the spreadsheet
currently loaded is the state. In a video game, the player’s score, position, and
status are state. In a web-based application, there is the application itself plus the
database that is used to store the user’s data. That database is state.

The more state a machine holds, the more irreplaceable it is—that is, the more
pet-like it is. Cattle are generic because we can rebuild one easily thanks to the fact
that cattle contain no state, or only state that can be copied from elsewhere.

A web server that displays static content (web pages and images) is stateless
if that static content is a copy from a master stored elsewhere. The web server can
be wiped and reloaded, but as long as the content can be copied from the primary
source, the new server is functionally the same as the original.

But suppose a web application has a database. If the machine is wiped and
reloaded, the database is lost. We can restore it from backups, but then we will
have lost any new data accumulated since the last backup was done. This web
application is stateful.
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Configuration data is also state, but it can usually be regenerated. Which soft-
ware packageswere installed and how theywere configured are state, even though
the contents of the software packages themselves are not state; they come from a
master repository. The state can be reproduced either manually or via automation.

Irreproducible configuration state can be particularly insidious. In this case the
state is not a particular configuration file but rather how the systemwas made that
makes it a snowflake server. We’ve seen important servers that could be rebuilt
only by installing an old version of the software and then installing an upgrade
package; installing the final version directly did not work. Unknown and uniden-
tifiable state was being generated during the upgrade process that somehow was
not reproduced via the direct installation. This is the kind of unexplained state that
makes you want to cry.

Irreproducible Laptops

When Tom arrived at Cibernet, the company depended on an application that
had been installed on a set of laptopsmany years ago. By then, no oneworking
there could figure out which combination of Windows release, patches, and
installation packages would create a new laptop with a working version of
the software. Each time one of the original laptops died, the company moved
one step closer to insolvency.

The company was in the process of creating a replacement for the soft-
ware. If the new software was ready before the last laptop died, the company
would survive. If not, the company would literally not be able to perform the
financial processing it did for customers. It would have to go out of business.
One of the laptops was kept in a safe as a precaution. The others were used
carefully and only when needed.

When there were only four working laptops remaining, VMware intro-
duced a product that took a snapshot of a physical hard drive and created
a virtual machine image (physical to virtual, or p2v). Luckily it worked and
soon a virtual laptop could be run on any other machine. This reduced the risk
of the replacement project being late, and probably saved the company.

3.6 Isolating State
We can turn pets into cattle by isolating the state. Optimally this is done during the
design process, but sometimes we find ourselves doing it after the fact.

Imagine a typical web application running entirely on a single machine. The
machine includes the Apache HTTP server, the application software, a MariaDB
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database server, and the data that the database is storing. This is the architecture
used by many small web-based applications.

The problem with this architecture is that the single machine stores both the
software and the state. It is a pet. This situation is depicted in Figure 3.1a.

We can improve the situation by separating out the database. As depicted in
Figure 3.1b, we can move the MariaDB database software and the data it stores to
another machine. The web server is now cattle-like because it can be reproduced
easily by simply installing the software and configuring it to point to the database
on the other machine. The database machine is a pet. However, having a cattle +

pet situation is an improvement over having one big pet. If the cattle-like server
becomes sick, we can easily replace it. The pet, since it has a single function, can be
more easily backed up to prepare for an emergency. We can also lock out users so
there is less chance of human-caused problems, and we can use more reliable (and
more expensive) hardware. By identifying and isolating the state, we are putting
all our eggs in one basket, but we can make it a very good basket—one to which
we give special care and attention.

The state that remains is the data stored in the database.We canmove this data
to an external storage to further isolate the state. For example, rather than storing
the data on local disk, we can allocate a data volume on our storage area network
(SAN) server, as depicted in Figure 3.1c. Now the database machine is stateless.

Database Web server(a)

Stateful

Database
Web

server
(b)

Stateful Stateless

SAN
Web

server

Database

service
(c)

Stateful Stateless

Figure 3.1: Evolving a web service to isolate state
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It can be wiped and reloaded without losing the data. It is simply configured to
attach to the right SAN volume to access the state.

Many systems go through this kind of evolution. Sometimes these evolu-
tions happen during the design stage, resulting in a design that isolates state or
minimizes the number of places in which state is stored. For example, we might
consolidate state into a single database instead of storing some in a SQL database,
some in local files, and some in an external application service. At other times
this kind of evolution happens after the fact. System administrators spend a lot
of time reconfiguring and reengineering older systems to evolve them as needed,
often because they were designed by predecessors who have not read this book.
Lucky you.

This process is also called decoupling state. The all-in-one design tightly
couples the application to the data. The last designdecouples the data from the soft-
ware entirely. This decoupling permits us to scale the service better. For example,
the web server can be replicated to add more capacity.

Decoupling state makes it easier to scale systems. Many scaling techniques
involve replicating services and dividing the workload among those replicas.
When designing a system, it is generally easier to replicate components that are
stateless. If we administer these components as cattle, we can easily generate and
destroy them as demand increases and decreases. Figure 3.2 is similar to Fig-
ure 3.1c, but the web server component has been replicated to scale front-end
capacity. A replicated database cache was added to off-load read-only queries,
improving database performance. This kind of scaling is discussed further in
Chapter 18, “Service Resiliency and Performance Patterns.”
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Figure 3.2: A scalable web application service
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Blogs and State

State can also be moved to external services. Originally blog platforms were
made up of software that generated each page on demand by reading data
from locally stored files and an SQL database. This meant state was in three
places (the software, the SQL server, and local files). Scaling such systems is
very difficult.

In 2016, a new generation of blogging platforms arrived that required
no server-side state. In this case, the site was a set of static files that could
be uploaded to any web server—even ones without a database or the ability
to execute code. Such platforms used client-side JavaScript for all interactive
features.

Blog site generators like Hugo and Jekyll typically work as follows. The
blog owner creates aGit file repository that stores everything related to the site:
images, the text of blog posts, metadata that describes what the web site
should look like, and so on. The site generator uses this information to gener-
ate the entire site as a set of static files. These files are uploaded to aweb server.
If a new blog post is created in the Git repository, the entire site is regenerated
and uploaded again to the web host.

Highly stateful content such as user comments is handled by external ser-
vices such as Disqus. While the comments appear to be dynamically updating
on the site, they are really loading from the Disqus servers using HTML5 code
that does not change. This eliminatesmost of the infrastructure the blog owner
must maintain.

Because the files are static and require no server-side state, they can be
served from nearly anywhere. This includes a directory on a file server, a
Dropbox account, or a massive multiserver web hosting infrastructure.

3.7 Generic Processes
We can also make processes more generic to improve efficiency. For example,
onboarding new employees is a complex process. In some companies each divi-
sion or team has a different onboarding process. In some places engineers have a
different onboarding process than non-engineers. Each of these processes is pet-
like. It takes extra effort to reinvent each process again and again. Improvements
made for one process may not propagate to the others. However, this situation
often arises because different teams or departments do not communicate.
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In contrast, some companies have a unified onboarding process. The common
aspects such as paperwork and new employee training are done first. The varia-
tions required for different departments or roles are saved to the end. You would
think this is a no-brainer and every company would do this, but you’d be sur-
prised at how many companies, both large and small, have a pet-like onboarding
process, or unified the process only after losing money due to a compliance failure
that required the company to clean up its act.

Onboarding

Onboarding is the process by which a new employee is brought into the com-
pany. While it is not usually the responsibility of the IT team, much of the
process involves IT: creating accounts; delivering the employee’s computer,
phone, and other technology; and so on. See Chapter 12, “Onboarding.”

Another example is the process for launching and updating applications in
production. Large companies often have hundreds of internal and external appli-
cations. A retailer like Target has thousands of applications ranging from inventory
management to shipping and logistics, forecasting, electronic data interchange
(EDI), and the software that handles the surprisingly complex task of generating
price labels.

In many organizations each such application has been built using different
software technologies, languages, and frameworks. Some are written in Java; oth-
ers in Go, Python, or PHP. One requires a particular web framework. Another
requires a particular version of an operating system. One requires a certain OS
patch; another won’t work on a machine with that patch. Some are delivered as
an installable package; with others the developer emails a ZIP file to the system
administrators.

As a result the process of deploying these applications in production is very
complex. Each new software release requires the operations team to follow a
unique or bespoke process. In some cases the process is full of new and different
surprises each time, often based on which developer led that particular release.
Joe sends ZIP files; Mary sends RAR files. Each variation requires additional
work and additional knowledge, and adds complexity and risk to the production
environment. Each variation makes automation more difficult.

In other words, each of these processes is a pet. So how can we turn them
into cattle?

Around 2012 a number of organizations identified the need to unify these pro-
cesses. Many new technologies appeared, one of which was the Docker Container
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format. It is a format for software distribution that also unifies how produc-
tion environments deploy applications. This format not only includes all the files
required for an application or service, but also includes a standard way to connect
and control them. Docker Containers includes meta-information such as which
TCP port the service runs on. As a consequence, in a service hosting environment
nearly all applications can be deployed the same way. While not every applica-
tion can work in the Docker Container system, enough can to greatly reduce the
number of pets in the environment.

The Docker system includes a number of elements. The Docker Container
image is an archive file (like ZIP or TAR) that includes all the files required for
a particular service. A Dockerfile is a file that describes how to build an image in
an automated fashion, thereby enabling a repeatable process for building images.
ADocker compose file defines a complex applicationmade up of many containers,
and describes how they talk to each other.

Listing 3.1 is a Dockerfile that describes how to create an image that includes
the Apache HTTP server and related files. The EXPOSE 80 statement indicates
that the software this image runs needs exclusive access to TCP port 80.

Listing 3.1: A Dockerfile describing how to build a Docker image

FROM ubuntu:12.04

RUN apt-get update && apt-get install -y apache2 \
&& apt-get clean && rm -rf /var/lib/apt/lists/*

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

Listing 3.2 shows a Docker compose file for an application that consists of two
services: one that provides a web-based application and another that provides API
access. Both require access to a MySQL database and a Redis cache.

Listing 3.2: A Docker compose file for a simple application

services:
web:

git_url: git@github.com:example/node-js-sample.git
git_branch: test
command: rackup -p 3000
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build_command: rake db:migrate
deploy_command: rake db:migrate
log_folder: /usr/src/app/log
ports: ["3000:80:443", "4000"]
volumes: ["/tmp:/tmp/mnt_folder"]
health: default

api:
image: quay.io/example/node
command: node test.js
ports: ["1337:8080"]
requires: ["web"]

databases:
- "mysql"
- "redis"

With a standardized container format, all applications can be delivered to
production in a form so sufficiently self-contained that IT doesn’t need to have
a different procedure for each application. While each one is wildly different inter-
nally, the process that IT follows to deploy, start, and stop the application is
the same.

Containers can be used to build a beta environment. Ideally, the test envi-
ronment will be as similar to the production environment as possible. Anytime a
bug is found in production, it must be reproduced in the test environment to be
investigated and fixed. Sometimes a bug can’t be reproduced this way, and fixing
it becomes much more difficult.

The reality is that at most companies the beta and production environments
are very different: Each is built by a different group of people (developers and SAs)
for their own purposes. A story we hear time and time again is that the developers
who started the project wrote code that deploys to the beta environment. The SAs
were not involved in the project at the time.When it came time to deploy the appli-
cation into production, the SAs did it manually because the deployment code for
the beta environment was unusable anywhere else. Later, if the SAs automated
their process, they did it in a different language andmade it specific to the produc-
tion environment. Now two code bases are maintained, and changes to the process
must be implemented in code twice. Or, more likely, the changes are silently made
to the beta deploy code, and no one realizes it until the next production deploy-
ment breaks. This sounds like a silly company that is the exception, but it is how a
surprisingly large number of teams operate.

Not only do containers unify the production environment and make it more
cattle-like, but they also improve developer productivity. Developers can build a
sandbox environment on their personal workstations by selecting the right combi-
nation of containers. They can create amini-version of the production environment
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that they can use to develop against. Having all this on their laptops is bet-
ter than sharing or waiting their turn to use a centrally administered test stage
environment.

In June 2015 the Open Container Initiative (OCI) was formed to create a single
industry-wide standard for container formats and run-times. Docker, Inc., donated
its container format and runtime to serve as the basis of this effort.

Containers are just one of many methods for unifying this process.

Shipping Containers

The concept of Docker Containers comes from the shipping industry. Before
shipping containers were introduced, individual items were loaded and
unloaded from ships, usually by hand. Each item had different dimensions
and therefore had to be handled differently. An individual lamp needed to be
carefully handled, while a large sack of wheat could be tossed about.

That changed in April 1956, when Malcom McLeans organized the first
shipment using standardized containers.

Standardized shipping containers revolutionized how products move
around the world. Because each shipping container was the same shape and
size, loading and unloading could be done much faster. Cranes and automa-
tion had to be built to handle only one shape, with a standardized maximum
weight and lifting points.

A single container held many individual items, all with the same desti-
nation. Customs officials could approve all the items in a particular container
and seal it, eliminating the need for customs checks at transit points as long as
the seal remained unbroken.

Intermodal shipping was born. A single container would be loaded at a
factory and remain as a unit whether it was on a truck, train, or ship. Standard
shipping containers are accepted everywhere.

3.8 Moving Variations to the End
Operational science teaches us to move variations in a process to the end. Burger
King restaurants make a generic hamburger, waiting until the last minute to add
toppings such as ketchup, mustard, and pickles. Unsold inventory can be kept
generic so that it can be quickly customized when the order is placed. Otherwise,
a restaurant might end up with a surplus of burgers with pickles sitting unsold
while Christina waits for her pickle-less order to be made from scratch.
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Auto manufacturers also delay variation to the last possible moment. Option
packages are added at the end, where demand is better understood. Unusual
items like special audio systems or fancy tires are added by the dealer only after a
particular customer requests them.

As long as theWIP stays generic, the process is simple and easier to streamline.
You can mass-produce dozens of generic burgers with a single process and a sin-
gle focus, improving it constantly to be more efficient. Once they are customized,
everything becomes a special snowflake process. Our ability to improve the process
is not impossible, though it is deterred.

This strategy also works in IT. Design systems and processes to keep WIP
generic for as long as possible. Save variations until the end. This reduces the com-
binations of configurations and variables to be tested, makes it easier to verify
completeness and accuracy, and makes it easier to improve the process.

We’ve already seen this in our discussion of the onboarding process, where
common tasks were done first.

Another example relates to laptop distribution. Imagine a company where all
new employees receive the same laptop, with the sameOS, the same configuration,
and the same applications. However, when a user logs in for the first time, spe-
cific applications are installed depending on whether the employee is an engineer,
salesperson, or executive. After that customers can customize the workstation to
their liking. This enables the entire laptop deployment process to be generic until
the last possible moment.

Now imagine instead that such customizations were done at the start. If there
was a burst of new engineers starting at the company, the IT departmentmight find
itself with no engineering laptops left but plenty of sales laptops. If the hardware
was the same they could at least rework the laptops to be engineering laptops. This
would double the effort expended on each laptop, but itwould solve the immediate
problem. If the hardware models were different, however, the engineers would
have to wait for laptops since the units are not fungible resources. Alternatively,
the engineers could be retrained to work as salespeople, but that would be silly
since people are not fungible resources.

When things are different in software, we can treat them generically by choos-
ing the right level of abstraction. Containers permit all services to be treated
generically because no matter what is on the inside, the SAs can simply deal with
them at generic touch points that are common for all.

Some software frameworks permit plug-ins or drivers to be written so that the
framework deals with generic “things” but the differences are mediated by
the plug-in.
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3.9 Automation
Consistency makes it easier to automate a process. It is easier to write automation
for cattle than for pets because there are fewer surprises and variations to be aware
of and fewer permutations to test. Automation brings about opportunities for self-
service system administration. Web sites and other tools can empower users to get
their needs met without human intervention.

You can also look at this another way: Before we can improve things, we must
make things consistent. Making improvements to something inconsistent is like
wrestling a pig: It’s messy and you probablywon’t win. Once things are consistent,
we can make them better—optimize them—and we gain the freedom to experi-
ment and try new things. Our experiments may fail, but if we do not try, there is
no way to improve. At least with each failure we learn something. This is not a
rationalization that makes us feel better about our failures: The experiments that
are a success are valuable because the system has been improved (optimized); the
experiments we revert are learning experiences that guide us as we make future
improvements.

You’ll see this pattern of chaos⇒defined⇒repeatable⇒optimizing through-
out this book. It is also the basis of “The ThreeWays of Operational Improvement”
described in Section 12.3.5, and is the basis of the assessment levels in Section 55.3.2.

3.10 Summary
Pets are machines that are irreproducible because they are highly customized over
a long period of time with no record of how to exactly replicate the process. They
must be managed individually. If a pet becomes damaged or corrupted, it must be
carefully brought back into the desired state just as a doctor tends to a sick patient.

Cattle are machines that can be reproduced programmatically and are there-
fore disposable. If one of these cattle gets damaged or corrupted, it is wiped and
rebuilt. To complete the analogy, when a single animal in a cattle drive is sick, it is
killed so that the herd can keep moving.

Cattle-like systems make it easier to manage large numbers of machines. It is
easier to mass-produce IT when machines are generic.

Desktops can bemade cattle-like by starting them all the same via automation,
and using directory services and other techniques to maintain their sameness. We
can also reduce the number of vendors and models to make the repair processes
more generic.

Servers have different challenges. The software each runs is usually very dif-
ferent. We can use containers and configuration management systems to automate
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the setup of these differences so that they can be reproduced by running the code
again. More importantly, pet-like servers store irreproducible state: information
that is not stored elsewhere (other than backups). We can design our services to
separate out our state to specific machines so as to increase the number of cattle-
like systems. State can be stored on a separate file server, database server, or
external service.

We can also improve efficiency by making processes more cattle-like. A pro-
cess should save any variations until the last possible moment. By keeping things
generic at the start, we can mass-produce the start of the process.

Exercises
1. Explain the pets and cattle analogy for computers.
2. What is a snowflake server? Why are they a bad idea?
3. If a snowflake server is risky, how can we reduce risk through repetition?
4. How do cattle-like systems help us be more efficient?
5. How do cattle-like systems help us scale services?
6. According to this chapter, why do banks have lousy interest rates?
7. A laptop and a desktop PC are very different. Inwhatway couldwe treat them

both as cattle of the same herd?
8. What is state? What is irreproducible state?
9. Why is isolating state to particular machines a good thing?

10. How can beta and production environments end up being different? How can
we make them as similar as possible?

11. How is mass-production aided by moving variations to the end?
12. Sometimes bad customer service is described as being treated like cattle. Yet,

some of the best companies have practices that assure that everyone receives
extremely high-quality service in an efficient and mass-produced way. These
companies are also managing people like cattle. How are the latter companies
able to achieve this without offending their customers?

13. Pick a service in your organization that stores a lot of state. Describe how it
could be implemented using an architecture that isolates state.

14. What are the benefits of moving variations to the end of the process?
15. Pick a process in your organization that has a lot of variation. How can it

be restructured to move the variation to the end? What benefits would be
achieved by doing this?
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