

The Practice of System and
Network Administration

Volume 1

Third Edition

This page intentionally left blank

The Practice of

System and
Network Administration

Volume 1

Third Edition

Thomas A. Limoncelli
Christina J. Hogan
Strata R. Chalup

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Catalog Number: 2016946362

Copyright © 2017 Thomas A. Limoncelli, Christina J. Lear née Hogan, Virtual.NET Inc., Lumeta
Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

Page 4 excerpt: “Noël,” Season 2 Episode 10. The West Wing. Directed by Thomas Schlamme. Teleplay
by Aaron Sorkin. Story by Peter Parnell. Scene performed by John Spencer and BradleyWhitford. Orig-
inal broadcast December 20, 2000. Warner Brothers Burbank Studios, Burbank, CA. Aaron Sorkin, John
Wells Production, Warner Brothers Television, NBC © 2000. Broadcast television.

Chapter 26 photos © 2017 Christina J. Lear née Hogan.

ISBN-13: 978-0-321-91916-8
ISBN-10: 0-321-91916-5
Text printed in the United States of America.

1 16

http://www.pearsoned.com/permissions/

Contents at a Glance

Contents ix

Preface xxxix

Acknowledgments xlvii

About the Authors li

Part I Game-Changing Strategies 1
Chapter 1 Climbing Out of the Hole 3
Chapter 2 The Small Batches Principle 23
Chapter 3 Pets and Cattle 37
Chapter 4 Infrastructure as Code 55

Part II Workstation Fleet Management 77
Chapter 5 Workstation Architecture 79
Chapter 6 Workstation Hardware Strategies 101
Chapter 7 Workstation Software Life Cycle 117
Chapter 8 OS Installation Strategies 137
Chapter 9 Workstation Service Definition 157
Chapter 10 Workstation Fleet Logistics 173
Chapter 11 Workstation Standardization 191
Chapter 12 Onboarding 201

Part III Servers 219
Chapter 13 Server Hardware Strategies 221

v

vi Contents at a Glance

Chapter 14 Server Hardware Features 245
Chapter 15 Server Hardware Specifications 265

Part IV Services 281
Chapter 16 Service Requirements 283
Chapter 17 Service Planning and Engineering 305
Chapter 18 Service Resiliency and Performance Patterns 321
Chapter 19 Service Launch: Fundamentals 335
Chapter 20 Service Launch: DevOps 353
Chapter 21 Service Conversions 373
Chapter 22 Disaster Recovery and Data Integrity 387

Part V Infrastructure 397
Chapter 23 Network Architecture 399
Chapter 24 Network Operations 431
Chapter 25 Datacenters Overview 449
Chapter 26 Running a Datacenter 459

Part VI Helpdesks and Support 483
Chapter 27 Customer Support 485
Chapter 28 Handling an Incident Report 505
Chapter 29 Debugging 529
Chapter 30 Fixing Things Once 541
Chapter 31 Documentation 551

Part VII Change Processes 565
Chapter 32 Change Management 567
Chapter 33 Server Upgrades 587
Chapter 34 Maintenance Windows 611
Chapter 35 Centralization Overview 639
Chapter 36 Centralization Recommendations 645
Chapter 37 Centralizing a Service 659

Part VIII Service Recommendations 669
Chapter 38 Service Monitoring 671
Chapter 39 Namespaces 693
Chapter 40 Nameservices 711
Chapter 41 Email Service 729

Contents at a Glance vii

Chapter 42 Print Service 749
Chapter 43 Data Storage 759
Chapter 44 Backup and Restore 793
Chapter 45 Software Repositories 825
Chapter 46 Web Services 851

Part IX Management Practices 871
Chapter 47 Ethics 873
Chapter 48 Organizational Structures 891
Chapter 49 Perception and Visibility 913
Chapter 50 Time Management 935
Chapter 51 Communication and Negotiation 949
Chapter 52 Being a Happy SA 963
Chapter 53 Hiring System Administrators 979
Chapter 54 Firing System Administrators 1005

Part X Being More Awesome 1017
Chapter 55 Operational Excellence 1019
Chapter 56 Operational Assessments 1035

Epilogue 1063

Part XI Appendices 1065

Appendix A What to Do When . . . 1067

Appendix B The Many Roles of a System Administrator 1089

Bibliography 1115

Index 1121

This page intentionally left blank

Contents

Preface xxxix

Acknowledgments xlvii

About the Authors li

Part I Game-Changing Strategies 1

1 Climbing Out of the Hole 3

1.1 Organizing WIP 5
1.1.1 Ticket Systems 5
1.1.2 Kanban 8
1.1.3 Tickets and Kanban 12

1.2 Eliminating Time Sinkholes 12
1.2.1 OS Installation and Configuration 13
1.2.2 Software Deployment 15

1.3 DevOps 16
1.4 DevOps Without Devs 16
1.5 Bottlenecks 18
1.6 Getting Started 20
1.7 Summary 21
Exercises 22

2 The Small Batches Principle 23

2.1 The Carpenter Analogy 23
2.2 Fixing Hell Month 24

ix

x Contents

2.3 Improving Emergency Failovers 26
2.4 Launching Early and Often 29
2.5 Summary 34
Exercises 34

3 Pets and Cattle 37

3.1 The Pets and Cattle Analogy 37
3.2 Scaling 39
3.3 Desktops as Cattle 40
3.4 Server Hardware as Cattle 41
3.5 Pets Store State 43
3.6 Isolating State 44
3.7 Generic Processes 47
3.8 Moving Variations to the End 51
3.9 Automation 53
3.10 Summary 53
Exercises 54

4 Infrastructure as Code 55

4.1 Programmable Infrastructure 56
4.2 Tracking Changes 57
4.3 Benefits of Infrastructure as Code 59
4.4 Principles of Infrastructure as Code 62
4.5 Configuration Management Tools 63

4.5.1 Declarative Versus Imperative 64
4.5.2 Idempotency 65
4.5.3 Guards and Statements 66

4.6 Example Infrastructure as Code Systems 67
4.6.1 Configuring a DNS Client 67
4.6.2 A Simple Web Server 67
4.6.3 A Complex Web Application 68

4.7 Bringing Infrastructure as Code to Your Organization 71
4.8 Infrastructure as Code for Enhanced Collaboration 72
4.9 Downsides to Infrastructure as Code 73
4.10 Automation Myths 74
4.11 Summary 75
Exercises 76

Contents xi

Part II Workstation Fleet Management 77

5 Workstation Architecture 79

5.1 Fungibility 80
5.2 Hardware 82
5.3 Operating System 82
5.4 Network Configuration 84

5.4.1 Dynamic Configuration 84
5.4.2 Hardcoded Configuration 85
5.4.3 Hybrid Configuration 85
5.4.4 Applicability 85

5.5 Accounts and Authorization 86
5.6 Data Storage 89
5.7 OS Updates 93
5.8 Security 94

5.8.1 Theft 94
5.8.2 Malware 95

5.9 Logging 97
5.10 Summary 98
Exercises 99

6 Workstation Hardware Strategies 101

6.1 Physical Workstations 101
6.1.1 Laptop Versus Desktop 101
6.1.2 Vendor Selection 102
6.1.3 Product Line Selection 103

6.2 Virtual Desktop Infrastructure 105
6.2.1 Reduced Costs 106
6.2.2 Ease of Maintenance 106
6.2.3 Persistent or Non-persistent? 106

6.3 Bring Your Own Device 110
6.3.1 Strategies 110
6.3.2 Pros and Cons 111
6.3.3 Security 111
6.3.4 Additional Costs 112
6.3.5 Usability 112

xii Contents

6.4 Summary 113
Exercises 114

7 Workstation Software Life Cycle 117

7.1 Life of a Machine 117
7.2 OS Installation 120
7.3 OS Configuration 120

7.3.1 Configuration Management Systems 120
7.3.2 Microsoft Group Policy Objects 121
7.3.3 DHCP Configuration 122
7.3.4 Package Installation 123

7.4 Updating the System Software and Applications 123
7.4.1 Updates Versus Installations 124
7.4.2 Update Methods 125

7.5 Rolling Out Changes . . . Carefully 128
7.6 Disposal 130

7.6.1 Accounting 131
7.6.2 Technical: Decommissioning 131
7.6.3 Technical: Data Security 132
7.6.4 Physical 132

7.7 Summary 134
Exercises 135

8 OS Installation Strategies 137

8.1 Consistency Is More Important Than Perfection 138
8.2 Installation Strategies 142

8.2.1 Automation 142
8.2.2 Cloning 143
8.2.3 Manual 145

8.3 Test-Driven Configuration Development 147
8.4 Automating in Steps 148
8.5 When Not to Automate 152
8.6 Vendor Support of OS Installation 152
8.7 Should You Trust the Vendor’s Installation? 154
8.8 Summary 154
Exercises 155

Contents xiii

9 Workstation Service Definition 157

9.1 Basic Service Definition 157
9.1.1 Approaches to Platform Definition 158
9.1.2 Application Selection 159
9.1.3 Leveraging a CMDB 160

9.2 Refresh Cycles 161
9.2.1 Choosing an Approach 161
9.2.2 Formalizing the Policy 163
9.2.3 Aligning with Asset Depreciation 163

9.3 Tiered Support Levels 165
9.4 Workstations as a Managed Service 168
9.5 Summary 170
Exercises 171

10 Workstation Fleet Logistics 173

10.1 What Employees See 173
10.2 What Employees Don’t See 174

10.2.1 Purchasing Team 175
10.2.2 Prep Team 175
10.2.3 Delivery Team 177
10.2.4 Platform Team 178
10.2.5 Network Team 179
10.2.6 Tools Team 180
10.2.7 Project Management 180
10.2.8 Program Office 181

10.3 Configuration Management Database 183
10.4 Small-Scale Fleet Logistics 186

10.4.1 Part-Time Fleet Management 186
10.4.2 Full-Time Fleet Coordinators 187

10.5 Summary 188
Exercises 188

11 Workstation Standardization 191

11.1 Involving Customers Early 192
11.2 Releasing Early and Iterating 193
11.3 Having a Transition Interval (Overlap) 193

xiv Contents

11.4 Ratcheting 194
11.5 Setting a Cut-Off Date 195
11.6 Adapting for Your Corporate Culture 195
11.7 Leveraging the Path of Least Resistance 196
11.8 Summary 198
Exercises 199

12 Onboarding 201

12.1 Making a Good First Impression 201
12.2 IT Responsibilities 203
12.3 Five Keys to Successful Onboarding 203

12.3.1 Drive the Process with an Onboarding Timeline 204
12.3.2 Determine Needs Ahead of Arrival 206
12.3.3 Perform the Onboarding 207
12.3.4 Communicate Across Teams 208
12.3.5 Reflect On and Improve the Process 209

12.4 Cadence Changes 212
12.5 Case Studies 212

12.5.1 Worst Onboarding Experience Ever 213
12.5.2 Lumeta’s Onboarding Process 213
12.5.3 Google’s Onboarding Process 215

12.6 Summary 216
Exercises 217

Part III Servers 219

13 Server Hardware Strategies 221

13.1 All Eggs in One Basket 222
13.2 Beautiful Snowflakes 224

13.2.1 Asset Tracking 225
13.2.2 Reducing Variations 225
13.2.3 Global Optimization 226

13.3 Buy in Bulk, Allocate Fractions 228
13.3.1 VM Management 229
13.3.2 Live Migration 230
13.3.3 VM Packing 231

Contents xv

13.3.4 Spare Capacity for Maintenance 232
13.3.5 Unified VM/Non-VM Management 234
13.3.6 Containers 234

13.4 Grid Computing 235
13.5 Blade Servers 237
13.6 Cloud-Based Compute Services 238

13.6.1 What Is the Cloud? 239
13.6.2 Cloud Computing’s Cost Benefits 239
13.6.3 Software as a Service 241

13.7 Server Appliances 241
13.8 Hybrid Strategies 242
13.9 Summary 243
Exercises 244

14 Server Hardware Features 245

14.1 Workstations Versus Servers 246
14.1.1 Server Hardware Design Differences 246
14.1.2 Server OS and Management Differences 248

14.2 Server Reliability 249
14.2.1 Levels of Redundancy 250
14.2.2 Data Integrity 250
14.2.3 Hot-Swap Components 252
14.2.4 Servers Should Be in Computer Rooms 253

14.3 Remotely Managing Servers 254
14.3.1 Integrated Out-of-Band Management 254
14.3.2 Non-integrated Out-of-Band Management 255

14.4 Separate Administrative Networks 257
14.5 Maintenance Contracts and Spare Parts 258

14.5.1 Vendor SLA 258
14.5.2 Spare Parts 259
14.5.3 Tracking Service Contracts 260
14.5.4 Cross-Shipping 261

14.6 Selecting Vendors with Server Experience 261
14.7 Summary 263
Exercises 263

xvi Contents

15 Server Hardware Specifications 265

15.1 Models and Product Lines 266
15.2 Server Hardware Details 266

15.2.1 CPUs 267
15.2.2 Memory 270
15.2.3 Network Interfaces 274
15.2.4 Disks: Hardware Versus Software RAID 275
15.2.5 Power Supplies 277

15.3 Things to Leave Out 278
15.4 Summary 278
Exercises 279

Part IV Services 281

16 Service Requirements 283

16.1 Services Make the Environment 284
16.2 Starting with a Kick-Off Meeting 285
16.3 Gathering Written Requirements 286
16.4 Customer Requirements 288

16.4.1 Describing Features 288
16.4.2 Questions to Ask 289
16.4.3 Service Level Agreements 290
16.4.4 Handling Difficult Requests 290

16.5 Scope, Schedule, and Resources 291
16.6 Operational Requirements 292

16.6.1 System Observability 292
16.6.2 Remote and Central Management 293
16.6.3 Scaling Up or Out 294
16.6.4 Software Upgrades 294
16.6.5 Environment Fit 295
16.6.6 Support Model 296
16.6.7 Service Requests 297
16.6.8 Disaster Recovery 298

16.7 Open Architecture 298
16.8 Summary 302
Exercises 303

Contents xvii

17 Service Planning and Engineering 305

17.1 General Engineering Basics 306
17.2 Simplicity 307
17.3 Vendor-Certified Designs 308
17.4 Dependency Engineering 309

17.4.1 Primary Dependencies 309
17.4.2 External Dependencies 309
17.4.3 Dependency Alignment 311

17.5 Decoupling Hostname from Service Name 313
17.6 Support 315

17.6.1 Monitoring 316
17.6.2 Support Model 317
17.6.3 Service Request Model 317
17.6.4 Documentation 318

17.7 Summary 319
Exercises 319

18 Service Resiliency and Performance Patterns 321

18.1 Redundancy Design Patterns 322
18.1.1 Masters and Slaves 322
18.1.2 Load Balancers Plus Replicas 323
18.1.3 Replicas and Shared State 324
18.1.4 Performance or Resilience? 325

18.2 Performance and Scaling 326
18.2.1 Dataflow Analysis for Scaling 328
18.2.2 Bandwidth Versus Latency 330

18.3 Summary 333
Exercises 334

19 Service Launch: Fundamentals 335

19.1 Planning for Problems 335
19.2 The Six-Step Launch Process 336

19.2.1 Step 1: Define the Ready List 337
19.2.2 Step 2: Work the List 340
19.2.3 Step 3: Launch the Beta Service 342
19.2.4 Step 4: Launch the Production Service 343

xviii Contents

19.2.5 Step 5: Capture the Lessons Learned 343
19.2.6 Step 6: Repeat 345

19.3 Launch Readiness Review 345
19.3.1 Launch Readiness Criteria 345
19.3.2 Sample Launch Criteria 346
19.3.3 Organizational Learning 347
19.3.4 LRC Maintenance 347

19.4 Launch Calendar 348
19.5 Common Launch Problems 349

19.5.1 Processes Fail in Production 349
19.5.2 Unexpected Access Methods 349
19.5.3 Production Resources Unavailable 349
19.5.4 New Technology Failures 350
19.5.5 Lack of User Training 350
19.5.6 No Backups 351

19.6 Summary 351
Exercises 351

20 Service Launch: DevOps 353

20.1 Continuous Integration and Deployment 354
20.1.1 Test Ordering 355
20.1.2 Launch Categorizations 355

20.2 Minimum Viable Product 357
20.3 Rapid Release with Packaged Software 359

20.3.1 Testing Before Deployment 359
20.3.2 Time to Deployment Metrics 361

20.4 Cloning the Production Environment 362
20.5 Example: DNS/DHCP Infrastructure Software 363

20.5.1 The Problem 363
20.5.2 Desired End-State 364
20.5.3 First Milestone 365
20.5.4 Second Milestone 366

20.6 Launch with Data Migration 366
20.7 Controlling Self-Updating Software 369
20.8 Summary 370
Exercises 371

Contents xix

21 Service Conversions 373

21.1 Minimizing Intrusiveness 374
21.2 Layers Versus Pillars 376
21.3 Vendor Support 377
21.4 Communication 378
21.5 Training 379
21.6 Gradual Roll-Outs 379
21.7 Flash-Cuts: Doing It All at Once 380
21.8 Backout Plan 383

21.8.1 Instant Roll-Back 384
21.8.2 Decision Point 384

21.9 Summary 385
Exercises 385

22 Disaster Recovery and Data Integrity 387

22.1 Risk Analysis 388
22.2 Legal Obligations 389
22.3 Damage Limitation 390
22.4 Preparation 391
22.5 Data Integrity 392
22.6 Redundant Sites 393
22.7 Security Disasters 394
22.8 Media Relations 394
22.9 Summary 395
Exercises 395

Part V Infrastructure 397

23 Network Architecture 399

23.1 Physical Versus Logical 399
23.2 The OSI Model 400
23.3 Wired Office Networks 402

23.3.1 Physical Infrastructure 402
23.3.2 Logical Design 403
23.3.3 Network Access Control 405
23.3.4 Location for Emergency Services 405

xx Contents

23.4 Wireless Office Networks 406
23.4.1 Physical Infrastructure 406
23.4.2 Logical Design 406

23.5 Datacenter Networks 408
23.5.1 Physical Infrastructure 409
23.5.2 Logical Design 412

23.6 WAN Strategies 413
23.6.1 Topology 414
23.6.2 Technology 417

23.7 Routing 419
23.7.1 Static Routing 419
23.7.2 Interior Routing Protocol 419
23.7.3 Exterior Gateway Protocol 420

23.8 Internet Access 420
23.8.1 Outbound Connectivity 420
23.8.2 Inbound Connectivity 421

23.9 Corporate Standards 422
23.9.1 Logical Design 423
23.9.2 Physical Design 424

23.10 Software-Defined Networks 425
23.11 IPv6 426

23.11.1 The Need for IPv6 426
23.11.2 Deploying IPv6 427

23.12 Summary 428
Exercises 429

24 Network Operations 431

24.1 Monitoring 431
24.2 Management 432

24.2.1 Access and Audit Trail 433
24.2.2 Life Cycle 433
24.2.3 Configuration Management 435
24.2.4 Software Versions 436
24.2.5 Deployment Process 437

24.3 Documentation 437
24.3.1 Network Design and Implementation 438
24.3.2 DNS 439

Contents xxi

24.3.3 CMDB 439
24.3.4 Labeling 439

24.4 Support 440
24.4.1 Tools 440
24.4.2 Organizational Structure 443
24.4.3 Network Services 445

24.5 Summary 446
Exercises 447

25 Datacenters Overview 449

25.1 Build, Rent, or Outsource 450
25.1.1 Building 450
25.1.2 Renting 450
25.1.3 Outsourcing 451
25.1.4 No Datacenter 451
25.1.5 Hybrid 451

25.2 Requirements 452
25.2.1 Business Requirements 452
25.2.2 Technical Requirements 454

25.3 Summary 456
Exercises 457

26 Running a Datacenter 459

26.1 Capacity Management 459
26.1.1 Rack Space 461
26.1.2 Power 462
26.1.3 Wiring 464
26.1.4 Network and Console 465

26.2 Life-Cycle Management 465
26.2.1 Installation 465
26.2.2 Moves, Adds, and Changes 466
26.2.3 Maintenance 466
26.2.4 Decommission 467

26.3 Patch Cables 468
26.4 Labeling 471

26.4.1 Labeling Rack Location 471
26.4.2 Labeling Patch Cables 471
26.4.3 Labeling Network Equipment 474

xxii Contents

26.5 Console Access 475
26.6 Workbench 476
26.7 Tools and Supplies 477

26.7.1 Tools 478
26.7.2 Spares and Supplies 478
26.7.3 Parking Spaces 480

26.8 Summary 480
Exercises 481

Part VI Helpdesks and Support 483

27 Customer Support 485

27.1 Having a Helpdesk 485
27.2 Offering a Friendly Face 488
27.3 Reflecting Corporate Culture 488
27.4 Having Enough Staff 488
27.5 Defining Scope of Support 490
27.6 Specifying How to Get Help 493
27.7 Defining Processes for Staff 493
27.8 Establishing an Escalation Process 494
27.9 Defining “Emergency” in Writing 495
27.10 Supplying Request-Tracking Software 496
27.11 Statistical Improvements 498
27.12 After-Hours and 24/7 Coverage 499
27.13 Better Advertising for the Helpdesk 500
27.14 Different Helpdesks for Different Needs 501
27.15 Summary 502
Exercises 503

28 Handling an Incident Report 505

28.1 Process Overview 506
28.2 Phase A—Step 1: The Greeting 508
28.3 Phase B: Problem Identification 509

28.3.1 Step 2: Problem Classification 510
28.3.2 Step 3: Problem Statement 511
28.3.3 Step 4: Problem Verification 513

Contents xxiii

28.4 Phase C: Planning and Execution 515
28.4.1 Step 5: Solution Proposals 515
28.4.2 Step 6: Solution Selection 516
28.4.3 Step 7: Execution 517

28.5 Phase D: Verification 518
28.5.1 Step 8: Craft Verification 518
28.5.2 Step 9: Customer Verification/Closing 519

28.6 Perils of Skipping a Step 519
28.7 Optimizing Customer Care 521

28.7.1 Model-Based Training 521
28.7.2 Holistic Improvement 522
28.7.3 Increased Customer Familiarity 522
28.7.4 Special Announcements for Major Outages 522
28.7.5 Trend Analysis 523
28.7.6 Customers Who Know the Process 524
28.7.7 An Architecture That Reflects the Process 525

28.8 Summary 525
Exercises 527

29 Debugging 529

29.1 Understanding the Customer’s Problem 529
29.2 Fixing the Cause, Not the Symptom 531
29.3 Being Systematic 532
29.4 Having the Right Tools 533

29.4.1 Training Is the Most Important Tool 534
29.4.2 Understanding the Underlying Technology 534
29.4.3 Choosing the Right Tools 535
29.4.4 Evaluating Tools 537

29.5 End-to-End Understanding of the System 538
29.6 Summary 540
Exercises 540

30 Fixing Things Once 541

30.1 Story: The Misconfigured Servers 541
30.2 Avoiding Temporary Fixes 543
30.3 Learn from Carpenters 545
30.4 Automation 547

xxiv Contents

30.5 Summary 549
Exercises 550

31 Documentation 551

31.1 What to Document 552
31.2 A Simple Template for Getting Started 553
31.3 Easy Sources for Documentation 554

31.3.1 Saving Screenshots 554
31.3.2 Capturing the Command Line 554
31.3.3 Leveraging Email 555
31.3.4 Mining the Ticket System 555

31.4 The Power of Checklists 556
31.5 Wiki Systems 557
31.6 Findability 559
31.7 Roll-Out Issues 559
31.8 A Content-Management System 560
31.9 A Culture of Respect 561
31.10 Taxonomy and Structure 561
31.11 Additional Documentation Uses 562
31.12 Off-Site Links 562
31.13 Summary 563
Exercises 564

Part VII Change Processes 565

32 Change Management 567

32.1 Change Review Boards 568
32.2 Process Overview 570
32.3 Change Proposals 570
32.4 Change Classifications 571
32.5 Risk Discovery and Quantification 572
32.6 Technical Planning 573
32.7 Scheduling 574
32.8 Communication 576
32.9 Tiered Change Review Boards 578
32.10 Change Freezes 579

Contents xxv

32.11 Team Change Management 581
32.11.1 Changes Before Weekends 581
32.11.2 Preventing Injured Toes 583
32.11.3 Revision History 583

32.12 Starting with Git 583
32.13 Summary 585
Exercises 585

33 Server Upgrades 587

33.1 The Upgrade Process 587
33.2 Step 1: Develop a Service Checklist 588
33.3 Step 2: Verify Software Compatibility 591

33.3.1 Upgrade the Software Before the OS 591
33.3.2 Upgrade the Software After the OS 592
33.3.3 Postpone the Upgrade or Change the Software 592

33.4 Step 3: Develop Verification Tests 592
33.5 Step 4: Choose an Upgrade Strategy 595

33.5.1 Speed 596
33.5.2 Risk 597
33.5.3 End-User Disruption 597
33.5.4 Effort 597

33.6 Step 5: Write a Detailed Implementation Plan 598
33.6.1 Adding Services During the Upgrade 598
33.6.2 Removing Services During the Upgrade 598
33.6.3 Old and New Versions on the Same Machine 599
33.6.4 Performing a Dress Rehearsal 599

33.7 Step 6: Write a Backout Plan 600
33.8 Step 7: Select a Maintenance Window 600
33.9 Step 8: Announce the Upgrade 602
33.10 Step 9: Execute the Tests 603
33.11 Step 10: Lock Out Customers 604
33.12 Step 11: Do the Upgrade with Someone 605
33.13 Step 12: Test Your Work 605
33.14 Step 13: If All Else Fails, Back Out 605
33.15 Step 14: Restore Access to Customers 606
33.16 Step 15: Communicate Completion/Backout 606

xxvi Contents

33.17 Summary 608
Exercises 610

34 Maintenance Windows 611

34.1 Process Overview 612
34.2 Getting Management Buy-In 613
34.3 Scheduling Maintenance Windows 614
34.4 Planning Maintenance Tasks 615
34.5 Selecting a Flight Director 616
34.6 Managing Change Proposals 617

34.6.1 Sample Change Proposal: SecurID Server Upgrade 618
34.6.2 Sample Change Proposal: Storage Migration 619

34.7 Developing the Master Plan 620
34.8 Disabling Access 621
34.9 Ensuring Mechanics and Coordination 622

34.9.1 Shutdown/Boot Sequence 622
34.9.2 KVM, Console Service, and LOM 625
34.9.3 Communications 625

34.10 Change Completion Deadlines 628
34.11 Comprehensive System Testing 628
34.12 Post-maintenance Communication 630
34.13 Reenabling Remote Access 631
34.14 Be Visible the Next Morning 631
34.15 Postmortem 631
34.16 Mentoring a New Flight Director 632
34.17 Trending of Historical Data 632
34.18 Providing Limited Availability 633
34.19 High-Availability Sites 634

34.19.1 The Similarities 634
34.19.2 The Differences 635

34.20 Summary 636
Exercises 637

35 Centralization Overview 639

35.1 Rationale for Reorganizing 640
35.1.1 Rationale for Centralization 640
35.1.2 Rationale for Decentralization 640

Contents xxvii

35.2 Approaches and Hybrids 642
35.3 Summary 643
Exercises 644

36 Centralization Recommendations 645

36.1 Architecture 645
36.2 Security 645

36.2.1 Authorization 646
36.2.2 Extranet Connections 647
36.2.3 Data Leakage Prevention 648

36.3 Infrastructure 648
36.3.1 Datacenters 649
36.3.2 Networking 649
36.3.3 IP Address Space Management 650
36.3.4 Namespace Management 650
36.3.5 Communications 651
36.3.6 Data Management 652
36.3.7 Monitoring 653
36.3.8 Logging 653

36.4 Support 654
36.4.1 Helpdesk 654
36.4.2 End-User Support 655

36.5 Purchasing 655
36.6 Lab Environments 656
36.7 Summary 656
Exercises 657

37 Centralizing a Service 659

37.1 Understand the Current Solution 660
37.2 Make a Detailed Plan 661
37.3 Get Management Support 662
37.4 Fix the Problems 662
37.5 Provide an Excellent Service 663
37.6 Start Slowly 663
37.7 Look for Low-Hanging Fruit 664
37.8 When to Decentralize 665
37.9 Managing Decentralized Services 666

xxviii Contents

37.10 Summary 667
Exercises 668

Part VIII Service Recommendations 669

38 Service Monitoring 671

38.1 Types of Monitoring 672
38.2 Building a Monitoring System 673
38.3 Historical Monitoring 674

38.3.1 Gathering the Data 674
38.3.2 Storing the Data 675
38.3.3 Viewing the Data 675

38.4 Real-Time Monitoring 676
38.4.1 SNMP 677
38.4.2 Log Processing 679
38.4.3 Alerting Mechanism 679
38.4.4 Escalation 682
38.4.5 Active Monitoring Systems 682

38.5 Scaling 684
38.5.1 Prioritization 684
38.5.2 Cascading Alerts 684
38.5.3 Coordination 685

38.6 Centralization and Accessibility 685
38.7 Pervasive Monitoring 686
38.8 End-to-End Tests 687
38.9 Application Response Time Monitoring 688
38.10 Compliance Monitoring 689
38.11 Meta-monitoring 690
38.12 Summary 690
Exercises 691

39 Namespaces 693

39.1 What Is a Namespace? 693
39.2 Basic Rules of Namespaces 694
39.3 Defining Names 694
39.4 Merging Namespaces 698

Contents xxix

39.5 Life-Cycle Management 699
39.6 Reuse 700
39.7 Usage 701

39.7.1 Scope 701
39.7.2 Consistency 704
39.7.3 Authority 706

39.8 Federated Identity 708
39.9 Summary 709
Exercises 710

40 Nameservices 711

40.1 Nameservice Data 711
40.1.1 Data 712
40.1.2 Consistency 712
40.1.3 Authority 713
40.1.4 Capacity and Scaling 713

40.2 Reliability 714
40.2.1 DNS 714
40.2.2 DHCP 717
40.2.3 LDAP 718
40.2.4 Authentication 719
40.2.5 Authentication, Authorization, and Accounting 719
40.2.6 Databases 720

40.3 Access Policy 721
40.4 Change Policies 723
40.5 Change Procedures 724

40.5.1 Automation 725
40.5.2 Self-Service Automation 725

40.6 Centralized Management 726
40.7 Summary 728
Exercises 728

41 Email Service 729

41.1 Privacy Policy 730
41.2 Namespaces 730
41.3 Reliability 731
41.4 Simplicity 733

xxx Contents

41.5 Spam and Virus Blocking 735
41.6 Generality 736
41.7 Automation 737
41.8 Monitoring 738
41.9 Redundancy 738
41.10 Scaling 739
41.11 Security Issues 742
41.12 Encryption 743
41.13 Email Retention Policy 743
41.14 Communication 744
41.15 High-Volume List Processing 745
41.16 Summary 746
Exercises 747

42 Print Service 749

42.1 Level of Centralization 750
42.2 Print Architecture Policy 751
42.3 Documentation 754
42.4 Monitoring 755
42.5 Environmental Issues 756
42.6 Shredding 757
42.7 Summary 758
Exercises 758

43 Data Storage 759

43.1 Terminology 760
43.1.1 Key Individual Disk Components 760
43.1.2 RAID 761
43.1.3 Volumes and File Systems 763
43.1.4 Directly Attached Storage 764
43.1.5 Network-Attached Storage 764
43.1.6 Storage-Area Networks 764

43.2 Managing Storage 765
43.2.1 Reframing Storage as a Community Resource 765
43.2.2 Conducting a Storage-Needs Assessment 766
43.2.3 Mapping Groups onto Storage Infrastructure 768
43.2.4 Developing an Inventory and Spares Policy 769

Contents xxxi

43.2.5 Planning for Future Storage 770
43.2.6 Establishing Storage Standards 771

43.3 Storage as a Service 772
43.3.1 A Storage SLA 773
43.3.2 Reliability 773
43.3.3 Backups 775
43.3.4 Monitoring 777
43.3.5 SAN Caveats 779

43.4 Performance 780
43.4.1 RAID and Performance 780
43.4.2 NAS and Performance 781
43.4.3 SSDs and Performance 782
43.4.4 SANs and Performance 782
43.4.5 Pipeline Optimization 783

43.5 Evaluating New Storage Solutions 784
43.5.1 Drive Speed 785
43.5.2 Fragmentation 785
43.5.3 Storage Limits: Disk Access Density Gap 786
43.5.4 Continuous Data Protection 787

43.6 Common Data Storage Problems 787
43.6.1 Large Physical Infrastructure 788
43.6.2 Timeouts 788
43.6.3 Saturation Behavior 789

43.7 Summary 789
Exercises 790

44 Backup and Restore 793

44.1 Getting Started 794
44.2 Reasons for Restores 795

44.2.1 Accidental File Deletion 796
44.2.2 Disk Failure 797
44.2.3 Archival Purposes 797
44.2.4 Perform Fire Drills 798

44.3 Corporate Guidelines 799
44.4 A Data-Recovery SLA and Policy 800
44.5 The Backup Schedule 801

xxxii Contents

44.6 Time and Capacity Planning 807
44.6.1 Backup Speed 807
44.6.2 Restore Speed 808
44.6.3 High-Availability Databases 809

44.7 Consumables Planning 809
44.7.1 Tape Inventory 811
44.7.2 Backup Media and Off-Site Storage 812

44.8 Restore-Process Issues 815
44.9 Backup Automation 816
44.10 Centralization 819
44.11 Technology Changes 820
44.12 Summary 821
Exercises 822

45 Software Repositories 825

45.1 Types of Repositories 826
45.2 Benefits of Repositories 827
45.3 Package Management Systems 829
45.4 Anatomy of a Package 829

45.4.1 Metadata and Scripts 830
45.4.2 Active Versus Dormant Installation 830
45.4.3 Binary Packages 831
45.4.4 Library Packages 831
45.4.5 Super-Packages 831
45.4.6 Source Packages 832

45.5 Anatomy of a Repository 833
45.5.1 Security 834
45.5.2 Universal Access 835
45.5.3 Release Process 836
45.5.4 Multitiered Mirrors and Caches 836

45.6 Managing a Repository 837
45.6.1 Repackaging Public Packages 838
45.6.2 Repackaging Third-Party Software 839

Contents xxxiii

45.6.3 Service and Support 839
45.6.4 Repository as a Service 840

45.7 Repository Client 841
45.7.1 Version Management 841
45.7.2 Tracking Conflicts 843

45.8 Build Environment 843
45.8.1 Continuous Integration 844
45.8.2 Hermetic Build 844

45.9 Repository Examples 845
45.9.1 Staged Software Repository 845
45.9.2 OS Mirror 847
45.9.3 Controlled OS Mirror 847

45.10 Summary 848
Exercises 849

46 Web Services 851

46.1 Simple Web Servers 852
46.2 Multiple Web Servers on One Host 853

46.2.1 Scalable Techniques 853
46.2.2 HTTPS 854

46.3 Service Level Agreements 854
46.4 Monitoring 855
46.5 Scaling for Web Services 855

46.5.1 Horizontal Scaling 856
46.5.2 Vertical Scaling 857
46.5.3 Choosing a Scaling Method 858

46.6 Web Service Security 859
46.6.1 Secure Connections and Certificates 860
46.6.2 Protecting the Web Server Application 862
46.6.3 Protecting the Content 863
46.6.4 Application Security 864

46.7 Content Management 866
46.8 Summary 868
Exercises 869

xxxiv Contents

Part IX Management Practices 871

47 Ethics 873

47.1 Informed Consent 873
47.2 Code of Ethics 875
47.3 Customer Usage Guidelines 875
47.4 Privileged-Access Code of Conduct 877
47.5 Copyright Adherence 878
47.6 Working with Law Enforcement 881
47.7 Setting Expectations on Privacy and Monitoring 885
47.8 Being Told to Do Something Illegal/Unethical 887
47.9 Observing Illegal Activity 888
47.10 Summary 889
Exercises 889

48 Organizational Structures 891

48.1 Sizing 892
48.2 Funding Models 894
48.3 Management Chain’s Influence 897
48.4 Skill Selection 898
48.5 Infrastructure Teams 900
48.6 Customer Support 902
48.7 Helpdesk 904
48.8 Outsourcing 904
48.9 Consultants and Contractors 906
48.10 Sample Organizational Structures 907

48.10.1 Small Company 908
48.10.2 Medium-Size Company 908
48.10.3 Large Company 908
48.10.4 E-commerce Site 909
48.10.5 Universities and Nonprofit Organizations 909

48.11 Summary 911
Exercises 911

49 Perception and Visibility 913

49.1 Perception 913
49.1.1 A Good First Impression 914
49.1.2 Attitude, Perception, and Customers 918

Contents xxxv

49.1.3 Aligning Priorities with Customer Expectations 920
49.1.4 The System Advocate 921

49.2 Visibility 925
49.2.1 System Status Web Page 925
49.2.2 Management Meetings 926
49.2.3 Physical Visibility 927
49.2.4 Town Hall Meetings 927
49.2.5 Newsletters 930
49.2.6 Mail to All Customers 930
49.2.7 Lunch 932

49.3 Summary 933
Exercises 934

50 Time Management 935

50.1 Interruptions 935
50.1.1 Stay Focused 936
50.1.2 Splitting Your Day 936

50.2 Follow-Through 937
50.3 Basic To-Do List Management 938
50.4 Setting Goals 939
50.5 Handling Email Once 940
50.6 Precompiling Decisions 942
50.7 Finding Free Time 943
50.8 Dealing with Ineffective People 944
50.9 Dealing with Slow Bureaucrats 944
50.10 Summary 946
Exercises 946

51 Communication and Negotiation 949

51.1 Communication 949
51.2 I Statements 950
51.3 Active Listening 950

51.3.1 Mirroring 951
51.3.2 Summary Statements 952
51.3.3 Reflection 953

51.4 Negotiation 954
51.4.1 Recognizing the Situation 954
51.4.2 Format of a Negotiation Meeting 955

xxxvi Contents

51.4.3 Working Toward a Win-Win Outcome 956
51.4.4 Planning Your Negotiations 956

51.5 Additional Negotiation Tips 958
51.5.1 Ask for What You Want 958
51.5.2 Don’t Negotiate Against Yourself 958
51.5.3 Don’t Reveal Your Strategy 959
51.5.4 Refuse the First Offer 959
51.5.5 Use Silence as a Negotiating Tool 960

51.6 Further Reading 960
51.7 Summary 961
Exercises 961

52 Being a Happy SA 963

52.1 Happiness 963
52.2 Accepting Criticism 965
52.3 Your Support Structure 965
52.4 Balancing Work and Personal Life 966
52.5 Professional Development 967
52.6 Staying Technical 968
52.7 Loving Your Job 969
52.8 Motivation 970
52.9 Managing Your Manager 972
52.10 Self-Help Books 976
52.11 Summary 976
Exercises 977

53 Hiring System Administrators 979

53.1 Job Description 980
53.2 Skill Level 982
53.3 Recruiting 983
53.4 Timing 985
53.5 Team Considerations 987
53.6 The Interview Team 990
53.7 Interview Process 991
53.8 Technical Interviewing 994
53.9 Nontechnical Interviewing 998
53.10 Selling the Position 1000

Contents xxxvii

53.11 Employee Retention 1000
53.12 Getting Noticed 1001
53.13 Summary 1002
Exercises 1003

54 Firing System Administrators 1005

54.1 Cooperate with Corporate HR 1006
54.2 The Exit Checklist 1007
54.3 Removing Access 1007

54.3.1 Physical Access 1008
54.3.2 Remote Access 1008
54.3.3 Application Access 1009
54.3.4 Shared Passwords 1009
54.3.5 External Services 1010
54.3.6 Certificates and Other Secrets 1010

54.4 Logistics 1011
54.5 Examples 1011

54.5.1 Amicably Leaving a Company 1012
54.5.2 Firing the Boss 1012
54.5.3 Removal at an Academic Institution 1013

54.6 Supporting Infrastructure 1014
54.7 Summary 1015
Exercises 1016

Part X Being More Awesome 1017

55 Operational Excellence 1019

55.1 What Does Operational Excellence Look Like? 1019
55.2 How to Measure Greatness 1020
55.3 Assessment Methodology 1021

55.3.1 Operational Responsibilities 1021
55.3.2 Assessment Levels 1023
55.3.3 Assessment Questions and Look-For’s 1025

55.4 Service Assessments 1025
55.4.1 Identifying What to Assess 1026
55.4.2 Assessing Each Service 1026

xxxviii Contents

55.4.3 Comparing Results Across Services 1027
55.4.4 Acting on the Results 1028
55.4.5 Assessment and Project Planning Frequencies 1028

55.5 Organizational Assessments 1029
55.6 Levels of Improvement 1030
55.7 Getting Started 1031
55.8 Summary 1032
Exercises 1033

56 Operational Assessments 1035

56.1 Regular Tasks (RT) 1036
56.2 Emergency Response (ER) 1039
56.3 Monitoring and Metrics (MM) 1041
56.4 Capacity Planning (CP) 1043
56.5 Change Management (CM) 1045
56.6 New Product Introduction and Removal (NPI/NPR) 1047
56.7 Service Deployment and Decommissioning (SDD) 1049
56.8 Performance and Efficiency (PE) 1051
56.9 Service Delivery: The Build Phase 1054
56.10 Service Delivery: The Deployment Phase 1056
56.11 Toil Reduction 1058
56.12 Disaster Preparedness 1060

Epilogue 1063

Part XI Appendices 1065

A What to Do When . . . 1067

B The Many Roles of a System Administrator 1089

B.1 Common Positive Roles 1090
B.2 Negative Roles 1107
B.3 Team Roles 1109
B.4 Summary 1112
Exercises 1112

Bibliography 1115

Index 1121

Preface

This is an unusual book. This is not a technical book. It is a book of strategies
and frameworks and anecdotes and tacit knowledge accumulated from decades
of experience as system administrators.

Junior SAs focus on learning which commands to type and which buttons to
click. As you get more advanced, you realize that the bigger challenge is under-
standing why we do these things and how to organize our work. That’s where
strategy comes in.

This book gives you a framework—a way of thinking about system admin-
istration problems—rather than narrow how-to solutions to particular problems.
Given a solid framework, you can solve problems every time they appear, regard-
less of the operating system (OS), brand of computer, or type of environment. This
book is unique because it looks at system administration from this holistic point of
view, whereas most other books for SAs focus on how to maintain one particular
product.With experience, however, all SAs learn that the big-picture problems and
solutions are largely independent of the platform. This book will change the way
you approach your work as an SA.

This book is Volume 1 of a series. Volume 1 focuses on enterprise infra-
structure, customer support, and management issues. Volume 2, The Practice of
Cloud SystemAdministration (ISBN: 9780321943187), focuses onweb operations and
distributed computing.

These books were born from our experiences as SAs in a variety of organi-
zations. We have started new companies. We have helped sites to grow. We have
worked at small start-ups and universities, where lack of funding was an issue.
We have worked at midsize and large multinationals, where mergers and spin-
offs gave rise to strange challenges. We have worked at fast-paced companies
that do business on the Internet and where high-availability, high-performance,
and scaling issues were the norm. We have worked at slow-paced companies at
which “high tech” meant cordless phones. On the surface, these are very different
environments with diverse challenges; underneath, they have the same building
blocks, and the same fundamental principles apply.

xxxix

xl Preface

Who Should Read This Book
This book is written for system administrators at all levels who seek a deeper
insight into the best practices and strategies available today. It is also useful
for managers of system administrators who are trying to understand IT and
operations.

Junior SAs will gain insight into the bigger picture of how sites work,
what their roles are in the organizations, and how their careers can progress.
Intermediate-level SAswill learn how to approachmore complex problems, how to
improve their sites, and how tomake their jobs easier and their customers happier.

Whatever level you are at, this book will help you understand what is behind
your day-to-day work, learn the things that you can do now to save time in the
future, decide policy, be architects and designers, plan far into the future, negotiate
with vendors, and interface with management.

These are the things that senior SAs know and your OS’s manual leaves out.

Basic Principles
In this book you will see a number of principles repeated throughout:

• Automation: Using software to replace human effort. Automation is critical.
We should not be doing tasks; we should be maintaining the system that does
tasks for us. Automation improves repeatability and scalability, is key to eas-
ing the system administration burden, and eliminates tedious repetitive tasks,
giving SAs more time to improve services. Automation starts with getting the
process well defined and repeatable, whichmeans documenting it. Then it can
be optimized by turning it into code.

• Small batches:Doingwork in small increments rather than large hunks. Small
batches permit us to deliver results faster, with higher quality, and with less
stress.

• End-to-end integration: Working across teams to achieve the best total result
rather than performing local optimizations that may not benefit the greater
good. The opposite is to work within your own silo of control, ignoring the
larger organization.

• Self-service systems: Tools that empower others to work independently,
rather than centralizing control to yourself. Shared services should be an
enablement platform, not a control structure.

• Communication: The right people can solve more problems than hardware
or software can. You need to communicate well with other SAs and with
your customers. It is your responsibility to initiate communication. Commu-
nication ensures that everyone is working toward the same goals. Lack of

Preface xli

communication leaves people concerned and annoyed. Communication also
includes documentation. Documentation makes systems easier to support,
maintain, and upgrade. Good communication and proper documentation also
make it easier to hand off projects and maintenance when you leave or take
on a new role.

These principles are universal. They apply at all levels of the system. They apply
to physical networks and to computer hardware. They apply to all operating sys-
tems running at a site, all protocols used, all software, and all services provided.
They apply at universities, nonprofit institutions, government sites, businesses,
and Internet service sites.

What Is an SA?
If you asked six system administrators to define their jobs, you would get seven
different answers. The job is difficult to define because system administrators do
so many things. An SA looks after computers, networks, and the people who use
them. An SA may look after hardware, operating systems, software, configura-
tions, applications, or security. An SA influences how effectively other people can
or do use their computers and networks.

A system administrator sometimes needs to be a business-process consul-
tant, corporate visionary, janitor, software engineer, electrical engineer, economist,
psychiatrist, mindreader, and, occasionally, bartender.

As a result, companies give SAs different titles. Sometimes, they are called net-
work administrators, system architects, system engineers, system programmers,
operators, and so on.

This book is for “all of the above.”
We have a very general definition of system administrator: one who manages

computer and network systems on behalf of another, such as an employer or a
client. SAs are the people who make things work and keep it all running.

System Administration Matters
System administration matters because computers and networks matter. Comput-
ers are a lot more important than they were years ago.

Software is eating the world. Industry after industry is being taken over
by software. Our ability to make, transport, and sell real goods is more dependent
on software than on any other single element. Companies that are good at software
are beating competitors that aren’t.

All this software requires operational expertise to deploy and keep it running.
In turn, this expertise is what makes SAs special.

xlii Preface

For example, not long ago, manual processes were batch oriented. Expense
reports on paper forms were processed once a week. If the clerk who processed
themwas out for a day, nobody noticed. This arrangement has since been replaced
by a computerized system, and employees file their expense reports online, 24/7.

Management now has amore realistic view of computers. Before they had PCs
on their desktops, most people’s impressions of computers were based on how
they were portrayed in films: big, all-knowing, self-sufficient, miracle machines.
The more people had direct contact with computers, the more realistic people’s
expectations became. Now even system administration itself is portrayed in films.
The 1993 classic Jurassic Park was the first mainstream movie to portray the key
role that system administrators play in large systems. The movie also showed how
depending on one person is a disaster waiting to happen. IT is a team sport. If only
Dennis Nedry had read this book.

In business, nothing is important unless the CEO feels that it is important.
The CEO controls funding and sets priorities. CEOs now consider IT to be impor-
tant. Email was previously for nerds; now CEOs depend on email and notice even
brief outages. The massive preparations for Y2K also brought home to CEOs how
dependent their organizations have become on computers, how expensive it can
be to maintain them, and how quickly a purely technical issue can become a seri-
ous threat. Most people do not think that they simply “missed the bullet” during
the Y2K change, but rather recognize that problemswere avoided thanks to tireless
efforts by many people. A CBS Poll shows 63 percent of Americans believe that the
time and effort spent fixing potential problems was worth it. A look at the news
lineups of all three major network news broadcasts fromMonday, January 3, 2000,
reflects the same feeling.

Previously, people did not grow up with computers and had to cautiously
learn about them and their uses. Now people grow up using computers. They con-
sume social media from their phones (constantly). As a result they have higher
expectations of computers when they reach positions of power. The CEOs who
were impressed by automatic payroll processing are being replaced by people who
grew up sending instant messages all day long. This new wave of management
expects to do all business from their phones.

Computers matter more than ever. If computers are to work, and work well,
system administration matters. We matter.

Organization of This Book
This book is divided into the following parts:

• Part I, “Game-ChangingStrategies.”This part describes how tomake the next
big step, for both those who are struggling to keep up with a deluge of work,
and those who have everything running smoothly.

Preface xliii

• Part II, “Workstation Fleet Management.” This part covers all aspects of lap-
tops and desktops. It focuses on how to optimize workstation support by
treating these machines as mass-produced commodity items.

• Part III, “Servers.” This part covers server hardware management—from the
server strategies you can choose, to what makes a machine a server and what
to consider when selecting server hardware.

• Part IV, “Services.” This part covers designing, building, and launching ser-
vices, converting users from one service to another, building resilient services,
and planning for disaster recovery.

• Part V, “Infrastructure.” This part focuses on the underlying infrastructure.
It covers network architectures and operations, an overview of datacenter
strategies, and datacenter operations.

• Part VI, “Helpdesks and Support.”This part covers everything related to pro-
viding excellent customer service, including documentation, how to handle an
incident report, and how to approach debugging.

• Part VII, “Change Processes.” This part covers change management pro-
cesses and describes how best to manage big and small changes. It also covers
optimizing support by centralizing services.

• Part VIII, “Service Recommendations.” This part takes an in-depth look at
what you should consider when setting up some common services. It cov-
ers monitoring, nameservices, email, web, printing, storage, backups, and
software depositories.

• Part IX, “Management Practices.” This part is for managers and non-
managers. It includes such topics as ethics, organizational structures, percep-
tion, visibility, time management, communication, happiness, and hiring and
firing SAs.

• Part X, “Being More Awesome.” This part is essential reading for all man-
agers. It covers how to assess an SA team’s performance in a constructive
manner, using the Capability Maturity Model to chart the way forward.

• Part XI, “Appendices.” This part contains two appendices. The first is a check-
list of solutions to common situations, and the second is an overview of the
positive and negative team roles.

What’s New in the Third Edition
The first two editions garnered a lot of positive reviews and buzz.Wewere honored
by the response. However, the passing of time made certain chapters look passé.
Most of our bold new ideas are now considered common-sense practices in the
industry.

xliv Preface

The first edition, which reached bookstores in August 2001, was written
mostly in 2000 before Google was a household name and modern computing
meant a big Sun multiuser system. Many people did not have Internet access, and
the cloud was only in the sky. The second edition was released in July 2007. It
smoothed the rough edges and filled some of the major holes, but it was written
when DevOps was still in its embryonic form.

The third edition introduces two dozen entirely new chapters and many
highly revised chapters; the rest of the chapters were cleaned up and modernized.
Longer chapters were split into smaller chapters. All newmaterial has been rewrit-
ten to be organized around choosing strategies, and DevOps and SRE practices
were introduced where they seem to be the most useful.

If you’ve read the previous editions and want to focus on what is new or
updated, here’s where you should look:

• Part I, “Game-Changing Strategies” (Chapters 1–4)
• Part II, “Workstation Fleet Management” (Chapters 5–12)
• Part III, “Servers” (Chapters 13–15)
• Part IV, “Services” (Chapters 16–20 and 22)
• Chapter 23, “Network Architecture,” and Chapter 24, “Network Operations”
• Chapter 32, “Change Management”
• Chapter 35, “Centralization Overview,” Chapter 36, “Centralization Recom-

mendations,” and Chapter 37, “Centralizing a Service”
• Chapter 43, “Data Storage”
• Chapter 45, “Software Repositories,” and Chapter 46, “Web Services”
• Chapter 55, “Operational Excellence,” and Chapter 56, “Operational

Assessments”

Books, like software, always have bugs. For a list of updates, along with news and
notes, and even a mailing list you can join, visit our web site:

www.EverythingSysAdmin.com

http://www.EverythingSysAdmin.com

Preface xlv

What’s Next
Each chapter is self-contained. Feel free to jump around. However, we have care-
fully ordered the chapters so that they make the most sense if you read the book
from start to finish. Either way, we hope that you enjoy the book. We have learned
a lot and had a lot of fun writing it. Let’s begin.

Thomas A. Limoncelli
Stack Overflow, Inc.
tom@limoncelli.com

Christina J. Hogan
chogan@chogan.com

Strata R. Chalup
Virtual.Net, Inc.

strata@virtual.net

Register your copy of The Practice of System and Network Administration, Vol-
ume 1, Third Edition, at informit.com for convenient access to downloads,
updates, and corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780321919168) and click Submit. Once the process is complete,
you will find any available bonus content under “Registered Products.”

This page intentionally left blank

Acknowledgments

For the Third Edition
Everyone was so generous with their help and support. We have so many people
to thank!

Thanks to the people who were extremely generous with their time and gave
us extensive feedback and suggestions: Derek J. Balling, Stacey Frye, Peter Grace,
John Pellman, Iustin Pop, and John Willis.

Thanks to our friends, co-workers, and industry experts who gave us sup-
port, inspiration, and cool stories to use: George Beech, Steve Blair, Kyle Brandt,
Greg Bray, Nick Craver, Geoff Dalgas, Michelle Fredette, David Fullerton, Dan
Gilmartin, Trey Harris, Jason Harvey, Mark Henderson, Bryan Jen, Gene Kim,
Thomas Linkin, Shane Madden, Jim Maurer, Kevin Montrose, Steve Murawski,
Xavier Nicollet, Dan O’Boyle, Craig Peterson, Jason Punyon, Mike Rembetsy, Neil
Ruston, Jason Shantz, Dagobert Soergel, Kara Sowles, Mike Stoppay, and Joe Youn.

Thanks to our team at Addison-Wesley: Debra Williams Cauley, for her guid-
ance; Michael Thurston, our developmental editor who took this sow’s ear and
made it into a silk purse; Kim Boedigheimer, who coordinated and kept us on
schedule; Lori Hughes, our LATEX wizard; Julie Nahil, our production editor; Jill
Hobbs, our copy editor; and Ted Laux for making our beautiful index!

Last, but not least, thanks and love to our familieswho suffered for years aswe
ignored other responsibilities to work on this book. Thank you for understanding!
We promise this is our last book. Really!

For the Second Edition
In addition to everyone who helped us with the first edition, the second edi-
tion could not have happened without the help and support of Lee Damon,
Nathan Dietsch, Benjamin Feen, Stephen Harris, Christine E. Polk, Glenn E. Sieb,
Juhani Tali, andmany people at the League of Professional SystemAdministrators
(LOPSA). Special 73s and 88s to Mike Chalup for love, loyalty, and support, and

xlvii

xlviii Acknowledgments

especially for themountains of laundry done and oceans of disheswashed so Strata
could write. And many cuddles and kisses for baby Joanna Lear for her patience.

Thanks to Lumeta Corporation for giving us permission to publish a second
edition.

Thanks toWingfoot for letting us use its server for our bug-tracking database.
Thanks to Anne Marie Quint for data entry, copyediting, and a lot of great

suggestions.
And last, but not least, a big heaping bowl of “couldn’t have done it with-

out you” to Mark Taub, Catherine Nolan, Raina Chrobak, and Lara Wysong at
Addison-Wesley.

For the First Edition
We can’t possibly thank everyone who helped us in some way or another, but
that isn’t going to stop us from trying. Much of this book was inspired by
Kernighan andPike’sThe Practice of Programming and JohnBentley’s second edition
of Programming Pearls.

We are grateful to Global Networking and Computing (GNAC), Synopsys,
and Eircom for permitting us to use photographs of their datacenter facilities to
illustrate real-life examples of the good practices that we talk about.

We are indebted to the following people for their helpful editing: Valerie
Natale, Anne Marie Quint, Josh Simon, and Amara Willey.

The peoplewehavemet throughUSENIX and SAGEand the LISA conferences
have been major influences in our lives and careers. We would not be qualified to
write this book if we hadn’tmet the peoplewe did and learned somuch from them.

Dozens of people helped us as we wrote this book—some by supplying anec-
dotes, some by reviewing parts of or the entire book, others by mentoring us
during our careers. The only fair way to thank them all is alphabetically and to
apologize in advance to anyone whom we left out: Rajeev Agrawala, Al Aho,
Jeff Allen, Eric Anderson, Ann Benninger, Eric Berglund, Melissa Binde, Steven
Branigan, Sheila Brown-Klinger, Brent Chapman, Bill Cheswick, Lee Damon, Tina
Darmohray, Bach Thuoc (Daisy) Davis, R. Drew Davis, Ingo Dean, Arnold de
Leon, Jim Dennis, Barbara Dijker, Viktor Dukhovni, Chelle-Marie Ehlers, Michael
Erlinger, Paul Evans, Rémy Evard, Lookman Fazal, Robert Fulmer, Carson Gaspar,
Paul Glick, David “Zonker” Harris, Katherine “Cappy” Harrison, Jim Hickstein,
Sandra Henry-Stocker, Mark Horton, Bill “Whump” Humphries, Tim Hunter,
Jeff Jensen, Jennifer Joy, Alan Judge, Christophe Kalt, Scott C. Kennedy, Brian
Kernighan, Jim Lambert, Eliot Lear, Steven Levine, Les Lloyd, Ralph Loura, Bryan
MacDonald, Sherry McBride, Mark Mellis, Cliff Miller, Hal Miller, Ruth Milner,
D. Toby Morrill, Joe Morris, Timothy Murphy, Ravi Narayan, Nils-Peter Nelson,
Evi Nemeth, William Ninke, Cat Okita, Jim Paradis, Pat Parseghian, David Parter,

Acknowledgments xlix

Rob Pike, Hal Pomeranz, David Presotto, Doug Reimer, Tommy Reingold, Mike
Richichi, Matthew F. Ringel, Dennis Ritchie, Paul D. Rohrigstamper, Ben Rosen-
gart, David Ross, Peter Salus, Scott Schultz, Darren Shaw, Glenn Sieb, Karl Siil,
Cicely Smith, Bryan Stansell, Hal Stern, Jay Stiles, Kim Supsinkas, Ken Thompson,
Greg Tusar, Kim Wallace, The Rabbit Warren, Dr. Geri Weitzman, Glen Wiley, Pat
Wilson, Jim Witthoff, Frank Wojcik, Jay Yu, and Elizabeth Zwicky.

Thanks also to Lumeta Corporation and Lucent Technologies/Bell Labs for
their support in writing this book.

Last, but not least, the people at Addison-Wesleymade this a particularly great
experience for us. In particular, our gratitude extends to Karen Gettman, Mary
Hart, and Emily Frey.

This page intentionally left blank

About the Authors

Thomas A. Limoncelli is an internationally recognized author, speaker, and sys-
tem administrator. During his seven years at Google NYC, he was an SRE for
projects such as Blog Search, Ganeti, and internal enterprise IT services. He now
works as an SRE at Stack Overflow. His first paid system administration job was
as a student at Drew University in 1987, and he has since worked at small and
large companies, including AT&T/Lucent Bell Labs and Lumeta. In addition to
this book series, he is known for his book Time Management for System Administra-
tors (O’Reilly, 2005). His hobbies include grassroots activism, for which his work
has been recognized at state and national levels. He lives in New Jersey.

Christina J. Hogan has 20 years of experience in system administration and net-
work engineering, from Silicon Valley to Italy and Switzerland. She has gained
experience in small start-ups, midsize tech companies, and large global corpora-
tions. She worked as a security consultant for many years; in that role, her cus-
tomers included eBay, Silicon Graphics, and SystemExperts. In 2005, she and Tom
shared the USENIX LISA Outstanding Achievement Award for the first edition of
this book. Christina has a bachelor’s degree in mathematics, a master’s degree in
computer science, a doctorate in aeronautical engineering, and a diploma in law.
She also worked for six years as an aerodynamicist in a Formula 1 racing team and
represented Ireland in the 1988 Chess Olympiad. She lives in Switzerland.

Strata R. Chalup has been leading and managing complex IT projects for many
years, serving in roles ranging from project manager to director of operations. She
started administering VAX Ultrix and Unisys Unix in 1983 at MIT and spent the
dot-com years in Silicon Valley building Internet services for clients like iPlanet
and Palm. She joined Google in 2015 as a technical project manager. She has served
on the BayLISA and SAGE boards. Her hobbies include being a master gardener
and working with new technologies such as Arduino and 2D CAD/CAM devices.
She lives in Santa Clara County, California.

li

This page intentionally left blank

Chapter 3

Pets and Cattle

This chapter is about improving our efficiency by minimizing variation. We mass-
produce our work by unifying like things so that they can be treated the same. As
a result we have fewer variations to test, easier customer support, and less infra-
structure to maintain. We scale ourselves. We can’t eliminate all variation, but the
more we can unify, themore efficient we can be. Managing the remaining variation
is the topic of the next chapter. For now, let’s focus on unification itself.

We can’t spend hours custom-building every machine we install. Instead, we
make our machines generic so that they can all be treated as similarly as possi-
ble. Likewise, we are more efficient when we treat related tasks the same way.
For example, the process of onboarding new employees usually involves creating
accounts and supplying hardware to the new hires. If we invent the process anew
with each employee, it not only takes longer but also looks unprofessional as we
stumble through improvising each step as the new hires wait. People appreciate a
process that is fast, efficient, and well executed.

It is difficult to get better at a process when we never do the same thing
more than once. Improvement comes from repetition; practice makes perfect.
The more we can consolidate similar things so they can be treated the same, the
more practice we get and the better we get at it.

3.1 The Pets and Cattle Analogy
The machines that we administer range from highly customized to entirely
generic. The analogy commonly used is “pets and cattle.” Pets are the highly
customized machines and cattle are the generic machines.

This analogy is generally attributed to Yale computer scientist David Gelern-
ter, who used it in reference to filesystems. Gelernter wrote, “If you have three pet
dogs, give them names. If you have 10,000 head of cattle, don’t bother.”

37

38 Chapter 3 Pets and Cattle

The analogy gained in popularity when JoshuaMcKenty, co-founder of Piston
Cloud, explained it this way in a press release (McKenty 2013):

The servers in today’s datacenter are like puppies—they’ve got names andwhen they
get sick, everything grinds to a halt while you nurse them back to health. . . . Piston
Enterprise OpenStack is a system for managing your servers like cattle—you number
them, and when they get sick and you have to shoot them in the head, the herd can
keep moving. It takes a family of three to care for a single puppy, but a few cowboys
can drive tens of thousands of cows over great distances, all while drinking whiskey.

A pet is a unique creature. It is an animal that we love and take care of. We take
responsibility for its health and well-being. There is a certain level of emotional
attachment to it. We learn which food it likes and prepare special meals for it. We
celebrate its birthdays and dress it up in cute outfits. If it gets injured, we are sad.
When it is ill, we take it to the veterinarian and give it our full attention until it is
healed. This individualized care can be expensive. However, since we have only
one or two pets, the expense is justified.

Likewise, a machine can be a pet if it is highly customized and requires special
procedures for maintaining it.

A herd of cattle is a group of many similar animals. If you have a herd of cows
each one is treated the same. This permits us the benefits of mass-production. All
cattle receive the same living conditions, the same food, the same medical treat-
ment, the same everything. They all have the same personality, or at least are
treated as if they do. There are no cute outfits. The use of mass-production tech-
niques keeps maintenance costs low and improves profits at scale: Saving a dollar
per cow can multiply to hundreds of thousands in total savings.

Likewise, machines can be considered cattle when they are similar enough
that they can all be managed the same way. This can be done at different levels
of abstraction. For example, perhaps the OS is treated generically even though the
hardwaremay comprise any number of virtual or physicalmachine configurations.
Or perhaps the machine hardware, OS, and applications are all the same, but the
data they access is different. This is typical in a large web hosting farm, where
the only difference is which specific web site is being served by each machine.

Preferably the systems we deal with are fungible resources: Any one unit can
substitute for any other.

A related metaphor is the snowflake. A snowflake is even more unique than a
pet. It is one of a kind. A system may have started out similar to others, but it was
customized, modified, and eventually becomes unlike any other system. Ormaybe
it started out unique and had very little chance of being properly brought into line
with the others. A snowflake requires special operational procedures. Rebooting

3.2 Scaling 39

it requires extra care. Upgrades require special testing. As Martin Fowler (2012)
wrote, a snowflake is “good for a ski resort, bad for a datacenter.”

A snowflake server is a business risk because it is difficult to reproduce. If the
hardware fails or the software becomes corrupted, it would be difficult to build a
new machine that provides the same services. It also makes testing more difficult
because you cannot guarantee that you have replicated the host in your testing
environment. When a bug is found in production that can’t be reproduced in the
test environment, fixing it becomes much more difficult.

Alternative Analogies

There are other analogies that people use, especially in countries where cattle
ranching is less common. One is the analogy of fine porcelain plates and paper
plates. You take good care of fine porcelain plates because they are expensive
and difficult to replace. In contrast, if a paper plate starts to lose structural
integrity, you simply bolster it by putting another paper plate underneath it.
If it becomes completely unusable, you replace it.

Another analogy is that modern system administration treats machines
like blood cells, not limbs. Blood cells are constantly dying off and being
replaced. Limbs, however, are difficult to replace and are protected.

3.2 Scaling
Cattle-like systems give us the ability to grow and shrink our system’s scale.
In cloud computing a typical architecture pattern has many web server replicas
behind a load balancer. Suppose each machine can handle 500 simultaneous users.
More replicas are added as more capacity is needed.

Cloud providers such as Amazon Elastic Compute Cloud (Amazon EC2),
Google Cloud Platform, and Microsoft Azure have autoscale features where they
will spin up and tear down additional replicas as demand requires. This kind of
scaling is possible only when machines are cattle. If setting up each new machine
required individual attention, the autoscale feature would not be possible.

In such systems we no longer are concerned with the uptime of a particular
machine. If onemachine fails, the autoscaler will build a new one. If amachine gets
sick, we delete it and let the autoscaler do its job. Per-machine uptime was cool in
the 1990s but now we measure total system health and availability.

Scale-out architectures are discussed further in Section 16.6.3 and in Volume 2
of this book series.

40 Chapter 3 Pets and Cattle

3.3 Desktops as Cattle
The concept of generic, replaceable machines was first used in desktop environ-
ments, long before the cattle and pets analogy was coined. We already discussed
the importance of unifying workstation configurations in Chapter 1, “Climbing
Out of theHole,” andwe’ll discuss it in greater detail in Chapter 8, “OS Installation
Strategies.”

The benefits of generic desktops are manifold. Users benefit from improved
customer support, as SAs are no longer struggling to learn and adapt to an infinite
number of variations. Repairs happen faster because the IT staff has a single vendor
repair procedure to navigate.

Contrast this to an environment where each PC is fully customized. Fixing
a software problem is difficult because any change may break something else. It
is difficult to know what “working” means when there is no understanding of
what is on the machine. Support for older operating systems depends on finding
someone on the IT team who remembers that OS.

Creating an environment where cattle are the norm is the primary focus of
chapters in Part II, “Workstation FleetManagement,” and Part III, “Servers.” Chap-
ter 11, “Workstation Standardization,” focuses on taking a fleet ofworkstations that
are pets and bringing about unification.

Resetting to a More Uniform State

One of the things that made Apple iPads such a success is that they reset the
clock on variation.

PCs had become so customizable that variations had gotten out of control.
One of the downsides of competition is that companies compete by differ-
entiating their products, which means making them unique and different.
Hardware vendors had many variations and choices, each trying to appeal
to different customer segments. Each new market that Microsoft addressed
resulted in adding customizability features to attract those users. As a result,
by 2005 the complexity of supporting a fleet of Windows machines required a
fleet of IT professionals.

Apple iPads took us back to having one particular configuration with
curated applications. The uniformity made them more stable and consistent,
which then permitted us to focus on the applications, not the infrastruc-
ture. Apple retains tight control over the iPad environment so that when the
company repeats Microsoft’s mistake, it will play out much more slowly.

3.4 Server Hardware as Cattle 41

3.4 Server Hardware as Cattle
Server hardware and software in a datacenter is another situation where we have
pets and cattle. At some companies each machine in the datacenter is specified
to meet the exact needs of the applications it will run. It has the right amount
of RAM and disk, and possibly even additional external storage peripherals or
other hardware. Each machine may run a different operating system or OS release.
This ensures that each application is maximally optimized to the best of the system
administration team’s ability.

However, these local optimizations cause inefficiencies at the macro scale.
Each machine requires special maintenance procedures. Each operating system in
use, and possibly each version of each operating system, requires individual atten-
tion. A security patch thatmust be tested on tenOS versions is a lotmorework than
one that has to be tested on only one or two versions. This kind of cost eventually
outweighs the optimizations one can do for individual applications.

As a result, in large companies it often takes six months or more to deploy a
new server in a datacenter. A consultant working at a U.S. bank said it takes 18
months from the initial request to having a working server in their datacenter. If
you aren’t sure why banks have such lousy interest rates and service, imagine if a
phone app you wanted didn’t start to run until a year after you bought it.

Contrast this to an environment that has a cattle strategy for its datacenter.
Some companies standardize on two or three hardware variations and one or two
OS releases. You might not receive the exact hardware you want, but you receive
it quickly. Perfect is the enemy of good: Would you rather be up and running
this week with hardware that is good enough, or wait a year and have the exact
hardware you dreamed of, which is now obsolete?

Case Study: Google’s Two Hardware Types

For many years Google standardized on two types of machines. Diskful
machines maximized the amount of hard disk storage that could be packed
into a singlemachine. Indexmachines (so called because they stored the search
index) maximized the amount of RAM that could fit in a 1U configuration.
Teams that requested machines in the datacenter could choose between one
or the other and receive them within minutes because they were preloaded
and ready for use.

This setup made handling future orders easier. The purchase department
collected orders from all teams and tallied the number of diskful and index

42 Chapter 3 Pets and Cattle

machines requested. This was considerably easier than if each month depart-
ment members had to manage requests for thousands of different bespoke
configurations.

Software was designed to fit best with one model or the other. Most ser-
vices were big enough that they required many (often thousands) machines,
some of each type. For example, an applicationwould be split to run the appli-
cation’s web frontend on index machines while storing application data on
diskful machines. If the hardware being offered was 10 percent slower than
the ideal machine, employees would simply request additional machines to
compensate for the lagging performance.

This evolved into a pattern that was, actually, the opposite. Engineers
didn’t think in terms of spec’ing out the perfect machine. Instead, they
designed applications such that scaling was done by adding a certain num-
ber of machines per unit of workload. They performed tests to see how many
machines (of the type currently offered)would be required to process the num-
ber of users or the workload expected. Employees then could request that
number ofmachines. They no longer thought of applications in terms ofwhich
machinewould be best suited to a particular application, but rather howmuch
generic capacitywas required. As fastermodelswere introduced into the data-
center, benchmarks would be run to develop new capacity planning models
and the process would repeat.

Not every environment can standardize down to onemachine type, butwe can
provide a few standard configurations (small, medium, and large) and guide peo-
ple to them.We canminimize the number of vendors, so that there is one firmware
upgrade process, one repair workflow, and so on.

Offering fixed sizes of virtual machines (VMs) results in less isolated or
stranded capacity. For example, we can make the default VM size such that eight
fit on a physical machine with nowaste.We can offer larger sizes that are multiples
of the default size. This means we are never left with a physical machine that has
unused capacity that is too small for a new machine. It also makes it easier to plan
future capacity and reorganize placement of existing VMs within a cluster.

By offering standardized sizes we enable an environment where we no longer
look at machines individually, but rather treat them as scaling units to be used
when sizing our deployments. This is a better fit for how distributed computing
applications are designed and how most applications will be built in the future.

We can also standardize at the software level. Each machine is delivered
to the user with a standard OS installation and configuration. The defaults
embody the best practices we wish all users would follow. Modifications made

3.5 Pets Store State 43

after that are the application administrator’s responsibility. We’ll discuss better
ways to handle this responsibility in the next chapter.

The Power of Defaults

Defaults are powerful. If you announce an OS configuration change that all
IT subteams are required to make, you’ll get angry push-back from your
loudest and most vocal co-workers. You will get very little participation. In
fact, there may be enough push-back that you withdraw the request. Often
a tyranny of a few loud complainers prevents the majority from receiving a
beneficial change.

In contrast, if you make that change or setting part of the default con-
figuration that is delivered with each new server (thanks to your automated
OS install), you may be surprised at how little noise it generates. Most peo-
ple will live with the change. The people who previously would have made
noise will still complain, but now you can work with them to address their
concerns. See the anecdote in Section 7.3.1.

3.5 Pets Store State
Another way of describing pets is to note that they contain a lot of irreproducible
state. Cattle are stateless, or contain only reproducible state.

State is, essentially, data or information. That information may be data files,
configuration, or status. For example, when running MS Excel, the spreadsheet
currently loaded is the state. In a video game, the player’s score, position, and
status are state. In a web-based application, there is the application itself plus the
database that is used to store the user’s data. That database is state.

The more state a machine holds, the more irreplaceable it is—that is, the more
pet-like it is. Cattle are generic because we can rebuild one easily thanks to the fact
that cattle contain no state, or only state that can be copied from elsewhere.

A web server that displays static content (web pages and images) is stateless
if that static content is a copy from a master stored elsewhere. The web server can
be wiped and reloaded, but as long as the content can be copied from the primary
source, the new server is functionally the same as the original.

But suppose a web application has a database. If the machine is wiped and
reloaded, the database is lost. We can restore it from backups, but then we will
have lost any new data accumulated since the last backup was done. This web
application is stateful.

44 Chapter 3 Pets and Cattle

Configuration data is also state, but it can usually be regenerated. Which soft-
ware packageswere installed and how theywere configured are state, even though
the contents of the software packages themselves are not state; they come from a
master repository. The state can be reproduced either manually or via automation.

Irreproducible configuration state can be particularly insidious. In this case the
state is not a particular configuration file but rather how the systemwas made that
makes it a snowflake server. We’ve seen important servers that could be rebuilt
only by installing an old version of the software and then installing an upgrade
package; installing the final version directly did not work. Unknown and uniden-
tifiable state was being generated during the upgrade process that somehow was
not reproduced via the direct installation. This is the kind of unexplained state that
makes you want to cry.

Irreproducible Laptops

When Tom arrived at Cibernet, the company depended on an application that
had been installed on a set of laptopsmany years ago. By then, no oneworking
there could figure out which combination of Windows release, patches, and
installation packages would create a new laptop with a working version of
the software. Each time one of the original laptops died, the company moved
one step closer to insolvency.

The company was in the process of creating a replacement for the soft-
ware. If the new software was ready before the last laptop died, the company
would survive. If not, the company would literally not be able to perform the
financial processing it did for customers. It would have to go out of business.
One of the laptops was kept in a safe as a precaution. The others were used
carefully and only when needed.

When there were only four working laptops remaining, VMware intro-
duced a product that took a snapshot of a physical hard drive and created
a virtual machine image (physical to virtual, or p2v). Luckily it worked and
soon a virtual laptop could be run on any other machine. This reduced the risk
of the replacement project being late, and probably saved the company.

3.6 Isolating State
We can turn pets into cattle by isolating the state. Optimally this is done during the
design process, but sometimes we find ourselves doing it after the fact.

Imagine a typical web application running entirely on a single machine. The
machine includes the Apache HTTP server, the application software, a MariaDB

3.6 Isolating State 45

database server, and the data that the database is storing. This is the architecture
used by many small web-based applications.

The problem with this architecture is that the single machine stores both the
software and the state. It is a pet. This situation is depicted in Figure 3.1a.

We can improve the situation by separating out the database. As depicted in
Figure 3.1b, we can move the MariaDB database software and the data it stores to
another machine. The web server is now cattle-like because it can be reproduced
easily by simply installing the software and configuring it to point to the database
on the other machine. The database machine is a pet. However, having a cattle +

pet situation is an improvement over having one big pet. If the cattle-like server
becomes sick, we can easily replace it. The pet, since it has a single function, can be
more easily backed up to prepare for an emergency. We can also lock out users so
there is less chance of human-caused problems, and we can use more reliable (and
more expensive) hardware. By identifying and isolating the state, we are putting
all our eggs in one basket, but we can make it a very good basket—one to which
we give special care and attention.

The state that remains is the data stored in the database.We canmove this data
to an external storage to further isolate the state. For example, rather than storing
the data on local disk, we can allocate a data volume on our storage area network
(SAN) server, as depicted in Figure 3.1c. Now the database machine is stateless.

Database Web server(a)

Stateful

Database
Web

server
(b)

Stateful Stateless

SAN
Web

server

Database

service
(c)

Stateful Stateless

Figure 3.1: Evolving a web service to isolate state

46 Chapter 3 Pets and Cattle

It can be wiped and reloaded without losing the data. It is simply configured to
attach to the right SAN volume to access the state.

Many systems go through this kind of evolution. Sometimes these evolu-
tions happen during the design stage, resulting in a design that isolates state or
minimizes the number of places in which state is stored. For example, we might
consolidate state into a single database instead of storing some in a SQL database,
some in local files, and some in an external application service. At other times
this kind of evolution happens after the fact. System administrators spend a lot
of time reconfiguring and reengineering older systems to evolve them as needed,
often because they were designed by predecessors who have not read this book.
Lucky you.

This process is also called decoupling state. The all-in-one design tightly
couples the application to the data. The last designdecouples the data from the soft-
ware entirely. This decoupling permits us to scale the service better. For example,
the web server can be replicated to add more capacity.

Decoupling state makes it easier to scale systems. Many scaling techniques
involve replicating services and dividing the workload among those replicas.
When designing a system, it is generally easier to replicate components that are
stateless. If we administer these components as cattle, we can easily generate and
destroy them as demand increases and decreases. Figure 3.2 is similar to Fig-
ure 3.1c, but the web server component has been replicated to scale front-end
capacity. A replicated database cache was added to off-load read-only queries,
improving database performance. This kind of scaling is discussed further in
Chapter 18, “Service Resiliency and Performance Patterns.”

SAN
Database

service

Stateful Stateless

Read-Only

DB Cache
Read-Only

DB Cache

Read-Only

DB Cache
Read-only

DB cache

Read-Only

DB Cache
Read-Only

DB Cache

Read-Only

DB Cache
Web

server

HTTP

requests

Figure 3.2: A scalable web application service

3.7 Generic Processes 47

Blogs and State

State can also be moved to external services. Originally blog platforms were
made up of software that generated each page on demand by reading data
from locally stored files and an SQL database. This meant state was in three
places (the software, the SQL server, and local files). Scaling such systems is
very difficult.

In 2016, a new generation of blogging platforms arrived that required
no server-side state. In this case, the site was a set of static files that could
be uploaded to any web server—even ones without a database or the ability
to execute code. Such platforms used client-side JavaScript for all interactive
features.

Blog site generators like Hugo and Jekyll typically work as follows. The
blog owner creates aGit file repository that stores everything related to the site:
images, the text of blog posts, metadata that describes what the web site
should look like, and so on. The site generator uses this information to gener-
ate the entire site as a set of static files. These files are uploaded to aweb server.
If a new blog post is created in the Git repository, the entire site is regenerated
and uploaded again to the web host.

Highly stateful content such as user comments is handled by external ser-
vices such as Disqus. While the comments appear to be dynamically updating
on the site, they are really loading from the Disqus servers using HTML5 code
that does not change. This eliminatesmost of the infrastructure the blog owner
must maintain.

Because the files are static and require no server-side state, they can be
served from nearly anywhere. This includes a directory on a file server, a
Dropbox account, or a massive multiserver web hosting infrastructure.

3.7 Generic Processes
We can also make processes more generic to improve efficiency. For example,
onboarding new employees is a complex process. In some companies each divi-
sion or team has a different onboarding process. In some places engineers have a
different onboarding process than non-engineers. Each of these processes is pet-
like. It takes extra effort to reinvent each process again and again. Improvements
made for one process may not propagate to the others. However, this situation
often arises because different teams or departments do not communicate.

48 Chapter 3 Pets and Cattle

In contrast, some companies have a unified onboarding process. The common
aspects such as paperwork and new employee training are done first. The varia-
tions required for different departments or roles are saved to the end. You would
think this is a no-brainer and every company would do this, but you’d be sur-
prised at how many companies, both large and small, have a pet-like onboarding
process, or unified the process only after losing money due to a compliance failure
that required the company to clean up its act.

Onboarding

Onboarding is the process by which a new employee is brought into the com-
pany. While it is not usually the responsibility of the IT team, much of the
process involves IT: creating accounts; delivering the employee’s computer,
phone, and other technology; and so on. See Chapter 12, “Onboarding.”

Another example is the process for launching and updating applications in
production. Large companies often have hundreds of internal and external appli-
cations. A retailer like Target has thousands of applications ranging from inventory
management to shipping and logistics, forecasting, electronic data interchange
(EDI), and the software that handles the surprisingly complex task of generating
price labels.

In many organizations each such application has been built using different
software technologies, languages, and frameworks. Some are written in Java; oth-
ers in Go, Python, or PHP. One requires a particular web framework. Another
requires a particular version of an operating system. One requires a certain OS
patch; another won’t work on a machine with that patch. Some are delivered as
an installable package; with others the developer emails a ZIP file to the system
administrators.

As a result the process of deploying these applications in production is very
complex. Each new software release requires the operations team to follow a
unique or bespoke process. In some cases the process is full of new and different
surprises each time, often based on which developer led that particular release.
Joe sends ZIP files; Mary sends RAR files. Each variation requires additional
work and additional knowledge, and adds complexity and risk to the production
environment. Each variation makes automation more difficult.

In other words, each of these processes is a pet. So how can we turn them
into cattle?

Around 2012 a number of organizations identified the need to unify these pro-
cesses. Many new technologies appeared, one of which was the Docker Container

3.7 Generic Processes 49

format. It is a format for software distribution that also unifies how produc-
tion environments deploy applications. This format not only includes all the files
required for an application or service, but also includes a standard way to connect
and control them. Docker Containers includes meta-information such as which
TCP port the service runs on. As a consequence, in a service hosting environment
nearly all applications can be deployed the same way. While not every applica-
tion can work in the Docker Container system, enough can to greatly reduce the
number of pets in the environment.

The Docker system includes a number of elements. The Docker Container
image is an archive file (like ZIP or TAR) that includes all the files required for
a particular service. A Dockerfile is a file that describes how to build an image in
an automated fashion, thereby enabling a repeatable process for building images.
ADocker compose file defines a complex applicationmade up of many containers,
and describes how they talk to each other.

Listing 3.1 is a Dockerfile that describes how to create an image that includes
the Apache HTTP server and related files. The EXPOSE 80 statement indicates
that the software this image runs needs exclusive access to TCP port 80.

Listing 3.1: A Dockerfile describing how to build a Docker image

FROM ubuntu:12.04

RUN apt-get update && apt-get install -y apache2 \
&& apt-get clean && rm -rf /var/lib/apt/lists/*

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

Listing 3.2 shows a Docker compose file for an application that consists of two
services: one that provides a web-based application and another that provides API
access. Both require access to a MySQL database and a Redis cache.

Listing 3.2: A Docker compose file for a simple application

services:
web:

git_url: git@github.com:example/node-js-sample.git
git_branch: test
command: rackup -p 3000

50 Chapter 3 Pets and Cattle

build_command: rake db:migrate
deploy_command: rake db:migrate
log_folder: /usr/src/app/log
ports: ["3000:80:443", "4000"]
volumes: ["/tmp:/tmp/mnt_folder"]
health: default

api:
image: quay.io/example/node
command: node test.js
ports: ["1337:8080"]
requires: ["web"]

databases:
- "mysql"
- "redis"

With a standardized container format, all applications can be delivered to
production in a form so sufficiently self-contained that IT doesn’t need to have
a different procedure for each application. While each one is wildly different inter-
nally, the process that IT follows to deploy, start, and stop the application is
the same.

Containers can be used to build a beta environment. Ideally, the test envi-
ronment will be as similar to the production environment as possible. Anytime a
bug is found in production, it must be reproduced in the test environment to be
investigated and fixed. Sometimes a bug can’t be reproduced this way, and fixing
it becomes much more difficult.

The reality is that at most companies the beta and production environments
are very different: Each is built by a different group of people (developers and SAs)
for their own purposes. A story we hear time and time again is that the developers
who started the project wrote code that deploys to the beta environment. The SAs
were not involved in the project at the time.When it came time to deploy the appli-
cation into production, the SAs did it manually because the deployment code for
the beta environment was unusable anywhere else. Later, if the SAs automated
their process, they did it in a different language andmade it specific to the produc-
tion environment. Now two code bases are maintained, and changes to the process
must be implemented in code twice. Or, more likely, the changes are silently made
to the beta deploy code, and no one realizes it until the next production deploy-
ment breaks. This sounds like a silly company that is the exception, but it is how a
surprisingly large number of teams operate.

Not only do containers unify the production environment and make it more
cattle-like, but they also improve developer productivity. Developers can build a
sandbox environment on their personal workstations by selecting the right combi-
nation of containers. They can create amini-version of the production environment

3.8 Moving Variations to the End 51

that they can use to develop against. Having all this on their laptops is bet-
ter than sharing or waiting their turn to use a centrally administered test stage
environment.

In June 2015 the Open Container Initiative (OCI) was formed to create a single
industry-wide standard for container formats and run-times. Docker, Inc., donated
its container format and runtime to serve as the basis of this effort.

Containers are just one of many methods for unifying this process.

Shipping Containers

The concept of Docker Containers comes from the shipping industry. Before
shipping containers were introduced, individual items were loaded and
unloaded from ships, usually by hand. Each item had different dimensions
and therefore had to be handled differently. An individual lamp needed to be
carefully handled, while a large sack of wheat could be tossed about.

That changed in April 1956, when Malcom McLeans organized the first
shipment using standardized containers.

Standardized shipping containers revolutionized how products move
around the world. Because each shipping container was the same shape and
size, loading and unloading could be done much faster. Cranes and automa-
tion had to be built to handle only one shape, with a standardized maximum
weight and lifting points.

A single container held many individual items, all with the same desti-
nation. Customs officials could approve all the items in a particular container
and seal it, eliminating the need for customs checks at transit points as long as
the seal remained unbroken.

Intermodal shipping was born. A single container would be loaded at a
factory and remain as a unit whether it was on a truck, train, or ship. Standard
shipping containers are accepted everywhere.

3.8 Moving Variations to the End
Operational science teaches us to move variations in a process to the end. Burger
King restaurants make a generic hamburger, waiting until the last minute to add
toppings such as ketchup, mustard, and pickles. Unsold inventory can be kept
generic so that it can be quickly customized when the order is placed. Otherwise,
a restaurant might end up with a surplus of burgers with pickles sitting unsold
while Christina waits for her pickle-less order to be made from scratch.

52 Chapter 3 Pets and Cattle

Auto manufacturers also delay variation to the last possible moment. Option
packages are added at the end, where demand is better understood. Unusual
items like special audio systems or fancy tires are added by the dealer only after a
particular customer requests them.

As long as theWIP stays generic, the process is simple and easier to streamline.
You can mass-produce dozens of generic burgers with a single process and a sin-
gle focus, improving it constantly to be more efficient. Once they are customized,
everything becomes a special snowflake process. Our ability to improve the process
is not impossible, though it is deterred.

This strategy also works in IT. Design systems and processes to keep WIP
generic for as long as possible. Save variations until the end. This reduces the com-
binations of configurations and variables to be tested, makes it easier to verify
completeness and accuracy, and makes it easier to improve the process.

We’ve already seen this in our discussion of the onboarding process, where
common tasks were done first.

Another example relates to laptop distribution. Imagine a company where all
new employees receive the same laptop, with the sameOS, the same configuration,
and the same applications. However, when a user logs in for the first time, spe-
cific applications are installed depending on whether the employee is an engineer,
salesperson, or executive. After that customers can customize the workstation to
their liking. This enables the entire laptop deployment process to be generic until
the last possible moment.

Now imagine instead that such customizations were done at the start. If there
was a burst of new engineers starting at the company, the IT departmentmight find
itself with no engineering laptops left but plenty of sales laptops. If the hardware
was the same they could at least rework the laptops to be engineering laptops. This
would double the effort expended on each laptop, but itwould solve the immediate
problem. If the hardware models were different, however, the engineers would
have to wait for laptops since the units are not fungible resources. Alternatively,
the engineers could be retrained to work as salespeople, but that would be silly
since people are not fungible resources.

When things are different in software, we can treat them generically by choos-
ing the right level of abstraction. Containers permit all services to be treated
generically because no matter what is on the inside, the SAs can simply deal with
them at generic touch points that are common for all.

Some software frameworks permit plug-ins or drivers to be written so that the
framework deals with generic “things” but the differences are mediated by
the plug-in.

3.10 Summary 53

3.9 Automation
Consistency makes it easier to automate a process. It is easier to write automation
for cattle than for pets because there are fewer surprises and variations to be aware
of and fewer permutations to test. Automation brings about opportunities for self-
service system administration. Web sites and other tools can empower users to get
their needs met without human intervention.

You can also look at this another way: Before we can improve things, we must
make things consistent. Making improvements to something inconsistent is like
wrestling a pig: It’s messy and you probablywon’t win. Once things are consistent,
we can make them better—optimize them—and we gain the freedom to experi-
ment and try new things. Our experiments may fail, but if we do not try, there is
no way to improve. At least with each failure we learn something. This is not a
rationalization that makes us feel better about our failures: The experiments that
are a success are valuable because the system has been improved (optimized); the
experiments we revert are learning experiences that guide us as we make future
improvements.

You’ll see this pattern of chaos⇒defined⇒repeatable⇒optimizing through-
out this book. It is also the basis of “The ThreeWays of Operational Improvement”
described in Section 12.3.5, and is the basis of the assessment levels in Section 55.3.2.

3.10 Summary
Pets are machines that are irreproducible because they are highly customized over
a long period of time with no record of how to exactly replicate the process. They
must be managed individually. If a pet becomes damaged or corrupted, it must be
carefully brought back into the desired state just as a doctor tends to a sick patient.

Cattle are machines that can be reproduced programmatically and are there-
fore disposable. If one of these cattle gets damaged or corrupted, it is wiped and
rebuilt. To complete the analogy, when a single animal in a cattle drive is sick, it is
killed so that the herd can keep moving.

Cattle-like systems make it easier to manage large numbers of machines. It is
easier to mass-produce IT when machines are generic.

Desktops can bemade cattle-like by starting them all the same via automation,
and using directory services and other techniques to maintain their sameness. We
can also reduce the number of vendors and models to make the repair processes
more generic.

Servers have different challenges. The software each runs is usually very dif-
ferent. We can use containers and configuration management systems to automate

54 Chapter 3 Pets and Cattle

the setup of these differences so that they can be reproduced by running the code
again. More importantly, pet-like servers store irreproducible state: information
that is not stored elsewhere (other than backups). We can design our services to
separate out our state to specific machines so as to increase the number of cattle-
like systems. State can be stored on a separate file server, database server, or
external service.

We can also improve efficiency by making processes more cattle-like. A pro-
cess should save any variations until the last possible moment. By keeping things
generic at the start, we can mass-produce the start of the process.

Exercises
1. Explain the pets and cattle analogy for computers.
2. What is a snowflake server? Why are they a bad idea?
3. If a snowflake server is risky, how can we reduce risk through repetition?
4. How do cattle-like systems help us be more efficient?
5. How do cattle-like systems help us scale services?
6. According to this chapter, why do banks have lousy interest rates?
7. A laptop and a desktop PC are very different. Inwhatway couldwe treat them

both as cattle of the same herd?
8. What is state? What is irreproducible state?
9. Why is isolating state to particular machines a good thing?

10. How can beta and production environments end up being different? How can
we make them as similar as possible?

11. How is mass-production aided by moving variations to the end?
12. Sometimes bad customer service is described as being treated like cattle. Yet,

some of the best companies have practices that assure that everyone receives
extremely high-quality service in an efficient and mass-produced way. These
companies are also managing people like cattle. How are the latter companies
able to achieve this without offending their customers?

13. Pick a service in your organization that stores a lot of state. Describe how it
could be implemented using an architecture that isolates state.

14. What are the benefits of moving variations to the end of the process?
15. Pick a process in your organization that has a lot of variation. How can it

be restructured to move the variation to the end? What benefits would be
achieved by doing this?

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	3 Pets and Cattle
	3.1 The Pets and Cattle Analogy
	3.2 Scaling
	3.3 Desktops as Cattle
	3.4 Server Hardware as Cattle
	3.5 Pets Store State
	3.6 Isolating State
	3.7 Generic Processes
	3.8 Moving Variations to the End
	3.9 Automation
	3.10 Summary
	Exercises

